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Abstract
CG methylation is an epigenetically inherited chemical modification of DNA found in plants and
animals. In mammals it is essential for accurate regulation of gene expression and normal
development. Mammalian genomes are depleted for the CG dinucleotide, a result of the chemical
deamination of methyl-cytosine in CG resulting in TpG. Most CG dinucleotides are methylated,
but ~ 15% are unmethylated. Five percent of CGs cluster into ~20,000 regions termed CG islands
(CGI) which are generally unmethylated. About half of CGIs are associated with housekeeping
genes. In contrast, the gene body, repeats and transposable elements in which CGs are generally
methylated. Unraveling the epigenetic machinery operating in normal cells is important for
understanding the epigenetic aberrations that are involved in human diseases including cancer.
With the advent of high-throughput sequencing technologies, it is possible to identify the CG
methylation status of all 30 million unique CGs in the human genome, and monitor differences in
distinct cell types during differentiation and development. Here we summarize the present
understanding of DNA methylation in normal cells and discuss resent observations that CG
methylation can have an effect on tissue specific gene expression. We also discuss how aberrant
CG methylation can lead to cancer.
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1. Introduction
The great mystery in metazoan development is how different cells express different genes in
spite of containing the same genetic material. Epigenetics was first defined by the
developmental biologist Conrad H. Waddington in the early 1940’s as: “The interactions of
genes with their environment that bring the phenotype into being”. But the modern
definition of epigenetics has a more precise molecular basis, defined as the study of heritable
changes in gene expression patterns that are not caused by changes in the nucleotide
sequence of the genetic code itself. Epigenetic changes, frequently defined as “epigenome”
involve chemically modified DNA (DNA methylation), and changes in DNA associate
molecules, such as histones modifications, chromatin remodeling complexes and other small
noncoding RNAs including miRNA and siRNAs.
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After every cycle of DNA replication, fully methylated DNA becomes hemimethylated.
DNA methyltransferase 1 (DNMT1), the maintenance methylase, binds the hemimethylated
DNA and directs the addition of a methyl (CH3) group to the 5' carbon position of the
cytosine ring. In mammals, three DNMTs have been identified: DNMT1, which is
responsible for the maintenance of existing methylation patterns following DNA replication;
DNMT3A and DNMT3B are considered to be de novo methyltransferases, which add
methyl group to the previously unmodified DNA [1]. In mammals, most of the cytosine
methylation occurs in the context of the CG dinucleotide, although other cytosine
methylation is observed in the sequence context of CHG and CHH (H= A, C, T) in human
embryonic stem cells and plants, but rarely in somatic mammalian cells [2, 3]. In this
review, we examine the current understanding of the mammalian DNA methylation, the
genomic distribution of CG methylation, and their predicted biological functions. Finally,
we propose a model to explain an apparent contradiction surrounding the effects of 5-
azacytidine that mediates demethylation and inhibits differentiation of normal cells whereas
it induces differentiation in certain human cancers.

2. CG methylation in different parts of the genome
2.1. CG Islands

CGs are rare in the genome, probably, because of the higher mutation rate of the methylated
CG that is prone to be chemically deaminated and converted to TG [4]. Figure 1 presents
CG density at a megabase scale for some arbitrary chromosomal locations of both the
human and Drosophila genome. The human genome has lower CG density across the
genome compared to Drosophila, whereas CG rich clusters or CG islands (CGI) that occur
~20,000 times in mammalian genomes, are visible only in the human genome. CGI are
generally 200 – 4,000 bp long, and often occur in the promoters and/or first exons of genes
[5]. CGI were first detected using a 200 bp sliding window to identify regions that have CG
content greater than 50% and an observed/expected CG dinucleotide ratio of greater than 0.6
[6] resulting in identification of 28,691 CGIs in the human genome, a definition used at the
UCSC genome browser. This definition was subsequently modified by extending this
window by 500 bp, increasing the CG content by greater than 55% and observed/expected
ratio greater than 0.65 [7]. However, alteration of these thresholds significantly changed the
number of predicted CGI and suggests that there may be different kinds of CGI [8].

