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Abstract
Molecular modelling and simulation methods are increasingly at the forefront of elucidating
mechanisms of enzyme-catalysed reactions, and shedding light on the determinants of specificity
and efficiency of catalysis. These methods have the potential to assist in drug discovery and the
design of novel protein catalysts. This Tutorial Review highlights some of the most widely used
modelling methods and some successful applications. Modelling protocols commonly applied in
studying enzyme-catalysed reactions are outlined here, and some practical implications are
considered, with cytochrome P450 enzymes used as a specific example.

1 Introduction
Enzymes are outstanding natural catalysts. Understanding the mechanisms of enzyme-
catalysed reactions is fundamental to the study of biochemical processes. Potentially, better
understanding can contribute to developing new medicines and new catalysts. Enzymes are
complex and challenging, and it has proven difficult in many cases to establish the
mechanisms of their catalysed reactions, and the origins of catalysis, from experiments
alone. Molecular simulations and modelling are increasingly important here, complementing
experimental techniques.

Computational chemistry methods can provide information about enzyme-catalysed
reactions that experiments cannot, such as the structures of transition states and reaction
intermediates, once the mechanism has been established. Knowledge of such structures can
help in the design of inhibitors, for example, as potential drug candidates. Modelling can
identify catalytically important interactions. It can also provide insight into the factors that
govern the high degree of stereo-and regioselectivity observed in many enzymes, which
could be potentially exploited in chemical synthesis and catalyst design.1,2

This Tutorial Review describes some current computational methods for modelling enzyme-
catalysed reactions. We discuss important practical considerations, such as the choice of
method, and the preparation of a protein model for simulation. Careful preparation and
testing is vital for successful modelling. As a practical example, we highlight the
cytochrome P450 family of enzymes, which is involved in drug metabolism. Finally, we
outline some examples of applications that show how biomolecular modelling and
simulation can be applied, tested against experiment, and analysed to give unique insight
into the fundamental mechanisms of biological catalysts.
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2 Methods
Different types of computational molecular modelling and simulation methods are needed to
investigate different aspects of enzymes. Perhaps the most obvious initial question is `what
is the (chemical) mechanism of the reaction?'. As mentioned above, for many enzymes,
experiments alone have not identified reaction mechanisms unambiguously, and many
proposed and published mechanisms, even in biochemistry textbooks, are probably incorrect
in important details (see e.g. Fig. 1). Establishing a mechanism means identifying which
groups in the protein (and any cofactors) are involved in the reaction, and what their precise
roles are. The structures and interactions of transition states and reaction intermediates
should be determined. The energy barrier for a reaction step can be calculated as the
difference in energy between the reactants and the transition state (see Fig. 2). For a good,
realistic molecular model, if the barrier for a proposed mechanism is significantly larger
than that derived from experiment (within the limits of accuracy of the computational
method and experimental error), then that mechanism is unlikely. Calculations can now be
performed for enzyme reactions with highly accurate methods, which allow predictions of
barriers with close to chemical accuracy (1 kcal mol−1 ≈ 4 kJ mol−1) in the best cases.

Calculations can be performed with other aims, such as predicting the relative rates of
reaction of different substrates, or mutant enzymes. Calculations of relative rates do not
require such accurate methods as those needed for predictions of rates, and yet may be of
more general practical use. Other experimental observables such as kinetic isotope effects
can also be calculated and provide another useful link and validation. Calculations can
examine hypotheses, even those not achievable in reality, to analyse important features of a
reaction, such as identification of specific residues involved in transition state stabilization.
It is also important to stress that to examine causes of catalysis, it is most informative to
compare the enzyme-catalysed reaction with an equivalent reaction, e.g. an uncatalysed
reaction in solution, or in a less active enzyme. It is arguably not meaningful to discuss
catalysis (as opposed to mechanism) without making such a comparison. A complete
understanding of enzyme activity also requires more than consideration of the chemical
steps: specificity may be determined entirely by binding affinity, and techniques for
predicting binding affinity may need to be used. Altogether, a wide variety of questions can
be of interest for an enzyme, and different computational techniques are required for
different types of question.

