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Abstract
While studies of alternative pre-mRNA splicing regulation have typically focused on RNA-
binding proteins and their target sequences within nascent message, it is becoming increasingly
evident that mRNA splicing, RNA polymerase II (pol II) elongation and chromatin structure are
intricately intertwined. The majority of introns in higher eukaryotes are excised prior to transcript
release in a manner that is dependent on transcription through pol II. As a result of co-
transcriptional splicing, variations in pol II elongation influence alternative splicing patterns,
wherein a slower elongation rate is associated with increased inclusion of alternative exons within
mature mRNA. Physiological barriers to pol II elongation, such as repressive chromatin structure,
can thereby similarly impact splicing decisions. Surprisingly, pre-mRNA splicing can reciprocally
influence pol II elongation and chromatin structure. Here, we highlight recent advances in co-
transcriptional splicing that reveal an extensive network of coupling between splicing,
transcription and chromatin remodeling complexes.

Keywords
alternative pre-mRNA splicing; chromatin; transcription elongation; RNA polymerase II

1. Introduction
In 1977, the Sharp and Roberts laboratories independently made the landmark discovery that
genes of higher organisms are separated by non-coding sequences [1, 2]. Since their initial
description, introns have been the subject of substantial investigation regarding their
potential role. As a result, what was once considered “junk DNA” has now been granted the
status of an important regulator of eukaryotic gene expression. Amongst other functions,
intron-exon architecture serves as a critical platform for transcriptome diversification via
alternative pre-mRNA splicing. Indeed, the first examples of alternative splicing emerged
only a few years after the identification of introns, highlighting the shear pervasiveness. It is
now commonly accepted that alternative splicing of pre-mRNA in higher organisms is the
norm, and greater than 90% of human genes engage in alternative splicing [3, 4]. However,
coincident with the transcriptome expansion in higher organisms, introns have lengthened
and splice site strengths have weakened [5]. Thus, the evolutionary drive for transcript
diversification has posed the spliceosome with the increasingly difficult task of identifying
short splice site consensus sequences in a sea of non-coding intronic sequence. Alternative
pre-mRNA splicing adds an additional layer of complexity in that splice site recognition
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must be diversified in a context-dependent manner. Consequently, it should not be
surprising that pre-mRNA splicing is coordinated at multiple levels. In addition to regulation
via RNA-binding protein recognition of cis-elements encoded within pre-mRNA, recent
evidence suggests that transcription elongation rate and chromatin structure contribute to
splice site recognition. Rather than operating independently, these processes are highly
integrated as a result of co-transcriptional pre-mRNA splicing. However, unlike 5’ end
capping and 3’ polyadenylation, which exclusively occur co-transcriptionally, recent
evidence suggests that splicing can occur co- or post-transcriptionally [6]. As a result of
these new findings, the model of pre-mRNA splicing regulation has required some
substantial changes. In particular, we can no longer examine mRNA splicing without also
examining structural determinants at the corresponding DNA.

2. Spliceosome assembly
The traditional view of alternative pre-mRNA splicing is based on combinatorial binding of
trans-acting factors to composite recognition elements encoded within the nascent transcript
to enhance or inhibit spliceosome assembly. The spliceosome is a megadalton complex that
binds conserved sequences at the 5’ and 3’ ends of introns [7]. The major spliceosome
consists of 5 small nuclear ribonucleoproteins (snRNPs), U1, U2, U4, U5 and U6, and as
many as 150 associated proteins [8]. Spliceosome assembly involves a series of discrete
complexes that catalyze intron removal through two transesterification steps [7, 9]. If the
sequence context surrounding the conserved dinucleotide motif at either splice site is
suboptimal, alternative splicing of the exon can occur. The net binding of positive acting
factors, such as SR proteins, to exonic and intronic splicing enhancers (ESEs and ISEs) and
negative acting factors, such as hnRNPs, to exonic and intronic splicing silencers (ESSs and
ISSs) can promote or inhibit spliceosome assembly at the weak splice sites, respectively
[10].

3. Co-transcriptional splicing
Early models of pre-mRNA splicing envisioned a distinct spliceosome compartment,
spatially separated from transcription. However, evidence for direct coupling between
transcription and splicing machineries quickly mounted. The first compelling demonstration
of co-transcriptional spliceosome assembly extended from electron micrographs of
Drosophila melanogaster embryonic transcription units showing intron looping and
associated ribonucleoprotein complexes on transcripts tethered to DNA [11, 12], suggestive
of mRNA splicing prior to transcript release. Subsequent immunofluorescence of splicing
factors showed localization at sites of transcription [13, 14] in intron-containing genes [15]
and RNA in situ hybridization with splice junction probes detected spliced mRNAs at their
gene loci [16], thus establishing spatial and functional coupling between transcription and
splicing. In recent years, advances in chromatin immunoprecipitation (ChIP) assays and
quantitative RT-PCR have provided insight into the extent and kinetics of co-transcriptional
splicing. Support for co-localization of splicing and transcription machineries extended from
ChIP detection of spliced mRNAs associated with chromatin in yeast [17–19] and in
mammalian cells at intron-containing genes [20]. Functional coupling was suggested from
the observation that mutation of a yeast SR protein homolog, Npl3, reduced occupancy of
U1 and U2 at Npl3 target genes [21].

