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In the last 10 years, established isolation methods and 
advanced proteomic technology have allowed scientists 
to study the protein composition of lipid droplets from 
many cell types and tissues, such as fi broblasts ( 9, 10 ), epi-
thelia ( 10–13 ), adipocytes ( 14, 15 ), hepatocytes ( 16, 17 ), 
macrophages ( 18 ), pancreatic  � -cells ( 19 ), mammary glands 
( 20 ), livers ( 20, 21 ), white adipose tissues ( 22 ), and skeletal 
muscles ( 23 ), as well as from many other popular model 
organisms, including plants ( 24–28 ), insects ( 29–33 ), yeast 
( 34–37 ), green algae ( 38–40 ), bacteria ( 41–43 ), and other 
sources ( 44–47 ) (  Table 1  ).  Several hundred proteins have 
been identifi ed by these proteomic analyses, and some 
have been further verifi ed using biochemical, imaging, 
and functional methods. Although there is diversity in the 
results from different studies, intriguingly, several functional 
groups of proteins are consistently and reproducibly rep-
resented. One such group includes lipid synthetic en-
zymes, suggesting that lipid droplets may function as a 
cellular site for some steps of lipid synthesis. Another ex-
citing group that has been identifi ed is proteins involved 
in membrane traffi cking, such as the Rabs, SNAREs, and 
Arfs and their coatomers. The presence of these proteins 
on lipid droplets suggests that the organelle is able to 
change size, probably using fusion and fi ssion mechanisms 
similar to cellular vesicles. Furthermore, this group may 
mediate the ability of the organelle to move within cells 
and to interact with other cellular organelles. A third 
group includes signaling proteins, such as RalA, 14-3-3, 
and Rap1B, and several protein kinases. The discovery of 
enzymes responsible for the synthesis of lipid signaling 
molecules provides further evidence of a signaling role 
for lipid droplets ( 48 ). A fourth, highly surprising group 

      Abstract   Lipid droplets are cellular organelles     that con-
sists of a neutral lipid core covered by a monolayer of phos-
pholipids and many proteins. They are thought to function 
in the storage, transport, and metabolism of lipids, in signal-
ing, and as a specialized microenvironment for metabolism 
in most types of cells from prokaryotic to eukaryotic organ-
isms. Lipid droplets have received a lot of attention in the 
last 10 years as they are linked to the progression of many 
metabolic diseases and hold great potential for the develop-
ment of neutral lipid-derived products, such as biofuels, 
food supplements, hormones, and medicines. Proteomic 
analysis of lipid droplets has yielded a comprehensive cata-
log of lipid droplet proteins, shedding light on the function 
of this organelle and providing evidence that its function is 
conserved from bacteria to man.   This review summarizes 
many of the proteomic studies on lipid droplets from a wide 
range of organisms, providing an evolutionary perspective 
on this organelle.  —Yang, L., Y. Ding, Y. Chen, S. Zhang, C. 
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ics, and functions of the organelle conserved from bacteria 
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  The fi rst observation of lipid droplets can be credited 
to van Leeuwenhoek when he viewed fat globules in milk 
using his self-made microscope in 1674 ( 1 ). Much more 
recently, lipid droplets have been found to exist as an 
intracellular organelle ( 2–5 ). About two decades ago, 
the identifi cation of marker proteins provided a tool for 
scientists to study this cellular structure biochemically ( 6–8 ). 
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mammalian cells are able to accumulate neutral lipids to 
form lipid droplets. The discovery of perilipin in 1991 ( 6 ) 
stimulated research on lipid droplets in adipocytes, and 
the cloning of the gene encoding the protein adipocyte 
differentiation-related protein (ADRP) in 1992 ( 7 ) and 
subsequent localization of this protein to lipid droplets ( 8 ) 
provided an essential marker protein that facilitated the 
study of lipid droplets in nonadipocytes. These proteins and 
three additional related proteins, including tail-interacting 
protein of 47 kDa (Tip47) ( 54 ), S3-12 ( 55 ), and OXPAT 
( 56 ), previously termed PAT proteins ( 57 ), were recently 
renamed as perilipins (PLIN) 1–5 ( 58 ). Among them, PLIN1 
has been well characterized. Its phosphorylation regulation 
and interaction with hormone-sensitive lipase (HSL) pro-
vide a molecular mechanism to govern lipid droplet tria-
cylglycerol (TAG) hydrolysis ( 59 ). 