In the section below, we briefly outline some of the most widely-used methods for
modelling the structure and dynamics of enzymes, and the reactions they catalyse. This is by
no means a comprehensive account and the reader is directed elsewhere for a more detailed
description.1,4,5 For example, the empirical valence bond (EVB) method has been used
extensively for modelling enzyme-catalysed reactions,6 but is outside the scope of this
Tutorial Review. In the EVB approach, reactions are modelled by empirical potential
functions. Many of the same basic principles and aspects of protein modelling and
simulations apply to EVB calculations, but here we focus on methods that use quantum
mechanics to calculate the electronic structure of molecules for modelling enzyme-catalysed
reaction mechanisms, and discuss empirical force field (MM) methods only for modelling
structure and dynamics.

2.1 Molecular mechanics (MM) methods
Molecular mechanics (MM) methods are important in simulations of enzymes, even though
typical MM methods cannot model chemical reactions. They are used for molecular
dynamics simulations, or combined with quantum mechanical methods in QM/MM
calculations on reactions (see below). MM methods allow long timescale (e.g. nano- to
microsecond) simulations of the dynamics of proteins. This is possible because of the simple
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functional forms typically used in MM energy functions (force fields), e.g. harmonic terms
represent the energy of bond stretching and valence angle bending, and simple periodic
terms describe torsional angles. Van der Waals interactions are included by a simple
Lennard-Jones function. Electrostatic interactions in MM force fields are usually described
simply by using fixed atom-centred point charges. These atomic charges do not change in
response to changes in the molecular environment or conformation, so changes in electronic
polarization are not included.

Some MM force fields for biological macromolecules represent all atoms in a protein
explicitly, while others (united-atom force fields), treat only heavy (non-hydrogen) atoms
and polar hydrogen atoms explicitly, while nonpolar hydrogen atoms are not represented
explicitly, but instead are represented as part of the carbon atom to which they are bonded.

Standard MM potential functions cannot model the bond breaking and bond making, and
electronic reorganization, involved in a chemical reaction: for example, the harmonic term
for bonds does not allow them to break. Also, MM force field parameters are developed
based on the properties of stable molecules, and so will usually not be applicable to unstable
intermediates and transition states. It is possible to develop MM functions and parameters
specifically for reactions, however, the parameters would generally apply only to a
particular reaction, or small class of reactions, meaning that reparameterization is necessary
for each problem studied. As mentioned above, protein MM force fields only include
electronic polarization in an average, and invariant way. Polarizable force fields for
biological molecules are the subject of a lot of current research; in future, MM force fields
will probably include electronic polarization explicitly.

2.2 Quantum mechanical (QM) methods
Modelling a chemical reaction requires a method capable of describing the breaking and
making of chemical bonds. Quantum mechanical (QM) (also called electronic structure or
quantum chemical) methods model the distributions of electrons in molecules explicitly.
They are widely used to study the geometries, electronic structure and reactions of small
molecules. A number of different QM methods exist, and many (so called `wavefunction-
based' methods) involve finding the solution to the Schrödinger equation. The Schrödinger
equation cannot be solved exactly for molecular systems containing more than one electron
and hence approximations are required for many-body systems. Different QM methods
differ depending on the approximations made, and can be divided roughly into three types:
ab initio, density functional theory (DFT) and semi-empirical approaches.

The simplest useful ab initio QM methods apply Hartree-Fock (HF) theory, in which it is
approximated that each electron's spatial distribution is not dependent on the instantaneous
motion of the other electrons. This approximation turns out to be the main flaw of HF
theory: it ignores electron correlation, the tendency of electrons to avoid each other. The
neglect of this effect in the calculation of the total energy has significant implications for
chemistry: HF calculations on reactions often give large errors. Many `correlated' ab initio
methods, including those based on Møller-Plesset perturbation theory (e.g. MP2),
configuration interaction (CI), or coupled cluster theory (CC), use HF wavefunctions as a
starting point. These methods offer a significant improvement in accuracy over HF
calculations, but also have much higher computational cost, which currently makes their
application for systems with many tens of atoms difficult.