Recently, a biochemical approach has been proposed to address this issue. CGIs are enriched
based on an unmethylated CG affinity purification using the CXXC protein domain [8].
High-throughput DNA sequencing of this enriched DNA fragments identified a
comprehensive set of ~25,000 unmethylated regions in both humans and mice, including the
majority of CGIs plus an additional ~10,000 regions [9]. This approach identified the
majority of predicated CGIs that are unmethylated but also other regions of the genome that
are unmethylated. Unmethylated CGIs are present in the promoters or first exons of the
housekeeping genes [5] and are transcriptionally active. However, in some circumstances,
they become heavily methylated and correlate with silencing of the corresponding gene [10].

2.2. Promoter methylation
Approximately 50% of transcription start sites (TSS) [10], and ~70% of all genes are linked
to CGIs in the human genome [11]. Promoters have been arbitrarily classified into three
classes based on their CG density: low CG content promoters (LCP), high CG content
promoters (HCP) and intermediate CG content promoters (ICP) [11]. When the methylation
status of an entire promoter (−1,000 bp to + 500 bp) is determined using methylated DNA
immunoprecipitation (MeDIP) followed by hybridization to promoter arrays, two distinct
groups can be observed (Figure 2). Promoters that are CG dense tend to be unmethylated
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while low CG promoters tend to be methylated. Thus, majority of HCPs tends to be
unmethylated and are associated with ubiquitously expressed housekeeping and tightly
regulated developmental genes [1, 11–14]. However, many hypomethylated HCPs are also
transcriptionally inactive or non-productive although bound by initiating form of RNA
Polymerase II (RNAP) [15] and show a elevated levels of dimethylation of Lys4 of histone
H3 [11]. These promoters are proposed to be transcriptionally permissive, and the
productive transcription can be triggered by inducible transcription factor-dependent
recruitment of P-TEFb followed by a second phosphorylation event on serine 2 (S2) of the
CTD of RNAP [10, 15].

In contrast, LCPs are hypermethylated in somatic cells and which does not preclude their
activity [11]. Gene ontology analysis revealed that LCPs are associated with tissue specific
genes. Recently, we reported that methylation of these LCPs are required for activation of
some tissue specific genes [16]. CG methylation creates transcription factor binding sites
(TFBS) for C/EBP family members, which are involved in differentiation of many cell
types. C/EBP binds these methylated TFBS and is required for active transcription at tissue
specific LCP. The effect of CG methylation on transcription factor function is vividly
depicted in Figure 3: a reporter plasmid with no CGs in the backbone was used as a recipient
for 4 copies of the consensus CRE and then the CG in each CRE was enzymatically
methylated. The unmethylated plasmid is activated by CREB but not C/EBPα while the
methylated plasmid is not activated by CREB but is activated by C/EBPα, in agreement
with biochemical studies [16]. During keratinocyte and fibroblast differentiation, where C/
EBPα is known to be an active player, 40% and 32% of the 452 and 655 differentiation
specific genes, respectively, have methylated low CG promoters. Bisulfite treatment
followed by cloning and sequencing of some of these promoters showed that they were
methylated, both in undifferentiated cells and differentiated cells following gene activation
[16]. Demethylation by either 5-azacytidine treatment or by inhibition of DNMT1 by siRNA
treatment preferentially decreased C/EBPα binding to methylated promoters and resulted in
inactivation of methylated promoters during differentiation suggesting that methylation is
essential for C/EBPα binding and subsequent activation of gene expression. Overall, the
general observation is that promoters with high CG density are generally unmethylated,
whereas low CG containing promoters are hypermethylated and their methylation status
does not preclude their activation. Indeed, in some cases, it is required for activation of
transcription.