 Lipid droplets have been isolated successfully from 
several mammalian cells and tissues based on their low 
density and the presence of marker proteins (PLINs), and 
their proteins have been identifi ed by mass spectrometry. 
An early proteomic study was performed using the mam-
mary gland and liver ( 20 ). The proteins found in isolated 
lipid droplets from mammary gland were very similar to 
those of the milk fat globule membrane (MFGM) ( 20 ). In 
the same study, the fi rst proteome of liver lipid droplets 
identifi ed ADRP and fatty acid binding protein (FABP) 
( 20 ). Three more lipid droplet proteomes were carried 
out using isolated lipid droplets from Chinese hamster 
ovary cells (CHO K2) ( 9 ), human hepatoma cell line Huh7 
( 16 ), and human squamous epithelial carcinoma cells 
A431 ( 11 ). A comparative proteomic study was conducted 
using 3T3-L1 adipocytes under basal and lipolytic con-
ditions ( 14 ). In addition to several main lipid droplet pro-
teins, many other proteins were identifi ed in these studies, 
including lipid metabolism enzymes, such as adipose tri-
glyceride lipase (ATGL); lipid synthases, such as acyl-CoA 
synthases; membrane-traffi cking proteins, such as Rabs; 
and signaling proteins, such as 14-3-3 ( 9, 14 ), Rap1B ( 16 ), 
and protein kinases ( 11, 21 ). Interestingly, the proteomic 
study using CHO cells also demonstrated that oleate treat-
ment stimulates CGI-58 translocation to lipid droplets ( 9 ). 
CGI-58 was later found to coactivate ATGL ( 60–64 ). 

 The discovery that Rab proteins are present on lipid 
droplets provided critical evidence in support of lipid 
droplets as a cellular organelle. The study using 3T3-L1 
adipocytes found that some Rab proteins are recruited to 
lipid droplets during lipolysis, further suggesting that lipid 
droplet association of Rab proteins is physiological ( 14 ). 
More evidence that Rab proteins are lipid droplet proteins 
has since been provided by several functional studies. 
Rab18 was found to mediate the interaction between lipid 
droplets and endoplasmic reticulum (ER) ( 65, 66 ). The 
recruitment of early endosomes to lipid droplets has also 
been found to be Rab protein-dependent ( 67 ). In fact, the 
presence of Rab proteins in lipid droplet proteomes is 
consistent across all studies of mammalian lipid droplets. 
This observation supports the hypothesis that lipid drop-
lets may play a role in neutral lipid transport between cel-
lular organelles ( 68–70 ). 

includes proteins involved in protein degradation, such as 
AUP1 ( 14, 17, 18, 49 ) and UBXDs ( 10, 50 ). A hypothesis 
that lipid droplets may mediate intracellular protein degra-
dation was proposed ( 51 ), and interestingly, several studies 
support this possibility ( 52, 53 ). Collectively, these fi ndings 
represent an important development in cell biology, as our 
understanding of lipid droplets has evolved from that of an 
inert storage structure to a functional cellular organelle. 

 Despite the consistent representation of these functional 
groups of proteins in lipid droplets from many sources, the 
proteomes that have been obtained so far have signifi cant 
differences as well. These differences likely point to distinct 
properties and functions of different lipid droplets. Although 
the proteomic studies may shed light on the functions and 
diversity of the organelle, these complex proteomes await fur-
ther analysis and validation using complimentary methods. 

 Here, we summarize proteomic studies of lipid droplets 
from different organisms and examine similarities in the puta-
tive structural proteins of this organelle from bacteria to man. 