While these studies definitely established pre-mRNA splicing prior to transcript release, the
pervasiveness of coupling remained undefined. To quantitatively assess co-transcriptional
splicing, analysis of intron removal in c-Src and fibronectin nascent chromatin associated
RNA versus free RNA in the nucleoplasm was performed in human cell lines. This analysis
revealed that the vast majority of constitutive exons are co-transcriptionally spliced in a
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general 5’ to 3’ order and that 3’ exons are more likely to be post-transcriptionally processed
[22]. Internal introns flanking alternative exons were also removed co-transcriptionally,
although to variable extents [22]. These data begin to reveal a kinetic aspect to splicing,
which was further supported by the in vitro observation that SR proteins more effectively
enhance co-transcriptional splicing than post-transcriptional splicing [23]. Support for
kinetic regulation of alternative splicing comes from two recent studies that linked pol II
pausing to co-transcriptional splicing in yeast. The Neugebauer laboratory isolated
chromatin associated RNA to show that pol II pauses within terminal exons allowing
sufficient time for intron excision prior to transcript release [24]. Similarly, the Beggs
laboratory utilized a high-resolution splicing reporter system to demonstrate splicing
dependent pol II pausing at the 3’ ends of introns coincident with splicing factor recruitment
[25]. These studies raise the question whether pol II pausing represents a splicing
“checkpoint.” However, a separate genome-wide analysis in yeast indicated that the majority
of yeast exons are spliced post-transcriptionally [26]. Despite potential discrepancies in the
extent of co-transcriptional splicing, altogether these data suggest that functional coupling of
transcription and splicing has evolved to enhance spliceosomal detection of splice sites
across large introns.

4. The Molecular Basis of Coupling- pol II CTD
Several lines of evidence suggest that coupling between transcription and splicing is
mediated via transcription dependent recruitment of RNA processing factors. Amongst other
demonstrations, redistribution of GFP-tagged splicing factors from nuclear speckles to sites
of transcription was reduced in the presence of transcriptional inhibitors [13] and splicing
factor ChIP indicated transcription-dependent SR protein recruitment to an inducible target
RNA [27]. Importantly, with the exception of U1 snRNP [28], spliceosomal proteins are
specifically recruited to intron-containing genes [20, 28], bringing the mechanistic basis of
transcription dependent spliceosome recruitment into question. Based on the observation
that chimeric minigenes of RNA polymerase III promoters fused upstream of pol II
dependent genes are deficient in splicing and polyadenylation, pol II itself was implicated as
a potential regulator of spliceosome assembly [29]. Indeed, mutational and deletional
analysis of the carboxy-terminal domain (CTD) of the RPB1 subunit of pol II revealed
multiple defects in mRNA processing [30, 31]. The CTD consists of tandem YSPTSPS
repeats, which vary in number from 26 in yeast to 52 in humans [32]. Dynamic
phosphorylation of serine residues on CTD heptad repeats is associated with the stages of
pol II elongation (detailed in Lewis and colleagues, this issue). Serine 5 phosphorylation
peaks near promoters and remains high proximal to the promoter, but declines within a few
hundred nucleotides from the transcriptional start site (TSS) [33]. In contrast, serine 2
phosphorylation gradually increases with distance from the promoter [33]. Pol II is also
variably phosphorylated on serine 7 [34] at the promoter and into genes bodies [35–37],
however the significance to mRNA processing is less well understood. Given the dynamics
of CTD phosphorylation as well as the role of CTD in mRNA processing, it was proposed
that phosphorylation of CTD functions to physically tether mRNA processing factors to the
transcription elongation complex (TEC) in a stage-specific manner [38, 39]. As described
below, while substantial evidence for direct recruitment of 5’ and 3’ end processing proteins
by CTD has accumulated, the mechanistic basis for CTD in splicing regulation is less clear.

4.1. 5’ Capping
In the first step of transcript synthesis, unphosphorylated pol II is recruited to the TSS via
the Mediator coactivator complex [40]. Preinitiation complex (PIC) assembly triggers
activation of TFIIH, which catalyzes phosphorylation of serine 5 [33] and serine 7 [35–37]
and Mediator complex release [40]. As the nascent transcript reaches 25–40 base pairs in
length, through sequential RNA triphosphatase, guanyltransferase and methyltransferase

Shukla and Oberdoerffer Page 3

Biochim Biophys Acta. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



activity, a 7-methyl G5’ppp5’N moiety is added to the 5’ end of the nascent RNA [41, 42].
This modification serves important roles in the export and translation of the mature mRNA,
and also helps to protect the nascent RNA from degradation [43]. Capping occurs co-
transcriptionally: the enzyme complex directly interacts with serine 5 phosphorylated pol II
CTD [33, 44, 45] and appears to be dependent on kinetically linked promoter proximal
pausing of pol II [41]. Pausing occurs as a result of cooperative DSIF (for DRB sensitivity
inducing factor) and NELF (for negative elongation factor) binding to the TEC [46, 47].
Following productive cap formation, P-TEFb phosphorylates serine 2 of pol II and the C-
terminus of DSIF [46, 48]. DSIF phosphorylation results in NELF release, and converts
DSIF to a positive acting elongation factor through cooperative function with the Paf
complex and Tat-SF1 [48]. DSIF and P-TEFb remain associated with the TEC and
productive elongation ensues [49].

4.2. Splicing
While early studies indicating co-association of pol II CTD and splicing proteins suggested a
similar direct coupling mechanism [50–52], several mass spectrometry studies failed to
identify splicing factors associated with pol II immunoprecipitation (IP) and reciprocal IP of
the spliceosome failed to identify pol II [8, 53–56]. Furthermore, fusion of the pol II CTD to
T7 or pol III polymerase did not restore splicing [57]. Nevertheless, pol II and, in particular
CTD have been clearly implicated in co-transcriptional recruitment of the spliceosome.
Deletion of the CTD impaired recruitment of certain splicing factors in immunofluorescence
studies [58] and reduced overall splicing efficiency in separate studies involving splicing
reporters [31]. In addition, an intact CTD is required for SRp20-mediated alternative
splicing [59] and the multi-functional SR-like protein, Npl3, is associated with pol II CTD in
yeast [60]. Thus, it would appear that while the interaction may not always be direct, CTD
plays a crucial role in recruiting splicing proteins to nascent RNA. In line with indirect
recruitment, a recent study utilizing fluorescently tagged SR proteins found that recruitment
of SR proteins to the queried reporter was RNA dependent and that RNase treatment
abolished interaction between pol II and splicing proteins [27]. It should be noted, however,
that recruitment of U1 to mRNA appears to operate via a unique mechanism. U1
consistently co-immunoprecipitates with pol II [23] and is found at intronless [28] and
splicing deficient genes [61]. While seemingly conflicting, the sum of these data can be
resolved in a model involving CTD-dependent recruitment of a critical splicing initiation
factor, possibly U1, thereby setting the stage for subsequent interactions built on the scaffold
of the newly synthesized transcript.