2.3. Gene body methylation
In mammalian genomes, gene bodies tend to be methylated with a positive correlation
between the level of mRNA expression and CG methylation [17]. Gene body methylation is
an ancient phenomenon, and has been observed in plants, invertebrates and vertebrates [3,
18, 19]. Gene-body methylation has been observed in the active human X chromosome
when compared to its inactive counterpart [20]. Targeted genome scale CG methylation
analysis revealed an association of gene body methylation with highly expressed genes in
human B-lymphocytes, fibroblasts and induced pluripotent stem cells [21]. However, a
recent report found that gene body methylation in rice has a parabolic correlation with gene
expression, with modestly expressed genes having the highest amounts of gene body
methylation [19]. The general observations are that exons tend to be more methylated than
introns, and that the TSS proximal region and transcription termination sites are devoid of
methylation [3, 22]. These findings suggest a role of DNA methylation in transcriptional
elongation and termination, and perhaps alternative splicing [23]. One specific example is
from different stages of lymphocyte development when these cells express different splice
variants of CD45 transcripts with variable exclusions of exons 4–6. A recent report found
that CCCTC-binding factor (CTCF) binds exon 5 of CD45 only when this exon is
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unmethylated [24]. This binding causes local pausing of RNA polymerase II and promotes
inclusion of exon 5 in peripheral lymphocytes, a direct evidence of DNA methylation effect
on transcriptional elongation and alternative splicing.

2.4. DNA methylation and nucleosome positioning
Nucleosomes are the fundamental unit of eukaryotic chromatin and the basic DNA
packaging module. In nucleosomes, 146 bp of DNA are wrapped around a histone octamer
which compacts and regulates the access to DNA in the nucleus. It plays two major roles:
alters the accessibility of DNA to the cellular machinery, and regulates transcriptional
activities by covalent modification of the tails of four core histones: H2A, H2B, H3 and H4
[25–29]. The nucleosome positioning in the genome is not random with several possibilities
being suggested [30]. The recent publication of the in vitro binding of nucleosomes to
human DNA highlight an enigma in mammalian gene regulation: CGI are bound well by
nucleosomes in vitro, while in vivo, these same sequences are not bound by nucleosomes
and represent regulatory regions [31]. This is in a contrast with yeast and fly promoters that
are A&T rich [32] and do not bind nucleosomes well [33], suggesting that different
mechanisms are operating in these metazoans to regulate gene expression.

Evidence of nucleosome repositioning by CG methylation was first found in vitro on the
chicken adult β-globin gene promoter [34]. DNA methylation prevents the histone octamer
from interacting with an otherwise high affinity positioning sequence in the promoter region
of the β-globin gene. This exclusion is attributed to methylation-determined changes in
DNA structure within a triplet of CG dinucleotides [34]. However, a recent genome-wide
study on the role of methylation dependence in nucleosome positioning in Arabidopsis
thaliana and human, came to the opposite conclusion. They found that methylated DNA was
preferentially bound by nucleosomes in vivo [35] and nucleosomal DNA was more highly
methylated than flanking DNA. This study also found that methyltransferases preferentially
target nucleosome-bound DNA, thus maintaining the methylation of nucleosome bound
DNA [35]. Nucleosome positioning has a striking effect on DNA methylation, as depletion
of linker histone H1 induces hypomethylation of some CGIs, such as some imprinting
control regions of the H19-Igf2 and Gtl2-Dlk1 loci [36]. Recent genome wide studies
revealed that exonic regions are more enriched with nucleosomes than introns and
promoters, in agreement with observations that exonic regions are more hypermethylated
than the other regions in the genome [19, 37], again supporting the fact that nucleosomal
DNA was more highly methylated than flanking DNA. Another study proposed that CGI
promoters, which are generally devoid of methylation and have low nulceosome occupancy,
does not require SWI/SNF nucleosome remodeling complex to facilitate the promiscuous
induction, whereas CG poor promoters that assemble into stable nucleosomes require SWI/
SNF complex and transcription factors to promote selective nucleosome remodeling [38].
Further studies will be needed to examine in more detail the effect of methylation on the
competition between nucleosome binding and transcription factor binding.