 LIPID DROPLET PROTEOMICS 

 Mammalian cells and tissues 
 Lipid droplets have been observed in many mamma-

lian cells and tissues, and it is currently thought that all 

 TABLE 1. Proteomic studies of lipid droplets 

Organisms References

Mammals
 Mammalian cells
  Fibroblasts ( 9, 10 )
  Epithelia ( 10–13 )
  Adipocytes ( 14, 15 )
  Hepatocytes ( 16, 17 )
  Macrophage ( 18 )
  Pancreatic  � -cell ( 19 )
  Skeletal muscle cells ( 23 )
 Mammalian tissues
  Mammary gland ( 20 )
  Liver ( 20, 21 )
  White adipose tissue ( 22 )
  Skeletal muscle ( 23 )
Plants
  Arabidopsis thaliana ( 24 )
  Sesamum indicum ( 25 )
  Brassica napus ( 26–28 )
Insects
  Drosophila melanogaster ( 29, 30 )
  Bombyx mori ( 31, 32 )
  Manduca sexta ( 33 )
Yeast
  Saccharomyces cerevisiae ( 34–36 )
  Yarrowia lipolytica ( 37 )
Green algae
  Chlamydomonas reinhardtii ( 38–40 )
Bacteria
  Rhodococcus  sp ( 41 )
  Rhodococcus opacus ( 42 )
  Rhodococcus ruber ( 42 )
  Mycobacterium bovis ( 43 )
Other sources
 Coral–dinofl agellate endosymbiosis ( 44 )
 Chloroplasts ( 45, 46 )
 Chromoplasts ( 46 )
 ER lumen ( 47 )
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Katavic et al. analyzed the protein and lipid composition 
of lipid droplets from two  Brassica napus  cultivars and iden-
tifi ed several new proteins, including a dehydrogenase 
and a myrosinase-associated protein which seemed to be 
involved in lipid droplet degradation ( 26 ). A proteomic 
investigation was conducted with rapeseed lipid droplets 
in 2009, which identifi ed 25 proteins, including 15 oleo-
sins, 3 steroleosins, and 1 caleosin. Two of the oleosins 
were found to be acetylated at their N-termini ( 27 ). A 2011 
study examined the accumulation of lipids and proteins 
during seed formation by analyzing both whole seed and 
purifi ed lipid droplets ( 28 ). The authors found that lipid 
and protein accumulation followed a sigmoidal pattern. 
The isolated lipid droplets of early-stage seeds and mature 
seeds had different oil and oleosin compositions. At the 
earlier stage, C18:2-containing lipids were the main lipids 
in the seeds, whereas C18:1-containing lipids predomi-
nated in mature seeds. Low molecular weight oleosins 
(BnS3 and BnS5) appeared earlier than high molecular 
weight oleosins (BnS1, BnS2, and BnS4) ( 28 ). 

 The mechanism by which oleosin is targeted to the lipid 
droplet has been studied. The currently accepted model is 
that three separate domains are responsible for targeting 
the protein to lipid droplets: an N-terminal amphipathic 
domain, a C-terminal amphipathic  � -helical domain, and 
a central hydrophobic lipid droplet-anchoring domain. 
The central hydrophobic domain probably embeds into 
the hydrophobic core, and the two terminal domains at-
tach to the surface of the lipid droplets ( 82 ). These impor-
tant secondary structures enable oleosins to attach tightly 
to lipid droplets, thus enhancing their stability. 

 Although these studies conducted in plants have identi-
fi ed dozens of lipid droplet proteins, their number falls far 
short of the hundreds of proteins identifi ed in mamma-
lian cells. The main protein of plant lipid droplets, oleosin, 
often represents up to 79% of the total protein of the organ-
elle. Compared with its mammalian counterpart, the 
organelle in plants appears to lack other functional pro-
teins, such as membrane-traffi cking and lipid metabolic 
enzymes, suggesting that energy storage is the primary 
function of plant lipid droplets. 

 Insects 
 The popular genetically tractable animal model,  Dros-

ophila melanogaster , is a good system for lipid droplet re-
search ( 83 ).  Drosophila  expresses two PLIN proteins, Lsd1 
and Lsd2 ( 84 ), that are good marker proteins not only for 
localization of lipid droplets but also for determination of 
purity of isolated lipid droplets. Similar to their presence 
in mammals, lipid droplets in  Drosophila  are found in both 
fat and nonfat body cells  . Although no one has successfully 
isolated lipid droplets from white adipose tissue in mammals, 
lipid droplets have been isolated from  Drosophila  fat body. 
In a proteomic analysis of fat body lipid droplets, 248 pro-
teins were identifi ed, including lipid synthetic enzymes 
and membrane-traffi cking proteins, some of which were 
verifi ed by intracellular localization studies ( 29 ). Another 
proteomic study was carried out using lipid droplets from 
 Drosophila  embryos. A particularly interesting fi nding from 