Density functional theory methods can offer accuracy approaching that of the correlated ab
initio methods, but at substantially lower computational expense. The basis of DFT is that
the ground-state energy of a molecule can be calculated just from a knowledge of the
electron density distribution. The density is a function of only three variables and is thereby
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much simpler than the ab initio wavefunction, a function of 3N variables, where N is the
number of electrons. However, the exact form of the functional relating the density to the
energy is not known. Numerous approximate functionals have been developed based on a
mixture of trial and error and known limiting features of the exact functional, but there is (as
yet) no systematic way to improve them. One popular density functional is B3LYP, termed a
`hybrid' functional, in which a degree of HF exact exchange is mixed with contributions
from other functionals including the Becke88 exchange functional and the Lee-Yang-Parr
correlation functional.

Semi-empirical methods are the least computationally intensive of the QM methods
mentioned here, but they are also typically the least accurate, unless specifically
parameterized for a particular property. In fact, in some cases a MM treatment may be better
than low levels of QM, such as semi-empirical methods. Semi-empirical methods can be
applied to larger systems than DFT or correlated-HF methods (typically hundreds of atoms).
They can also be used in molecular dynamics simulations.3 Examples of semi-empirical QM
(molecular orbital) methods include those based on the Modified Neglect of Diatomic
Differential Overlap (MNDO) approximation, such as AM1 and PM3. The self-consistent
charge density functional tight-binding (SCC-DFTB) semi-empirical method is based on
DFT and has been shown in many cases to provide geometries and relative energies
comparable to DFT and ab initio calculations.7

An enzyme system typically consists of thousands of atoms, hence modelling an entire
enzyme using QM methods is computationally demanding and whilst it is possible to
perform a semi-empirical (e.g. AM1) QM calculation on a whole small protein, this is not
yet possible for methods such as CC. One approach that is often used to model enzyme
reactions with quantum chemical methods is to use a small `cluster' model containing
important functional groups (e.g. amino acid residues and substrate). The coordinates of
these groups can be taken from X-ray crystal structures. It can be necessary to use restraints
to keep the groups surrounding the reaction centre in place. This approach can be useful in
modelling transition states and intermediates, and can identify probable mechanisms.8 It is
likely that the surrounding enzyme environment and solvent have an effect on the reaction,
however, and ideally should be included in the model. One simple and quick approach is to
include an electrostatic continuum to represent the average overall effect of the protein and
solvent environment. It is a good idea to test the sensitivity of the results to the size of the
model used (number of atoms in the calculation), as well as to the treatment of the
environment (e.g. the choice of dielectric constant), the choice of starting structure, and the
level of theory used. Nowadays, calculations can be performed with good levels of QM
theory on quite large active site models (over 100 atoms) with e.g. optimization of transition
state structures. More atoms can be included in the calculation by hybrid quantum
mechanics/molecular mechanics approaches (QM/MM), which can also more naturally
allow e.g. molecular dynamics simulations. The main focus of this review is on QM/MM
calculations, but many of the practical considerations described apply to modelling of an
enzyme-catalysed reaction mechanism with other methods.

2.3 Quantum mechanics/molecular mechanics (QM/MM) methods
QM/MM methods simultaneously exploit the benefits of both the QM and MM methods
described above. The region of most interest in the system (i.e. where the bond breaking/
forming is taking place in the enzyme, along with selected surrounding catalytically relevant
residues) is treated with a QM method. The rest of the enzyme is treated with a MM force
field (Fig. 3). In many (but not all) QM/MM methodologies the two regions interact with
each other, as described below.
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The underlying theory of the QM/MM approach has been covered by many different
authors,4,10,11 so only a brief overview is given here. There are two main approaches to QM/
MM calculations: the additive and subtractive approaches. In the subtractive approach (e.g.

the ONIOM method in Gaussian12) the total energy, , is calculated using the following
expression:

(1)

where  is the MM energy of the entire system,  is the QM energy and  is
the MM energy of the QM region. In the additive approach, the energy of the whole system,

, can be written as the sum of four contributions:

(2)

The energy of the QM atoms in the presence of the MM atoms, , is calculated in a
standard molecular orbital or DFT calculation. In an ab initio QM/MM calculation, the MM
atomic charges are generally included directly through one-electron integrals. The MM
atomic partial charges also interact with the nuclei of the atoms in the QM system. For semi-
empirical QM/MM calculations, the interaction between the QM and MM partial charges is
modelled slightly differently, because in semi-empirical QM methods such as AM1 and
PM3, the inner electrons of atoms are combined with the nuclei to form `cores', and only the
valence electrons are treated explicitly: therefore usually the MM point charges are treated
as cores. The energy of the atoms in the MM region, EMM, is given by a standard MM force
field. The boundary energy, EBoundary, arises because the simulation system can only include
a finite number of atoms, so terms to reproduce the effects of the surroundings must be
included.