3. Functional aspects of CG methylation
3.1. Development and Differentiation

Immediately after fertilization and prior to the first cell division, the paternal genome
undergoes a genome-wide demethylation [39–42]. After the first cell cycle, the maternal
genome also becomes demethylated, and this genome-wide demethylation continues, except
for the imprinted genes, until the formation of the blastocyst [43, 44]. In contrast, in the
primordial germ cells the parental imprinting is erased by DNA demethylation [45]. During
blastocyst formation, DNA methylation levels of the pluripotent stem cells are restored by
the de novo methyltransferases when the early cell fate decisions are established. Embryonic
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stem cells (ESC) derived from the inner cell mass have methylation at many regulatory
regions except for the pluripotent promoters [46, 47], and have the ability to self renew and
differentiate into all cell types. ESC deficient in either maintenance (Dnmt1) or in de novo
methyltransferases (Dnmt3a/3b), lose their pluripotency and proper differentiation potential,
but maintain their ability of self renewal [48]. A recent genome-wide study reported that
cytosine methylation on non CG dinucleotides is prevalent in the ESC but not in fibroblasts
expanding the complexity of this epigenetic mark during development [3, 49].

In the first stage of differentiation of pluripotent ESC, promoters of the several key
plurioptent genes become methylated and undergo targeted repression, and remain
methylated in somatic cells [50–52]. Differentiation of ESC into somatic cells does not
change the global level of DNA methylation, but there is a redistribution of the methylation
pattern throughout the genome during somatic cell formation [53]. DNA methylation
controls a subset of critical tissue specific genes, and loss of methylation usually results in
inhibition of proper differentiation [16, 54, 55].

Another important advancement is the discovery of 5-Hydroxymethylcytosine (5hmC).
5hmC is formed by modifying the cytosine base by addition of a methyl group and a
hydroxy group. It was first found in bacteriophages in 1952 [56]. It has been recently found
to be abundant in human and mouse brain [57], and in ESC [58]. The exact function of this
modification is not fully understood, but it has been proposed to be involved in regulating
gene expression and DNA demethylation. The idea that 5hmC is an intermediate product in
promoting active DNA demethylation in mammalian cells has been supported by a recent
finding that methylcytosine hydroxylase, TET1, converts 5-methyl cytosine to 5hmC and
promotes DNA demethylation in mammalian cells through a process that requires the base
excision repair pathway [59]. Another recent genome-wide study found that 5hmC is
enriched at both gene bodies of actively transcribed genes and extended promoter regions of
Polycomb-repressed developmental regulators, suggested a dual role of 5hmC in regulating
gene expression [60].