 The ability of some proteins to move onto and off of the 
surface of lipid droplets suggests that, in addition to their 
possible role in neutral lipid traffi cking, lipid droplets are 
probably dynamic and may be involved in other cellular 
activities. In addition to the translocation of Rabs to lipid 
droplets in lipolytic conditions ( 14 ), in vitro experiments 
have demonstrated that GTP can stimulate the transloca-
tion of Arf1 and its coatomers to lipid droplets ( 10 ). An 
RNA interference screening study conducted in  Drosophila  
S2 cells revealed the importance of these proteins in lipid 
droplet morphology ( 71, 72 ). In addition, proteomic stud-
ies of phosphorylated proteins on lipid droplets isolated 
from Hela cells identifi ed 45 phosphorylated proteins on 
the organelle, including ADRP, Rab, and ATGL ( 10, 12 ). 
Recently, phosphorylation of S406 on mouse ATGL has 
been found to be essential for the activation of the enzyme 
( 73 ). Together, proteomic studies not only demonstrate 
the dynamic activities of lipid droplets but also provide im-
portant information for further mechanistic investigation 
of the organelle. 

 Lipid droplets may also play an active role in lipid syn-
thesis. Lipid synthetic enzymes have been found on lipid 
droplets isolated from organisms ranging from bacteria to 
mammalian cells ( 34, 41, 74, 75 ). Some of these enzymes 
have then been localized to lipid droplets in living cells 
using GFP   fusion proteins and immunofl uorescence 
( 16, 76, 77 ). Several in vitro studies have verifi ed both 
the presence and activity of these enzymes on lipid drop-
lets ( 78–80 ), suggesting that the lipid droplet is a cellular 
site for some steps of lipid synthesis. 

 Collectively, recent proteomic studies of mammalian 
cell lipid droplets have dramatically extended our under-
standing of lipid droplet properties and functions. Based 
on these and other studies, a picture is emerging of lipid 
droplets as an active organelle involved in lipid synthesis, 
catabolism, and traffi cking. 

 Plants 
 Lipid droplets in plants are also referred to as lipid bod-

ies, oil bodies, lipid particles, oleosomes, and spherosomes. 
Morphological and biochemical studies of the organelle 
became possible after the main proteins of plant lipid 
droplets were separated electrophoretically by Charles 
Slack in 1980 ( 81 ). Advances in mass spectroscopy protein 
identifi cation enabled a series of investigations of plant 
lipid droplets. The fi rst proteomic study was conducted 
with  Arabidopsis thaliana  seeds and identifi ed eight pro-
teins by LC-MS/MS ( 24 ), including four types of oleosins, 
ATS1 (a homologous gene to caleosin), 11- � -hydroxysteroid 
dehydrogenase-like protein (a homologous gene to stero-
leosin), TIP3.2 (probable aquaporin), and a predicted 
GPI-anchored protein. Up to 79%   of the lipid droplet pro-
teins present consisted of oleosins ( 24 ). 

 In 2005, MALDI-MS and MS/MS were used to analyze 
sesame seed lipid droplet proteins and found that oleosin 
and caleosin, both 17 kDa, are acetylated at the N-terminus, 
whereas steroleosin possesses a free methionine at its 
N-terminus. The authors speculated that these modifi ca-
tions enhance the stability of lipid droplets ( 25 ). In 2006, 
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( 95 ), no homologs for mammalian PLIN proteins have 
been identifi ed in  S. cerevisiae.  One of the four major 
lipid droplet proteins identifi ed in  S. cerevisiae  was ab-
sent in the  S. cerevisiae erg6  strain, identifying that the 
protein is ERG6 ( 96 ). ERG6 was shown to be a sterol  �  24 -
methy ltransferas ( 97 ) and to mediate the interaction be-
tween lipid droplets and mitochondria ( 98 ). Proteomic 
studies of lipid droplets from another yeast strain,  Yarrowia 
lipolytica , also identifi ed lipid synthetic enzymes and mem-
brane-traffi cking proteins ( 37 ). The major lipid droplet 
protein in this strain is ERG27, which is different from 
ERG6   identifi ed in lipid droplets in  S. cerevisiae  ( 37 ). 