4.3. Poly-adenylation
Similar to 5’ capping, 3’ end processing is tightly coupled to pol II transcription [62]. 3’ end
processing is generally comprised of endonucleolytic cleavage downstream of the
AAUAAA sequence and polyadenylation of the free 3’OH. These activities are achieved
through multi-subunit complexes containing cleavage stimulation factor (CstF) and cleavage
polyadenylation specificity factor (CPSF), both of which have been demonstrated to directly
interact with pol II CTD [31]. Moreover, like other aspects of mRNA synthesis, this process
is dynamically regulated through phosphorylation of pol II CTD. During the process of
transcript synthesis, there is a gradual increase in serine 2 phosphorylation of pol II CTD
culminating in a peak at the 3’ end of the gene [33]. This modification helps to recruit 3’
processing proteins, such as the cleavage factor Pcf11 (a CstF subunit) [63, 64]. In support
of a specific role for serine 2 phosphorylation in 3’ end processing, complete disruption
through deletion of the serine 2 kinase Ctk1 in yeast did not affect overall transcript
elongation. In contrast, polyadenylation was disrupted in the Ctk1 deletion strain due to
impaired recruitment of 3’ processing factors to their sites of action [65]. As one final step in
co-transcriptional mRNA processing, factors that dismantle the TEC and aid transcript
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export are recruited through pol II [39]. Altogether, the abundant evidence linking
modifications of pol II CTD to mRNA processing events highlight the importance of co-
transcriptionality. The pol II CTD can serve as a dynamic platform that ensures the correct
processing factors are available at the appropriate stage of mRNA synthesis.

5. Pol II Elongation Through Chromatin
In contrast to the ATP-driven power strokes of DNA helicases, pol II elongation proceeds
via Brownian motion, wherein it is able to slide both forward and backward along the DNA
template [66]. While, the forward state is preferred due to the stability conferred by
hydrolysis of the incoming nucleotide, pol II elongation is inherently subject to frequent
pausing [66, 67]. As a further complication, elongation does not occur on a barrier free
linear template. Instead, DNA is tightly packaged into nucleosomes, which pose a
significant obstacle to pol II elongation in vitro [68–71]. To achieve efficient elongation,
nucleosomes are displaced in front of elongating pol II and reformed in its wake in a process
that is dependent on elongation rate [72–74]. Nonetheless, transcription through chromatin
results in frequent pausing related to backtracking of pol II. Backtracking can cause the
3’OH of the nascent transcript to become misaligned from the pol II active site [75].
Elongation resumes spontaneously at low levels or more efficiently in response to the
elongation factor, TFIIS. TFIIS enhances the intrinsic nuclease activity of pol II, which
promotes cleavage of the extended transcript and realigns the 3’OH in the active site [76,
77]. Accordingly, TFIIS has been demonstrated to be required for efficient elongation of a
chromatinized template [71, 78, 79]. In addition, pol II elongation can be impeded by DNA-
binding proteins, or in response to repressive chromatin structure [80, 81].

While seemingly inefficient, these barriers to pol II elongation represent important aspects
of kinetic regulation of mRNA processing and numerous levels of nucleosome remodeling
are in place to ensure chromatin remodeling during elongation [66]. Importantly, recent
evidence suggests a high degree of coupling between remodeling machineries and pol II
[82]. The ATP-dependent chromatin remodelers SWI-SNF, ISWI, CHD, and INO80/SWR
utilize the energy of ATP to remodel chromatin during elongation. For example, the SWI-
SNF complex ATPase, RSC, promotes elongation through nucleosomes in vitro [83] and
Chd1 has been demonstrated to interact with the elongation factors Paf, DSIF, and FACT
[84, 85]. In addition, histone chaperones promote elongation by destabilizing nucleosome
structure [66]. Again, this process is mediated by pol II itself. H2A/H2B are located at the
exterior of the nucleosome and are rapidly replaced during transcription. H3/H4 are less
mobile, and are displaced with slower kinetics [86, 87]. NELF release from the TEC results
in H2B monoubiquitination (uH2B) and recruitment of FACT [88, 89]. FACT demonstrates
dual-activity wherein it aids both nucleosome destabilization through removal of one H2A/
H2B dimer in front of pol II, and reassembly via deposition of histones in the wake of pol II
[88, 90] (Figure 1). The H3/H4 chaperones Asf1 and Spt6 demonstrate a similar role with
respect to H3 and H4 eviction and reassembly [91, 92]. Importantly, all three factors inhibit
spurious transcript production [91–93], suggesting a critical role for co-transcriptional
nucleosome reassembly in the ablation of cryptic transcription.

Similar to histone modifications at promoters, intragenic histones can be acetylated,
methylated or ubiquitylated with distinct outcomes on gene expression. In contrast to the
high levels of acetylation found at promoters, enrichment of histone acetylation in gene
coding regions are relatively modest [94]. Nevertheless, histone acetyltransferase (HAT) and
histone deacetylase (HDAC) complexes are enriched throughout the coding regions of
actively transcribed genes, suggesting significant co-transcriptional histone recycling [66].
This premise is supported by the observation that intragenic HAT and HDAC complexes are
distinct from promoter complexes, and show a high degree of coupling to pol II. For
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example, the Elongator HAT complex stimulates transcription through chromatin and is
associated with pol II and with nascent RNA [95–98]. In addition, Gcn5 of the acetylating
SAGA (STAGA in humans) co-activator complex interacts with TFIIS and other elongation
factors [99, 100] and colocalizes with pol II in transcribed sequences [101]. On the other
hand, pol II also recruits HDACs: the Eaf3 subunit of the Rpd3s HDAC complex is
assembled at transcribed genes through pol II coupled H3K36 methylation [102–106]. The
extensive coupling between HAT and HDAC complexes to pol II suggests an important
structural role, wherein HATs are required to promote efficient transcription, and HDACs
are required to reestablish repressive chromatin in pol II’s wake. Indeed, deletion of Rpd3s
resulted in spurious transcription from cryptic promoters [107], suggesting that rapid
reformation of nucleosomes is an integral aspect of regulated gene expression.