The QM/MM interaction energy, EQM/MM, represents the non-electrostatic interactions
between the QM and MM regions. It typically consists of terms due to van der Waals
interactions, and any bonded interaction terms. MM bonding terms (energies of bond
stretching, angle bending, torsion angle rotation, etc) are typically included for all QM/MM
interactions which involve at least one MM atom.

QM/MM van der Waals interactions (representing dispersion attraction and exchange
repulsion interactions between QM and MM atoms) are usually calculated by a molecular
mechanics procedure (e.g. through Lennard-Jones terms), exactly as the corresponding
interactions would be calculated between MM atoms not interacting through bonding terms.
MM van der Waals parameters must therefore be assigned to each QM atom. The van der
Waals terms are important in differentiating MM atom types in their interactions with the
QM system. This is particularly important in differentiating between atoms of the same
charge but different van der Waals radii (e.g. halide ions), which would otherwise be
indistinguishable to the QM system; similarly, van der Waals interactions play a crucial role
in determining the interaction of the QM system with MM atoms whose charges are close to
zero. The van der Waals parameters are usually kept the same during the reaction. This is an
approximation: changes in bonding mean that parameters appropriate for one state (e.g.
reactants) may not be ideal for another (e.g. products). In general, van der Waals interactions
are most significant at close range, playing an important part in determining QM/MM
interaction energies and geometries. The van der Waals parameters chosen for QM atoms
are, for convenience, typically the same as those for equivalent MM atoms in the force field.
However, specifically optimized parameters can give more accurate results and may be
necessary in some cases.13
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3 Modelling an enzyme-catalysed reaction
Enzymes are large and complicated systems and present numerous challenges to the
modeller. This section highlights some general factors to consider when modelling enzyme-
catalysed reactions. The majority of these considerations only apply to large, entire (or
truncated) enzyme models for MM or QM/MM simulations, but some also apply to small
cluster models.

3.1 Choice of starting structure
A detailed, accurate structure which closely resembles a point on the pathway of the
chemical reaction is a basic requirement for modelling an enzyme-catalysed reaction. In
practice, this usually means that a high-resolution X-ray crystallographic structure of an
enzyme complex is needed. The structure used must accurately represent the reacting
enzyme complex. A crystal structure of an enzyme alone, with no ligands bound at the
active site, may be of little use, because it is difficult to predict binding modes and protein
conformational changes associated with binding. Often, the crystallographic structure of an
enzyme-inhibitor complex is a good choice. The inhibitor should closely resemble the
substrate, product, transition state or an intermediate, in its bound conformation. It is
generally not possible to determine experimentally the structures of active enzyme-substrate
complexes, because these react too fast and cannot be isolated. It is sometimes possible to
solve crystal structures of enzyme-substrate complexes for less efficient mutants or
substrates, or by varying redox conditions, if the reaction is slow enough to enable the
complex to be observed.

The resolution of a protein structure determined by X-ray crystallography provides an
indication of the level of accuracy. A high-resolution structure (less than 2 Å) is likely to
give the positions of most heavy atoms very well, while at a very low resolution, it is
probable that only the overall shape of the protein can be inferred. Modellers need to bear in
mind that the quoted resolution (and the crystallographic R-factor) is only a measure of
global model quality (dependent for example on the degree of ordering of the crystal and on
the experimental conditions). Even in high-resolution structures, there can be considerable
uncertainty in atomic positions for part of the system due to protein dynamics and
conformational variability. Crystal structures represent an average over all the protein
molecules in the crystal and over the whole time of data acquisition. One manifestation of
this averaging is that the alternative conformations are observed for amino acid sidechains in
many protein crystal structures: two or more well-ordered conformations are often observed
for some groups. Similarly, some parts of the structure may not be resolved, such as surface
loops or terminal regions of the protein: these regions may be very mobile and have no well-
defined single conformation or position.