3.2. Transcription
The 146 bp of DNA wrapped around histone octamers forms a nucleosome, and ~ 20
million nucleosomes are needed in each cell to package both copies of the human genome.
Access to gene promoters is dependent upon the dynamic status of promoter-associated
nucleosomes, which is controlled by a variety of factors, including covalent modifications of
DNA, post-translational modifications of the histones and proteins of the transcription
machinery. The covalent modification of DNA (DNA methylation, specifically at CG) can
alter the recognition of the double helix by the transcriptional machinery. Two
complementary phenomena are being proposed. First, the methylated DNA can prevent
some transcription factors from binding their target. Second, DNA methylation can create
binding sites for proteins that specifically recognize methylated DNA. DNMT1 knockout
mice showed that expression of certain lineage specific genes is unaltered and methylation
status of the 5' regions of a set of tissue-specific genes did not correlate with expression in
tissues of fetal and newborn mice [61]. A global study of three human chromosomes
(chromosomes 6, 20 and 22) found that methylation of one-third of the differentially
methylated 5' UTRs are inversely correlated with transcriptional activation [13]. Another
recent study showed that in human somatic cells low CG containing promoters are generally
hypermethylated, and a set of genes with these hypermethylated promoters are
transcriptionally active [11]. These genome-wide studies suggest that promoter CG density
is the central player that determines how DNA methylation affects gene expression.
Promoters with a high CG density are generally unmethylated in all tissues regardless of the
expression of their linked gene [62]. When these promoters become methylated, they are
strongly repressed [63].
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Low CG promoters are typically associated with tissue specific genes, which are methylated
and not active, reinforcing the positive correlation between methylation and the lack of
promoter activity [11]. Recently, we observed that when tissue specific genes become
active, their promoters are still methylated [16]. We identified that the CG methylation in
the promoters of tissue specific genes create transcription factor binding sites (TFBS) for C/
EBPα that are needed for tissue specific gene activation [16]. When primary newborn
mouse keratinocytes are differentiated with calcium treatment for two days, many genes
with methylated proximal promoters become activated [16]. Similar observation was
observed when primary dermal fibroblasts were differentiated into adipocytes by adipogenic
media containing IBMX, dexamethasone, insulin and rosiglitazone. The role of C/EBPα in
adipocyte differentiation is well established in the literature, and we found that CG
methylation marks in the promoters of tissue specific genes create TFBS for C/EBPα
needed for tissue specific gene activation [16]. So, the general conclusion from this study is
that the differentiation system where C/EBPα is involved might show similar effects in
regulating tissue specific gene expression with low CG containing promoters. However, in
both, keratinocyte and adipocyte differentiation studies, promoter methylation for
differentiation specific low CG containing genes did not change with differentiation, which
raises a question of finding the molecular switch that triggers the tissue specific gene
expression and is discussed in the next section. Methylation of the E2BS1 and Zta response
elements (ZRE) TFBS results in strong activation instead of inhibition of the promoter,
phenomenon also observed in HPV and EBV viral genomes [64, 65], indicating a possibility
of being a context depend general phenomena of this activation mark.

The importance of CG methylation for promoter function was examined by global
demethylation using either 5-azacytidine or by transient DNMT1 depletion. Demethylation
preferentially inhibited C/EBPα binding to methylated promoters and their subsequent
activation during differentiation in both primary keratinocyte and adipocyte differentiation
system suggesting a link between methylation and differentiation. These tissue specific low
CG promoters are methylated irrespective of their expression [11, 16]. This conundrum can
be explained by several mechanisms. For examples, low CG promoters sometimes are
associated with some distal enhancer that contains high CG regions. Differential methylation
of these enhancer regions might be the regulator for active transcription of these genes
(Figure 4). Other possibility is that bivalent histone marks might present to maintain their
inactive state, and alteration of histone modifications causes the activation of these genes.
Posttranslational modification of the bound transcription factors might also be responsible
for their activation [16]. However, it is likely that these mechanisms act in concert for proper
activation of tissue specific promoters. Overall, it can be concluded that, although DNA
methylation is typically considered to be involved in silencing mechanism, methylation of
CG poor promoters is linked to activation of some tissue specific gene expression.

4. DNA Methylation and Cancer
Proper epigenetic states are essential for the regulation of normal cells, and it is expected
that deregulation could result in aberrant biological processes and lead to human diseases
including cancer [66–71]. Since the 1980s, when the reduction of methylation was first
observed in cancer tissues compared to the normal tissues [72], the role of DNA methylation
in cancer has been studied extensively [71]. In cancers, global hypomethylation occurs at
gene bodies, transposable elements and repetitive sequences, and hypermethylation is
observed at promoters, which leads to aberrant transcription initiation and genome
instability. DNA hypomethylation also contribute to the development of cancer by activating
the transposable elements, generating the chromosomal instability and loss of imprinting.
Demethylation of transposable elements could help them to transcribe or translocate to other
genomic regions, to inactivate tumor suppressor genes and to facilitate genomic
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rearrangements. Hypomethylation can also lead to loss of imprinting. An example of a gene
activated by loss of imprinting is the insulin-like growth factor gene (IGF2). Loss of
imprinting of IGF2 is reported to be a risk factor for colorectal cancer [73, 74] and also
contribute to the development of Wilms’ tumor [75, 76].