While histone methylation-mediated effects on pol II elongation are less well documented, a
number of associations to pre-mRNA processing have been described, as detailed in [7.2].
Perhaps this reflects a predominant role for intragenic histone methylation as a scaffold for
RNA processing effector proteins (Figure 2). Focusing here on elongation, like acetylation,
histone methylation is coupled to pol II. Phosphorylation of pol II CTD on serine 5 results in
recruitment of the Set1 histone methylase of the MLL/COMPASS complex, which
subsequently directs methylation of H3K4 [108]. Trimethylation of H3K4 peaks at
promoters, whereas dimethylation extends into the 5’ region of coding regions and
monomethylation persists throughout the gene [109, 110]. H3K36 methylation is considered
a hallmark of transcribed DNA, and shows a reverse gradient relative to K4, wherein
trimethylation increases towards the 3’ ends of genes [109]. It is thus not surprising that the
histone 3 K36 methyltransferase, Set2, binds to pol II phosphorylated on serine 2 [103]. As
mentioned above, H3K36 di- and tri-methylation recruits the Rpd3s HDAC complex, and
thereby plays a critical role in repressing cryptic transcription [111].

Finally, ubiquitylation of histones is also linked to elongation. Elongation is associated with
monoubiquitylation of lysine 120 of human H2B (lysine 123 in yeast) (uH2B) [88, 112]. In
addition to aiding pol II elongation through mononucleosomes by recruiting FACT, uH2B
directs methylation of H3K4 and H3K9 [113, 114] by engaging the relevant
methyltransferases Set1/COMPASS and Dot1 [115]. These examples highlight an elegant
nexus between elongation and transcription-directed chromatin remodeling, which operates
to fine-tune DNA accessibility to pol II against unwanted transcription.

6. Kinetic model of Alternative pre-mRNA splicing
In the previous sections, we detailed multiple barriers to pol II elongation, and described
how 5’ and 3’ end processing are related to pausing of pol II. It is thus tempting to speculate
that perturbations to elongation rate may similarly influence pre-mRNA splicing. The
kinetic model of alternative splicing is dependent on two fundamental bases: 1) the in vivo
elongation rate must be variable and 2) modulation of elongation should result in alternative
splicing. We will discuss data in support of each of these conditions in turn below.

6.1. In vivo Pol II Elongation Rate
Advances in kinetic analyses have made it possible to assess in vivo elongation rates
(detailed in Larson and colleagues, this issue). By using a tandem array reporter system and
fluorescence recovery after photo-bleaching to monitor mRNA synthesis in real-time, the
pol II elongation rate was calculated to range between 1.9 to 4.3 kb/minute [116, 117]. It
was further reported that pol II pauses for an average of 4 minutes during elongation,
although it was not possible to determine whether total pausing reflected multiple short
pauses or one long pause [116]. In contrast, imagining studies involving single transcription
units detected highly variable elongation rates spanning from 0.3–50 kb/minute [118–120].
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The wide range of elongation dynamics described in these studies may be a function of the
local chromatin environment at the reporter integration site [121], and could parallel rate
related variability in co-transcriptional splicing of endogenous genes. Overall, given that
genome-wide ChIP sequencing (seq) studies have revealed increased occupancy of pol II at
exons relative to introns [122, 123], these kinetic observations fostered an attractive
hypothesis involving pol II pausing at exons. Analogous to 5’ or 3’ end processing, this
model dictates that pol II pausing at exons provides a sufficient spatiotemporal platform for
spliceosome assembly. Conversely, weak exons may lack such pausing signals, reducing the
window of opportunity for spliceosome assembly prior to downstream splice site synthesis
(Figure 2).

While the kinetic model is very appealing, a recent kinetic study utilizing the reversible
inhibitor of new transcription, DRB (5,6-Dichlorobenzimidazole 1-β-D-ribofuranoside)
failed to detect exon related pausing. Instead, elongation rate was consistently measured at
approximately 3.8 kb/minute, regardless of gene size and exon content [124]. Moreover,
splicing was estimated to occur within 5–10 minutes of downstream splice site synthesis
irrespective of upstream intron length [124]. In addition, another kinetic study showed that
the transcription elongation does not change with splicing of the selected genes [28].
However, as described above, alternative exons show delays and a greater propensity to
post-transcriptional splicing relative to constitutive exons [22], suggesting a level of kinetic
regulation. Indeed, as detailed below, the strongest endorsement for the kinetic model is
yielded from numerous studies linking variable elongation rate to alternative splicing.

6.2. Elongation Kinetics Influence Alternative Splicing
In the past decade, a plethora of studies ranging from focused model genes to genome-wide
analyses have provided substantial evidence in support of the kinetic model. Direct proof of
an association between elongation and splicing derives from studies utilizing alpha-amanitin
resistant RNA pol II bearing a point mutation that lowered elongation rate. Compared to
wildtype pol II, the elongation rate mutant caused an increase in the inclusion levels of
several tested alternative exons [125]. Likewise, mutation in serine 2 and serine 5 but not in
serine 7 of pol II CTD affected transcription elongation and resulted in altered splicing
patterns of several genes [126]. Furthermore, artificial introduction of a pol II pausing
sequence downstream of an alternative exon correlated with increased inclusion in a
tropomyosin minigene [127].