 Thus, a common feature of lipid droplet proteins iden-
tifi ed by proteomic studies in yeast is that most of the 
proteins identifi ed are involved in lipid synthesis, lipid me-
tabolism, and membrane traffi cking, indicating that lipid 
droplets in yeast are very active in lipid metabolism and 
transport. 

 Green algae 
 Algae are a possible source of biodiesel, prompting in-

terest in their lipid droplets and the TAG they contain. 
Two proteomic studies, which have recently been conducted 
on lipid droplets isolated from  Chlamydomonas reinhardtii , 
identifi ed about 250 proteins ( 38, 39 ). Similar to lipid 
droplet proteomes of other organisms, the proteins found 
in algae also include lipid synthetic enzymes, suggesting 
that lipid droplets in algae are also a dynamically active 
cellular organelle. An interesting discovery in these pro-
teomic studies is a protein named major lipid droplet pro-
tein (MLDP), which is conserved across several types of 
microalgae. Suppressing MLDP expression with RNA inter-
ference induces an increase in lipid droplet size without 
altering cellular TAG content ( 38 ). 

 Bacteria 
 A broad evolutionary conservation of neutral lipid stor-

age structures has been suspected for many years. How-
ever, it was not until recent proteomic, biochemical, and 
molecular studies in bacteria that this conservation across 
species was demonstrated to extend into the prokaryotic 
kingdom. The earliest of the studies on bacterial lipid 
droplets was conducted with  Rhodococcus ruber  ( 42 ). The 
isolated fraction was defi ned as “lipid inclusions.” Lipid 
droplets were next isolated from the hypoxic nonreplicat-
ing  Mycobacterium bovis  bacillus Calmette-Guérin ( 43 ). Ten 
major proteins were identifi ed, including 5 novel ones, a 
number far less than that of lipid droplets from other 
organisms. However, a proteomic study of the total proteins 
of lipid droplets purifi ed from  Rhodococcus  sp. RHA1 iden-
tifi ed 228 proteins ( 41 ). Two putative structural proteins, 
microorganism lipid droplet small (MLDS) and phage 
shock protein A (PspA) were identifi ed, constituting about 
15% of the total lipid droplet proteins. Deletion of MLDS 
resulted in the formation of enlarged lipid droplets, sug-
gesting that this protein plays a critical role in lipid droplet 
dynamics (e.g., growth/metabolism). The lipid droplet-
targeting domain of MLDS was determined to a region 
containing three putative  �  helixes. On the basis of both 

this work was that several histone proteins are present on 
embryonic lipid droplets ( 30 ). This fi nding distinguishes 
the lipid droplets in  Drosophila  embryos from those of 
other organisms. Among the proteins discovered were 
traffi cking and transport proteins, such as Rab proteins, 
Sar1, and tubulin, which is consistent with the earlier dis-
covery that lipid droplets move in a microtubule-dependent 
manner ( 85 ). This fi nding was recently confi rmed by local-
izing the motor regulator Klar to lipid droplets ( 86 ). Further 
investigation of the differences in protein composition 
between the lipid droplets from the larval fat body and 
embryonic lipid droplets may provide a better understanding 
of the role of lipid droplets in  Drosophila  embryonic 
development. 

 Proteomic studies were conducted recently using isolated 
lipid droplets from silkmoth  Bombyx mori  ( B. mori ), and 
several proteins were identifi ed ( 31, 32 ). During analysis 
of isolated lipid droplet protein phosphorylation,  B. mori  
Lsd1 (Bmlsd1) was identifi ed ( 32 ). More detailed proteom-
ics was carried out using another insect species  Manduca 
sexta  ( M. sexta ) ( 33 ). The study involved three subtypes 
of lipid droplets that were isolated from the fat bodies of 
 Manduca  larvae and adult insects, as well as from  Manduca  
ovary. Very similar to lipid droplet-associated proteins in 
other organisms  ,  M. sexta  lipid droplet-associated proteins 
include lipid synthetic and metabolic enzymes, membrane-
traffi cking proteins, and cell signaling proteins ( 33 ). Several 
apolipoproteins were identifi ed as components of  M. sexta  
lipid droplets, raising an interesting question about whether 
apolipoprotein particles in mammals originally had roles 
in lipid droplets. The identifi cation of several ribosomal 
proteins in  M. sexta  lipid droplets needs to be further veri-
fi ed, but it raises provocative questions about whether 
lipid droplets are involved in protein translation. 