Most cancer cells predominantly produce energy by a high rate of glycolysis followed by
lactic acid fermentation in the cytosol even in the presence of oxygen, rather than by a
comparatively low rate of glycolysis followed by mitochondrial pyruvate oxidation as
occurs in normal cells [77]. In a recent publication by Chi et al. it was proposed that
environmental toxins affect the global epigenetic pattern by interfering with the metabolism
by activating the TET proteins and thus by regulating the 5-hmC and 5-mC levels [78]. They
speculated that the altered methylation pattern might be a consequence of oxidative stress
mediated alteration in metabolism due to activation of TET and other chromatin modifying
proteins [78]. Another recent study also proposed an epigenetic mechanism of the Warburg
effect [79]. They found the NF-kappaB pathway mediates down-regulation of fructose-1,6-
bisphosphatase-1 (FBP1), which functions to antagonize glycolysis, while NF-kappaB
inhibition restored FBP1 expression, which is partially through demethylation of FBP1
promoter. NF-kappaB could interact with co-repressors like HDAC1 and HDAC2 to
negatively regulate the gene expression [80, 81], and intern HDACs could interact with the
DNMT1 and might cause the formation of localized promoter hypermethylation to promote
stable gene silencing [82–85].

Hypermethylation of the CGI associated promoters and transcriptional repression or loss of
corresponding gene function is the most studied epigenetic alteration in cancer [70, 71].
Promoter hymermethylation associated silencing of many tumor suppressor genes, such as,
retinoblastoma (Rb) in retinoblastoma cancer, cyclin-dependent kinase inhibitor 2A
(CDKN2A) in several tumors, Von Hippel–Lindau (VHL) in renal cancer, breast cancer–
associated-1 (BRCA1) in breast and ovarian cancer, adenomatous polyposis coli (APC) in
several tumors, GATA4 and GATA5 in colorectal and gastric cancer [86], and glutathione s-
transferase P1 (GSTP1) in prostate cancer [87] are observed [67, 69–71]. In recent studies,
several somatic mutations are also reported in genes involved in epigenetic pathways. For
example, somatic mutations are observed in DNMT3A and TET2 in acute myeloid leukemia
(AML) and myelodysplastic syndrome (MDS) [88–92], mutation in DNMT1 in colorectal
cancer [93], and mutations in isocitrate dehydrogenase genes, IDH1 and IDH2, in gliomas
and AMLs [94–96], which strongly supports the role of altered DNA methylation in cancers.

Global DNA hypomethylation and CGI associated hypermethylation are also observed in
early stage tumors. Thus, determination of aberrant DNA methylation pattern could be used
as an epigenetic biomarker for early detection of different types and subtypes of cancer. It
can also be used for the determination of tumor prognosis and personalized therapy. Another
important aspect of epigenetic changes is that as these are reversible in nature, so inhibiting
the enzymes of epigenetic machinery can be used to develop epigenetic drugs. For example,
the US FDA has approved DNA methyltransferase (DNMT) inhibitors, azacytidine and
decitabine (5-aza- and 5-aza-2'-deoxycytidine), for therapy of patients with myelodysplastic
syndrome, which can lead to development of acute leukemia; and several similar drugs are
undergoing clinical trials [70, 71]. While high doses of these drugs can inhibit DNA
synthesis and eventually lead to cell death by cytotoxicity, administration of low doses of
these drugs over a prolonged period resulted in a therapeutic efficacy [97–100].