Similarly, promoter structure can influence transcription elongation and reporter systems
involving mutant promoters have resulted in alternative splicing. Minigene systems
involving promoter swapping altered splicing patterns of weak exons [128] and recruitment
of the SF2/ASF SR protein to splicing enhancer sequence was shown to be dependent on the
promoter driving transcription [129]. It has further been shown that genes that possess
alternative promoters are more likely to yield alternatively spliced transcripts as compared to
single promoter genes [130]. While any of the above effects on splicing could theoretically
operate independently of elongation, evidence suggests that promoter-mediated effects on
splicing are directly due to regulation of elongation rate [131], thereby bolstering the kinetic
model.

Perhaps the strongest evidence for the kinetic model derives from studies in which
elongation rate was directly modulated through an exogenous stimulus. For example, the
topoisomerase I inhibitor, camptothecin stalls elongating pol II, leading to increased
spliceosome assembly at FOS mRNA [20]. Conversely, treatment of cells with the histone
deacetylase inhibitor trichostatin A, increased elongation and inhibited inclusion of a weak
fibronectin EDI exon [132]. Genome-wide analyses provide further support for this
association. Camptothecin and DRB treatment yielded increased inclusion of many but not
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all genes with weak exons [126] and treatment of yeast with the elongation inhibitors
mycophenolic acid (MPA) and 6-azauracil increased exon inclusion [133]. Further
compelling evidence for kinetic coupling came from a study involving ultraviolet (UV)
radiation treatment of cells. UV exposure results in hyperphosphorylation of pol II, leading
to reduced pol II elongation and alternative splicing of fibronectin, caspase 9, Bcl-x and
additional mRNAs in human cells [134]. This effect was not p53 mediated and was
confirmed to be associated with elongation through use of a pol II hyperphosphorylation
mutant, which effectively mimicked the UV-mediated effects on reduced elongation and
alternative splicing [134]. In sum, these data clearly demonstrate a role for elongation rate in
alternative splicing regulation, and support a role for variable elongation as a physiological
stimulus for splicing regulation.

7. DNA-mediated alternative pre-mRNA splicing
The above studies linked chromatin-remodeling to elongation and elongation to splicing,
raising the question whether chromatin is associated with mRNA splicing. Strong support
for this premise arose from genome-wide ChIP-seq studies, which revealed a surprising
association between chromatin structure and exon-intron structure. Specifically, exons were
found to have elevated nucleosome occupancy, specific histone modifications and increased
DNA methylation relative to introns (reviewed in [135]). These associations raised the
question whether chromatin modifications aid the spliceosome in the process of exon
detection. If this were the case, one could envision that perturbations to chromatin structure
could result in alternative splicing of pre-mRNA. The last few years have yielded substantial
evidence in support of DNA-mediated regulation of alternative splicing. Examples and their
functional relevance are detailed below.

7.1 Nucleosome occupancy
By nature, co-transcriptional splicing suggests that the factors influencing transcription may
also affect splicing. One such factor is nucleosome positioning [136]. Two copies of each
histone protein, H2A, H2B, H3 and H4, are assembled into an octamer around which 145–
147 base pairs (bp) of DNA are wrapped to form a nucleosome core. This highly conserved
nucleoprotein complex occurs essentially every 200 40 bp throughout all eukaryotic
genomes [137] and, interestingly, the average size of an exon (145bp) [138] approximates
the length of nucleosome wrapped DNA.

Recent genomic profiling studies have revealed a non-random distribution of nucleosomes at
exons [122, 139–143]. The average size of a human intron is 5.6 kb, and introns range in
length from a few base pairs to over 740 kb [144]. Exons that are surrounded by long introns
show a higher level of nucleosome occupancy as compared to exons flanked by short introns
[143]. As nucleosomes can pose a physical barrier to pol II transcription [145], localization
of nucleosomes at exonic sequences may kinetically aid the spliceosome in distinguishing
intronic versus exonic sequence. In support of an important role for nucleosome positioning
in exon definition, nucleosome occupancy at exons is well-conserved between fruit fly,
worms and humans [139–142, 146] and nucleosome occupancy at exons is independent of
the expression status of genes [139, 142]. Suggestive evidence for a role for nucleosomes in
alternative splicing regulation stems from the observation that exons with weak spice sites
show robust nucleosome occupancy, whereas pseudoexons that are not included in mRNAs
but are flanked by strong splice sites show nucleosome depletion [139]. In addition,
nucleosome positioning within an exon and associated depletion upstream of the acceptor
site correlates with exon inclusion, whereas nucleosome occupancy upstream of the acceptor
site associated with depletion within the exon correlates with exon exclusion [139]. While
these studies highlight a correlation between nucleosome occupancy and exon inclusion, the
molecular mechanism underlying this regulation is not clear.
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7.2. Exonic Histone Modifications
As briefly described in section [5], characteristic patterns of histone methylation have been
associated with active or repressed chromatin. Investigations into these patterns have
revealed a great deal of specificity such that mono-, di- or trimethylation of a particular
lysine can produce distinct gene expression outcomes. For example, trimethylation of
histone 3 K9 and K27 is associated with repressed chromatin whereas monomethylation
correlates with active transcription [109]. While studies of the “histone code” were initially
limited to transcription initiation, genome-wide ChIP seq data revealed an intriguing
potential link to elongation and/or splicing [147, 148]. Like nucleosomes, histone
modifications are non-randomly distributed with respect to exon-intron architecture [111,
140, 143]. Genome-wide analysis of 38 histone modifications in human cells demonstrated
increased H3K36me3, H3K79me1, H2BK5me1, H3K27me1, H3K27me2, and H3K27me3
over internal exons as compared to the downstream introns. These marks were positively
correlated with exon inclusion [140] (Table 1). Reanalysis of human T cell ChIP-seq data
[109, 149] further identified enrichment of H3K79me1, H4K20me1, and H2BK5me1 [142],
H3K79me1, H2BK5me1, H3K27me1, H3K27me2, H3K27me3 [140], H3K27me2 and
H3K4me1 [143] at exons relative to introns (Table 1), which was for the most part
independent of transcriptional activity. A few notable exceptions include H3K27me2, which
shows lower enrichment over exons in highly transcribed genes, H3K9me3, which is overall
depleted at exons [143] and H3K36me3, which is solely detected at transcribed sequences
[150]. High-resolution analysis of H3K36me3 had the added effect of revealing a potential
link to alternative splicing, wherein reduced levels were detected at alternative exons
relative to constitutive exons [111]. However, it should be noted that due to differences in
analysis methods, a final verdict has not been issued for most of these associations. For
example, chromatin profiling of several model genes of robust alternative splicing indicated
equivalent detection of H3K36me3 and H3K79me2 levels in the exclusion versus inclusion
state [150]. In addition, normalizing histone modifications to nucleosome levels have
yielded conflicting results either confirming exonic enrichment of H3K36me3 [140, 143] or
indicating that H3K36me3 mirrors nucleosome occupancy, suggesting a secondary effect to
an overall increase in local H3 [139, 142]. Thus, the mechanistic basis for distinct histone
modifications at exons remains unclear and will likely be the subject of substantial
investigation in the coming years.