 Yeast 
 Although evolutionarily distant from mammals, yeast 

 Saccharomyces cerevisiae  ( S. cerevisiae ) is an excellent genetic 
model organism used in many studies related to human 
diseases. The recent prevalence of lipid metabolic diseases 
has motivated research on lipid metabolism in yeast, espe-
cially the study of lipid droplets (also referred to as lipid 
particles and lipid bodies). During the last decade, pro-
teomic studies of yeast lipid droplets have shed new light 
on the role of lipid droplets in lipid synthesis ( 34 ) and 
membrane traffi cking ( 35, 36, 87 ), and they have identi-
fi ed some proteins relevant to lipid metabolic disease in 
humans, such as the homolog of seipin ( 35 ). Mutants of 
seipin are related to lipodystrophy in humans ( 88 ) and to 
supersized lipid droplets in yeast ( 89 ). By the same token, 
lipin 1, the mutation of which causes lipodystrophy in mice 
( 90, 91 ), has also been detected on lipid droplets ( 92, 93 ) 
and found to control lipid droplet formation in yeast 
( 94 ). 

 Most of the lipid droplet proteins identifi ed in proteomic 
studies in  S. cerevisiae  were verifi ed using chromosomally 
integrated GFP-tagged proteins ( 76 ). Although one perilipin-
like protein, MPL1 ( Metarhizium anisopliae  perilipin-like 
protein), was identifi ed in the fungus  Metarhizium anisopliae  
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that lipid droplet structural proteins have properties in 
common with APOs. First, some APOs have been found 
on cellular lipid droplets. For example, APOA-V has been 
found on lipid droplets from hepatoma cells ( 101 ), APOA-I 
has been found on lipid droplets from white adipose tissue 
( 22 ), and APOA-I and APOE have been found on lipid 
droplets of skeletal muscle cells ( 23 ). Second, both plant 
oleosins and bacterial MLDS have similar amphipathic he-
lixes to the APOs ( 41, 82 ). Third, C-terminal sequence of 
PLIN 3, Tip47, forms   a four-helix bundle that resembles 
the LDL receptor (LDLR) binding domain of APOE ( 102 ). 
Furthermore, C terminus of PLIN 2 (ADRP) shares a simi-
lar amino acid sequence with the APOE-like domain of 
Tip47 ( 103 ) and, hence, is predicted to form a similar 
structure. Together, it seems that these APO-like proteins 
are evolutionarily conserved proteins involved in lipid 
storage and traffi cking and have evolved the ability to target 
intracellular or extracellular lipid-fi lled structures covered 
with a phospholipid monolayer. 

 To better understand the evolutionary relationships 
among these APO-like proteins, we selected 61 proteins, 
identifi ed as abundant lipid droplet proteins, from seven 
species and grouped them based on protein similarity 
using Molecular Evolutionary Genetics Analysis version 
4.0 (MEGA4) software (  Fig. 1  ) ( 104 ).  These proteins were 
mainly clustered into six groups, each group including at 
least one human APO. Four human PLIN family proteins 
were similar to the  Caenorhabditis elegans  APOs, 6 vit family 
proteins   (group 1). In group 2,  Drosophila  Lsd2 showed 
similarity to 7 mammalian APOL subfamily proteins. Ten 
plant oleosin proteins were close to mammalian APOD 
and APOH in group 3. An interesting point was that bac-
terial MLDS (RHA1 ro02104) was found to be close to 
mammalian APOC-I/APOC-II in group 4, indicating that 
APO-like proteins may have occurred evolutionarily ear-
lier than PLIN family proteins. Plant fi brillarin (FIB) fam-
ily proteins were found in the plastoglobules of  A. thaliana  
and have no enzymatic activity ( 46, 105 ). These 7 FIB pro-
teins were clustered with 4 plant caleosin proteins,  Droso-
phila  Lsd1, and mammalian APOA-I in group 6. Sequence 
alignment analysis showed that sequence similarity among 
different groups was very low. Therefore, their apparent 
similarity may be due more to the similarity of their predicted 
structures than to similarity of amino acid sequences. 
Taken together, this analysis speculates that these APO-
like proteins may be evolutionarily conserved as the struc-
tural proteins of lipid droplets. 