3.2 Setting-up an enzyme structural model for QM/MM calculations
Once an enzyme structure has been selected, it must be prepared for modelling. Hydrogen
atoms are not usually resolved in X-ray crystallography of proteins, because of their low
electron density. As a result, hydrogen atoms have to be added to a crystal structure prior to
simulation. This can be done automatically by many software packages, for example in the
HBUILD module of the CHARMM16 simulation program. For titratable amino acid residues
such as aspartic acid, glutamic acid and histidine (see for example, Fig. 5), the protonation
states of the residues need to be specified, and might not be obvious by inspection.
Unexpected protonation states of amino acid side chains and other groups can be favoured
within proteins, and predicting pKas in proteins remains a challenging problem. One method
to aid in the selection of protonation states is to estimate the pKas of titratable residues based
on their local environment (for example, using the PROPKA program17,18). In some cases,
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amino acid side chains such as asparagine, glutamine and histidine, which can exist as
different rotamers, may have been built incorrectly: these should be evaluated individually,
along with their local hydrogen bonding environment, to assess whether the right
conformation has been assigned (e.g. by consideration of hydrogen bonding patterns; again
this can be tested automatically by some programs). Another consideration is that crystal
structures often contain alternative conformations of some side chains: it may be necessary
to investigate the various possibilities. Caution is required about the structure of any ligands
contained in a crystal structure, because these are more susceptible to error than protein
structures. Crystal structures usually contain oxygen atoms corresponding to ordered water
molecules that are often involved in hydrogen bonding with the enzyme. To create a full
model, it is necessary to solvate the protein further, typically by placing the protein in a pre-
equilibrated water box, and deleting any water molecules close to other atoms, in order to
reproduce the effects of bulk solvation.

For MD and QM/MM calculations, once a molecular model has been created, a series of
MM and/or QM/MM energy minimizations is usually carried out in order to optimize the
geometries of both the added hydrogen atoms and the protein heavy atoms, as well as the
added water molecules. In QM calculations on small cluster models, the crystal structure
positions are usually used directly and no MM minimization is performed prior to QM
optimization. There are several MM minimization algorithms, which vary in their ability to
reach convergence and in their computational expense. The simplest of these, the steepest
descent (SD) (or gradient descent) method, calculates the first derivative of the potential
energy with respect to the atomic coordinates, producing a gradient vector. The minimum
energy along this direction is estimated, giving an improved structure. The gradient is then
recalculated to generate a new search direction. This is a quick and robust method of
relaxing a starting geometry, but it tends to oscillate around the minimum energy path to the
point of minimum energy, slowing down as it approaches this minimum. The conjugate
gradient (CG) method avoids this oscillatory behaviour, by conducting each line search
along a line which is conjugate to the previous gradient. The first step is equivalent to a SD
step, however, all subsequent steps follow a direction determined by both the current
gradient and the direction of the previous steps. CG methods hence have better convergence
characteristics than SD but can lead to problems when poor starting geometries are chosen.
The adopted basis Newton-Raphson (ABNR) method includes the second derivative of the
potential energy surface and can hence find minima and saddle points. ABNR method can
often converge very quickly, especially if started close to the energy minimum, but is
impractical for large systems due to the expense of calculating the inverse of the Hessian.
Quite often, a combination of methods is used, e.g. a protocol used by our group involves
initial minimization of the hydrogen atoms, followed by all atoms using an appropriate
number of SD, CG and then ABNR steps. The appropriate number of steps is that which is
required to reach a certain energy threshold.

3.3 Molecular dynamics (MD) simulations
Molecular dynamics simulations are important in studies of enzymes, to investigate enzyme
internal motions and conformational changes, to generate structures for mechanistic
modelling, and for (QM/MM) calculations of free energy profiles for reactions. MD
simulations can be performed with MM methods, or with low levels of QM/MM theory (e.g.
semi-empirical QM). It is increasingly common to use MD structural `snapshots' as a
starting point for QM/MM calculations, rather than the crystal structure directly.