7.3. Modulation of Chromatin and Alternative Splicing
In contrast to the steady state studies described in [7.2], modulation of histone modifications
has uncovered a dramatic role for chromatin in alternative splicing regulation. For example,
membrane depolarization of neuronal cells increases H3K36me3 and H3K9
hyperacetylation surrounding exon 18 of neural cell adhesion molecule (NCAM) DNA, and
triggers exclusion of the exon from mRNA. Importantly, these changes are restricted to the
intragenic DNA and are not found at the promoter. After withdrawal of membrane
depolarization, the effects on acetylation and splicing are fully reverted, and inhibition of
HDAC function can faithfully recapitulate the physiological stimulus [151, 152].
Furthermore, exons IIIb and IIIc of fibroblast growth receptor 2 (FGFR2) are alternatively
spliced in a tissue specific manner. In mesenchymal cells, the alternatively spliced region is
enriched in H3K36me3 and H3K4me1, which correlates with exon IIIc inclusion. In
contrast, epithelial cells show enrichment of H3K27me3 and H3K4me3, which correlates
with exon IIIb inclusion. Strikingly, modulation of H3K36me3 or H3K4me3 levels by up or
down regulation of their respective histone methyltransferases results in reciprocal changes
in exon IIIb and IIIc inclusion [153]. As further indication of a role for histone modifications
in alternative splicing, the proteins that modulate histones have themselves been implicated
in splicing regulation. The catalytic subunit of the SWI/SNF chromatin remodeling complex
Brm favors inclusion of variant exons in several transcripts [154] and depletion of SWI/SNF
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subunits in D. melanogaster S2 cells caused changes in the relative abundance of alternative
transcripts from a subset of genes [155]. Altogether, these data substantiate a role for histone
modifications in splicing regulation.

7.4. Increased DNA methylation at exons
Like histones and nucleosomes, intragenic DNA methylation is enriched at exons relative to
introns [156]. This association may partially be attributed to increased nucleosome content
at exons, as nucleosomal DNA is methylated at a higher level than flanking regions [122]. In
addition, the de novo DNA methyltransferases, DNMT3a and 3b are anchored to a subset of
nucleosomes and this interaction is dependent on intact nucleosomes [157].

While DNA methylation at promoters has been convincingly linked to repression of gene
expression, the role of gene body methylation is not clear. It has been suggested that DNA
methylation induces a dense chromatin structure that inhibits pol II elongation [158], yet
separate studies found that intragenic DNA methylation is associated with increased
transcription [159]. Thus, intragenic DNA methylation does not appear to have a fixed role
with respect to elongation. Instead, methylome analysis in insects revealed a potential role
for methylation in pre-mRNA splicing regulation. Analysis of DNA methylation in the
honeybee genome found that methylation is almost exclusively restricted to exons, and is
altogether absent from intronless, histone-encoding genes. In addition, increased DNA
methylation levels at an alternative exon in the GB18602 gene in worker bees relative to the
queen bee, was associated with exon skipping [160].

We recently demonstrated a functional association between DNA methylation and
alternative splicing through modulation of the zinc-finger DNA-binding protein, CTCF.
CTCF binding to exon 5 of the gene encoding CD45 promotes exon inclusion by acting as a
barrier to local pol II elongation, and thereby supports the kinetic model of alternative
splicing [80]. Genome-wide ChIP-seq and RNA-seq analysis in CTCF depleted cells
confirmed that CTCF-mediated pol II pausing globally regulates inclusion of weak upstream
exons, but does not influence inclusion of weak downstream exons [80]. Importantly, CTCF
binding to DNA is inhibited by methylation of 5-cytosine [161]. Consequently, we found
that loss of CTCF binding through methylation of exon 5 DNA resulted in complete loss of
exon 5 from CD45 transcripts, thereby establishing the first mechanistic link between DNA
methylation and alternative pre-mRNA splicing (Figure 3) [80].

Interestingly, genome-wide mapping of CTCF binding sites shows roughly 40–70%
conservation between tissues [162], raising the possibility that altered DNA methylation
patterns during development may ultimately contribute to tissue-specific alternative splicing
patterns. Furthermore, binding of CTCF correlates with increased nucleosome occupancy at
adjacent sequences, suggesting that intragenic CTCF may additionally function as an anchor
point for nucleosome positioning [163].