 CONCLUDING REMARKS 

 Proteomic studies have contributed greatly to current lipid 
droplet research, giving rise to  i ) the discovery of many pro-
teins that defi ne this storage structure as a multifunctional 
cellular organelle;  ii ) the development of new tools/methods 
that not only facilitate lipid droplet studies but also extend 
our knowledge of the organelle from prokaryotic to eukary-
otic organisms; and  iii ) the identifi cation of novel major lipid 
droplet proteins that show similarities to APOs. 

the primary amino acid sequence and predicted structure 
similarity, MLDS resembles mammalian apolipoprotein 
(APO)A-I/A-IV/E ( 41 ). 

 In addition, the proteomic study of RHA1 identifi ed 
many ribosomal proteins and transcriptional regulators in 
isolated lipid droplets ( 41 ), similar to lipid droplet proteomes 
of other organisms ( 15, 18, 19, 30, 33, 36, 38 ). These data 
suggest that lipid droplets may provide intracellular mem-
brane system for compartmentalization of cellular activities 
of certain bacteria. 

 Other sources 
 Proteomic studies have also been conducted on lipid 

droplets isolated from nonmodel organisms. In one, lipid 
droplets from a coral-dinofl agellate endosymbiont were 
analyzed ( 44 ). The protein composition was similar to that 
of other lipid droplets, including chaperones and proteins 
that are involved in lipid metabolism and traffi cking. 

 Some cellular structures equivalent to lipid droplets have 
also been isolated and analyzed by mass spectrometry. 
These include plastoglobules in chloroplasts and chro-
moplasts in plants ( 45, 46 ) and luminal lipid droplets (LLD) 
in the endoplasmic reticulum of mammals ( 47 ). These ob-
servations suggest that lipid droplet-like structures can be 
generated inside of some other cellular organelles. 

 PUTATIVE STRUCTURAL PROTEINS 
OF LIPID DROPLETS 

 Proteomic and cell biology studies suggest that almost 
all organisms are able to accumulate neutral lipids in lipid 
droplets. However, the structural proteins of lipid droplets 
from different organisms are quite distinct. In mammals 
and insects, the predominant proteins are members of the 
perilipin family ( 58 ); however, other organisms do not ex-
press PLINs. In plants, the primary proteins are oleosin, 
caleosin, and steroleosin ( 24 ). In an insect fungal pathogen 
 Metarhizium anisopliae , the  Metarhizium  perilipin-like protein 
(MPL1) was identifi ed ( 95 ). In addition, proteomic studies 
have identifi ed MLDP in green algae ( 38 ), Erg6 in yeast 
( 96 ), and MLDS in bacteria ( 41 ) as possible structural pro-
teins of the organelle. Although there are substantial 
differences in the amino acid sequences of mammalian 
perilipins compared with the main lipid droplet proteins 
from various species, when these proteins are expressed in 
different organisms, they all localize to lipid droplets. For 
example, mammalian PLIN 1, 2, and 3 can be targeted to 
bacterial lipid droplets ( 99 ), and  Drosophila  Lsd1 and Lsd2 
can be targeted to the lipid droplets of CHO cells ( 100 ). 
Furthermore,  Dictyostelium  Lsd1 can be targeted to CHO 
cell lipid droplets ( 100 ), and fi ve mycobacterial proteins 
can be targeted to yeast lipid droplets ( 43 ). Therefore, it 
appears that these lipid droplet structural proteins from 
diverse species have certain properties in common that 
allow them to be properly targeted to lipid droplets. 

 In mammals, APOs are the structural proteins of blood 
lipoprotein particles that are similar to lipid droplets in 
their general structure. Several lines of evidence suggest 
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