How does one reconcile the observation that DNA methyltransferase inhibitor, 5-azacytidine
inhibits differentiation of both epithelial and mesenchymal cell types whereas it induces
differentiation of cancer cells? We suggest that differentiation involves activation of tissue
specific genes that are regulated by unmethylated CG rich enhancers which activate
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methylated CG poor promoters (Figure 4). Some methylated sequences in tissue specific
gene promoters are recognized by transcription factors that activate tissue specific gene
expression [16]. CG methylations of CRE and C/EBP like sequences (NNNCGTCA and
NNNCGCAA) create a binding site that is recognized by C/EBPα, a transcription factor that
regulates tissue specific gene expression in many tissues [16]. In normal cells, 5-azacytidine
treatment demethylates the promoters and prevents C/EBPα binding, resulting in gene
inactivation. In the cancer cells, differentiation is inhibited because of hypermethylation of
the CG rich enhancer. One potential effect of hypermethylation is preferential nucleosome
binding that result in the repression of gene expression. In certain cancers, both the CG rich
enhancer and CG poor promoter are methylated. With 5-azacytidine treatments, the
enhancer stochastically begins demethylation before the promoter because of large number
of methylated CGs. With demethylation, nucleosome binding is lost at the enhancer and TF
binding is increased, which drives enhancer activity and thus differentiation via tissue
specific gene expression. Thus, CG methylation drives a molecular switch between
nucleosomes preferentially binding to the methylated enhancer, and transcription factors
preferentially binding to the unmethylated enhancer. These transcription factors could be the
same molecules that drive housekeeping function in the unmethylated promoters of the
mammalian genome.

5. Concluding remarks
DNA methylation plays an essential role in normal mammalian development by maintaining
the accurate epigenetic environment. DNA methylation is involved in many processes
including gene regulation, imprinting, dosage compensation, cellular identity, differentiation
and genomic integrity. CG methylation was initially thought to be a general repressive
epigenetic mark in vertebrate genomes. But recent studies revealed a new role of CG
methylation, as an activation mark that creates transcription factor binding sites, suggesting
a more complex role for CG methylation. With the advent of high-throughput technologies,
additional functions of epigenetic regulations are being unraveled, although many more are
yet to be discovered. With the discoveries of new modification (e.g., 5hmC) and diverse
functional implications, it is becoming more complex and challenging to fully uncover the
mechanisms of epigenetic regulations leading to changes in DNA methylation.
Understanding DNA methylation landscape in normal cells will help to identify the genomic
context and functional implications of methylation, and moreover to determine the
biomarker of epigenetically mediated human diseases.
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Highlights

• Present understanding of DNA methylation in normal cells

• A new function of CpG methylation: positive effect on tissue specific gene
expression.

• Aberrant CpG methylation and cancer.
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Figure 1.
Frequency of CG dinucleotide across the human and drosophila genome shows the presence
of CG clusters called CG Islands (CGI) only in the human genome.
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Figure 2.
CG methylation status of mouse promoters. Immunoprecipitated methylated DNA are
hybridized to NimbleGen promoter arrays and the average methylation for each promoter is
determined. Average methylation level (in log2) is plotted against number of CG
dinucleotides (in log10) for each promoter. Two distinct clusters are formed, for low CG
promoters, methylation increases with the CG density and they are methylated promoters
while for high CG promoters, average methylation is low and are the unmethylated
promoters.
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Figure 3.
Relative luciferase activity is measured for the 4X CRE reporter plasmid, which has no CG
in backbone. Unmethylated version of the 4X-CRE is transactivated by the CREB
transcription factor while methylated version of 4X-CRE is transactivated by the C/EBPα
transcription factor.
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Figure 4.
5-azacytidine can prevent or cause tissue specific gene expression: A proposed model of
methylation mediated tissue specific gene expression in normal and cancer cells. A) In
normal cells low CG promoters are methylated and bound by C/EB;, while the high CG
enhancers are unmethylated and activating the transcription. Demethylation by 5-azacytidine
causes demethylation at the proximal promoters and inhibits binding of C/EBP and thus
represses gene expression. B) In cancer cells, proximal promoters are methylated and bound
by C/EB; while high CG enhancers become methylated, which causes formation of
heterochromatin and thus tissue specific gene silencing. After 5- azacytidine treatment,
demethylation begins stochastically at the high CG enhancers and allows transcription factor
binding to activate differentiation specific genes.

Chatterjee and Vinson Page 18

Biochim Biophys Acta. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