7.5. The Adapter Hypothesis
While the above discussion has focused on how determinants at the DNA level can
influence splicing through elongation kinetics, DNA binding factors may also affect pre-
mRNA processing at the protein network level. DNA-binding proteins may interact with
RNA-binding proteins, thereby recruiting them to their site of action. Direct studies in which
histone methylation was modulated, as well as indirect studies showing associations
between DNA and RNA-binding factors lend support to the “adapter hypothesis” as detailed
in the following examples.

The chromatin binding protein, MORF-related gene 15 (MRG15), physically links
H3K36me3 and the RNA-binding splicing repressor PTB. MRG15 directly interacts with
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H3K36me3 and functions to recruit PTB to a subset of PTB-dependent exons. Accordingly,
overexpression of MRG15 forced exclusion of PTB-dependent exons, whereas MRG15
depletion led to increased inclusion of PTB-dependent exons [153]. Similarly,
chromodomain-helicase-DNA-binding protein 1 (CHD1) recognizes H3K4me3 and
facilitates recruitment of splicing factors such as U2 snRNP to active genes [164]. Depletion
of either CHD1 and H3K4me3 abrogated the association of U2 snRNP with chromatin and
reduced the efficiency of pre-mRNA splicing in vivo [164]. The HAT Gcn5 may also
facilitate co-transcriptional recruitment of the U2snRNP to the intron branchpoint via
histone acetylation. Deletion of Gcn5 in yeast resulted in the accumulation of unspliced
mRNA [165]. In addition, the chromodomain protein, HP1γ associates with H3K9me3 and
localizes to DNA corresponding to tandem alternatively spliced exons of the CD44 gene
upon activation of protein kinase C (PKC). This increase in HP1γ detection correlates with
binding of U2AF65 and PRP8 and is associated with reduced Pol II elongation [81]. In a
separate study, HP1γ was also found to interact with the SR protein ASF/SF2 [166], thereby
revealing a dual role for HP1γ as both a splicing adaptor and regulator of pol II kinetics.

Similarly, the SWI/SNF protein, Brm, displays a multi-functional role in splicing and
elongation. Brm associates with several components of the spliceosome and favors inclusion
of alternative exons in E-cadherin, BIM, cyclin D1 and CD44 transcripts. Brm also
promotes accumulation of RNA polymerase II (RNAPII) with a modified CTD
phosphorylation pattern on regions of the CD44 gene that encode variant exons. Thus, Brm
coordinates crosstalk between transcription and RNA processing machinery by decreasing
RNAPII elongation rate and facilitating recruitment of the spliceosome at exons with weak
splice sites [154].

The numerous studies detailed in this section reveal an emerging theme in mRNA
processing. Differential marking of exons through nucleosome occupancy, histone
modifications or DNA methylation serve to aid or inhibit spliceosome assembly. This
regulation can be at the level of modifying pol II elongation rates and thereby
spatiotemporally influencing spliceosome assembly, or at the level of recruiting factors that
promote or inhibit co-transcriptional spliceosome recruitment (Figure 2). Importantly, none
of the regulatory levels appear to operate independently, and instead display extensive
coupling.

8. The spliceosome- more than just splicing?
Several recent papers have raised the intriguing hypothesis that in addition to mediating pre-
mRNA splicing, splicing factors may reciprocally affect elongation and chromatin structure,
as detailed below.

8.1 Splicing-Promoted Elongation
Unlike the relatively scant evidence for direct interaction between pol II and the
spliceosome, numerous associations between splicing proteins and elongation factors have
been described (reviewed in [167, 168]). For example, the SR protein SC35 has been shown
to have a critical role in pol II elongation. Depletion of SC35 results in increased
accumulation of pol II in the gene body of select genes and elongation can be rescued in the
presence of recombinant SC35. Impaired elongation in SC35 depleted cells was linked to
inefficient recruitment of the elongation factor P-TEFb to the TEC and consequent
diminished CTD serine 2 phosphorylation [169]. In addition interaction of the TAT-SF1
elongation factor with U snRNPs was shown to strongly stimulate elongation of an
intronless reporter and splicing of intron-containing templates, revealing a dual-function in
elongation and splicing regulation [170]. These reports reveal a reciprocal role for the
spliceosome in promoting efficient elongation.
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8.2 Splicing-Promoted Chromatin Remodeling
The observation that splicing proteins promote elongation of intronless templates, to which
they would not normally be targeted, suggests a fundamental secondary activity that is
independent of splicing catalysis. Indeed, several recent reports have elucidated a role for
splicing proteins in the deposition of histone marks on DNA. For example, two independent
studies implicated splicing in H3K36 methylation. Deletion of 3’ splice sites in the upstream
introns of an integrated β-globin reporter caused a shift in the relative distribution of
H3K36me3 away from the 5’end and toward the 3’ end of the reporter, whereas mutation of
the polyadenylation site had no effect on H3K36me3 methylation. In addition, global
inhibition of splicing by spliceostatin A resulted in rapid repositioning of H3K36me3 away
from the 5’ ends and towards the 3’ ends of genes [171]. Splicing inhibition further impaired
recruitment of the H3K36 methyltransferase HYPB/Setd2 and reduced H3K36me3 levels,
whereas activation of splicing had the opposite effect. Similarly, intronless genes show
lower levels of H3K36me3 as compared to intron-containing genes, irrespective of their
expression status [172].

In further support of splicing-mediated chromatin remodeling, the Hu RNA-binding proteins
increased histone acetylation at regions corresponding to alternative exons of the NF1 and
FAS genes, thereby augmenting the local elongation rate and exclusion of the weak exons
from spliced mRNA. The mechanism supporting increased acetylation involved Hu-
mediated repression of HDAC2 activity. This suggests that splicing regulators can actively
modulate chromatin architecture when co-transcriptionally recruited to their target RNA
sequences [173].

8.3. TGS-mediated Chromatin Remodeling
In closing, we will highlight one final association between RNA, chromatin remodeling and
pol II elongation. Transcriptional gene silencing (TGS) was initially described as a nuclear
mechanism for RNA-mediated gene silencing in which a siRNA or miRNA directed against
promoter DNA triggered gene silencing through heterochromatin formation, as
characterized by increased H3K9me2/3, H3K27me3, and DNA methylation, as well as
decreased histone acetylation [174–179]. In contrast, extension of TGS into intragenic
sequences resulted in alternative pre-mRNA splicing: exogenously introduced siRNAs
directed against intronic or exonic sequence in the region of the alternative EDI exon of the
fibronectin gene stimulated EDI inclusion in mature mRNA. This effect was mediated by
Argonaute-1 and was associated with increased H3K9me2, H3K27me3, HP1α and reduced
pol II occupancy in the region, thereby implicating the kinetic model of alternative splicing.
The effect of siRNA on splicing was abolished by depletion of HP1α and by promoting
chromatin relaxation or pol II elongation through drug treatments [180]. Similarly, in C.
elegans the Ago-related protein, NRDE-3, in complex with siRNA recruits NRDE-2 to
target nascent mRNA, resulting in pol II and H3K9me3 accumulation at the corresponding
DNA [181]. While physiologically relevant in vivo examples of TGS-coupled alternative
splicing are lacking, these data reveal the depth of the interconnected regulation between
DNA and RNA.

9. Conclusions and Perspectives
In this review, we have presented an integrated view of the life cycle of an mRNA while still
tethered to DNA. In the process, we have highlighted extensive coupling between RNA-
processing, pol II modifying and chromatin remodeling machines. It is increasingly clear
that none of these processes operate in isolation, and instead exhibit highly coordinated
auto- and cross-regulation. Alternative pre-mRNA splicing is not only influenced by the
combined actions of RNA binding proteins, but also by the rate of pol II elongation as well
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as the nature of the transcribed DNA template. In a somewhat unexpected twist, it is now
evident that the spliceosome reciprocally influences elongation kinetics and histone
modifications. By extension, it will be interesting to see whether future studies implicate
splicing in additional features of transcriptionally active intragenic DNA, such as the
deposition of variant histones. Overall, in the coming years, it will be of high interest to
develop an integrated model of RNA/DNA-mediated alternative pre-mRNA splicing
regulation.

Highlights

➢ The majority of metazoan introns are excised co-transcriptionally.

➢ Pre-mRNA processing is coordinated through the carboxy-terminal domain
of pol II.

➢ Pol II elongation kinetics influence splicing decisions.

➢ Exons display distinct chromatin architecture relative to introns.

➢ Modulation of chromatin can result in altered pre-mRNA splicing.
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Figure 1. Nucleosomes are co-transcriptionally remodeled
Nucleosomal arrays pose a barrier to pol II elongation. Phosphorylation of serine 2 of pol II
CTD recruits the histone chaperone, FACT. FACT destabilizes nucleosomes in front of pol
II through removal of one H2A–H2B dimer. FACT also prevents cryptic transcription by
redepositing histones in pol II’s wake, facilitating nucleosome reassembly.
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Figure 2. Potential mechanisms for chromatin-associated spliceosome assembly
Exons are marked by increased nucleosome occupancy, distinct histone modifications and
elevated DNA methylation relative to introns. These modifications at the DNA level may
influence splice site selection by a) modulating elongation or b) through direct recruitment
of auxiliary factors. a) A slow rate of pol II elongation favors spliceosome assembly at weak
exons, whereas a rapid rate may not provide a sufficient spatiotemporal window prior to
synthesis of competing downstream splice sites. Intragenic chromatin structure may act to
locally modulate elongation rate. As shown here, the upstream exon is excluded from
mRNA as a result of a locally rapid pol II elongation rate, thereby shifting spliceosome
assembly to the downstream exon. b) Chromatin modifications may recruit chromatin
binding proteins (CBP) to exonic DNA, which thereby act as adaptor molecules for RNA
binding proteins (RBP) that promote or inhibit spliceosome assembly. As shown here, the
chromatin context of the upstream exon binds a CBP that recruits an RNA binding splicing
repressor, thereby shifting spliceosome assembly to the downstream exon.
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Figure 3. Intragenic CTCF and 5-methylcytosine reciprocally influence exon inclusion in spliced
mRNA
Intragenic assembly of DNA binding proteins can influence co-transcriptional pre-mRNA
splicing. a) The zinc-finger DNA binding protein CTCF acts as a direct barrier to pol II
elongation, resulting in pol II pausing and spliceosome assembly at weak upstream splice
sites. b) DNA methylation inhibits CTCF binding and associated pol II pausing, culminating
in reduced spliceosome assembly at weak upstream splice sites and exclusion of exons from
spliced mRNA.
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Table 1
Exonic histone modifications

Summary of intragenic histone modifications associated with pre-mRNA splicing genome-wide and in
specific model genes.

Histone
modification

Genome wide
association

Inclusion model Exclusion model

H3K36me1 a[182]

H3K36me3 b[140, 142, 182]
c [111]

Inclusion of variant exons of CD44 [172] Exclusion of exon 18 of NCAM [151].
Exclusion of exon IIIb of FGFR [153].

H3K9me3 Inclusion of variant exons of CD44[81]

H3K27me1 a[182]
b[140]

H3K27me2 b[140]
d[143]

H3K27me3 b[140]
a[182]

Exclusion of exon IIIc of FGFR [153]

H3K4me1 d[143] Exclusion of exon IIIb of FGFR[153].

H3K4me3 Exclusion of exon IIIc of FGFR [153].

H3K20me1 d[142]

H3K79me1 b[140]

H3BK5me1 b[140]
d[142]

H3K9ac Exclusion of exon 18 of NCAM [151].

a
Genome wide association with alternative exon exclusion.

b
Genome wide association with alternative exon inclusion.

c
Genome wide reduction at alternative exons as compared to constitutive exons.

d
Genome wide data increased detection at exons relative to introns.
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