In MD simulations, Newton's equations of motion are used to describe the motion of atoms
on the potential energy surface. Ideally, the whole protein is simulated, e.g. under periodic
boundary conditions. For QM/MM simulations particularly, the whole enzyme system is
often truncated to reduce computational requirements: i.e. only a part of the whole protein

Lonsdale et al. Page 7

Chem Soc Rev. Author manuscript; available in PMC 2013 April 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(for example, a rough sphere around the active site) might be included in the simulation.
When simulating a truncated protein system, it is necessary to include restraints or
constraints in the boundary region to force the atoms belonging to it to remain close to their
positions in the crystal structure. One common approach to simulations of truncated systems
is the stochastic boundary MD method, in which the simulation system is divided into a
reaction region and a buffer region.9,19 Typically, the whole simulation system might
include all residues with one or more atoms within a distance of 15–25 Å of an atom in the
active site. The buffer region often contains atoms in the outer layer of 5 Å or so. Atoms in
the reaction region are treated by standard Newtonian MD, and are not subject to positional
restraints. The protein heavy atoms in the buffer region are restrained to remain close to
their (crystallographically determined) positions by harmonic forces tending to hold them in
position, while a solvent deformable boundary potential prevents evaporation of water.
Atoms in the buffer follow a Langevin equation of motion: they are subject to frictional and
random forces to include approximately the exchange of energy with the surroundings. The
charges of ionized residues in the buffer region are sometimes neutralized or scaled, in order
to avoid unphysical interactions with the surrounding vacuum. Improvements to QM/MM
simulations of truncated protein systems include the generalised solvent boundary potential
(GSBP),20 in which the solvent surrounding the system is represented by a continuum
dielectric.

3.4 QM/MM partitioning methods and schemes
In most QM/MM studies of enzymes, it is necessary to partition covalently bonded
molecules into QM and MM regions, because usually part of the protein is directly involved
in the reaction. Some amino acid side chains may participate directly in the reaction,
undergoing chemical change as part of the mechanism, and must therefore be included in the
QM region. Other side chains will play binding roles, and an MM representation could be
inadequate in some cases, for example for particularly strong binding interactions. It may
likewise be desirable to treat only the reactive parts of large cofactors or substrates by
quantum chemical methods and to treat the rest by MM. There are two general QM/MM
partitioning techniques that can be employed: firstly a frozen bond orbital to satisfy the
valence shell of the QM atom at the QM/MM junction, for example the local self-consistent
field (LSCF) method or the generalized hybrid orbital (GHO) method. Alternatively a QM
atom (or QM pseudoatom) can be added to allow a proper bond at the QM/MM frontier, for
example the link atom method or the connection atom method.4,11 (see Fig. 6) Link atoms
are typically modelled as hydrogen atoms, and some of the interactions between these link
atoms and the MM region are usually neglected. Generally, the positions of the link atoms
are chosen such that they do not cut across any polar bonds, avoiding any unrealistic effects.
Different methods require different positions for the boundary.21 In order to avoid the
introduction of unbalanced charge interactions at the boundary between the QM and MM
regions, the charges of MM groups adjacent to QM groups are commonly set to zero,
although more complex electrostatic adjustments can also be made.

3.5 Treatment of the solvent
When simulating proteins it is important to consider the solvent environment. In vivo,
proteins are solvated in water or e.g. partly in water and partly in a membrane (or associated
with DNA). Different levels of approximation can be used to model the effects of solvation.
Implicit solvent models do not include individual water molecules, and include the effect of
the solvent e.g. by screening the charges of the protein atoms with a dielectric constant. The
disadvantage of such methods is that specific solvent-solute interactions (e.g. hydrogen
bonding to water molecules) cannot be modelled. In contrast, in explicit water models water
molecules are represented explicitly: these therefore require longer equilibration times and
the simulations take more time than simulations with an implicit water model. Most
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biomolecular MM forcefields have been developed to be compatible with simple point
charge models of water, such as the TIP3P water model.22 There are some indications that
for QM/MM simulations, particularly with higher levels of QM theory, the TIP4P model is
preferable.23 Electronic polarization is included only in an approximate way in MM models
such as TIP3P: for example, the dipole moment of such models is higher than that observed
in the gas phase, thus including approximately the effects of polarization in the condensed
phase.

3.6 Calculating energy profiles and barriers for reactions
Structural and energetic information concerning the reactants, intermediates and transition
states along the reaction path are the key objectives in modeling a chemical reaction,
whether in a protein or in solution. Such information can be derived either from essentially
static methods, in which single optimized structures are obtained for each key species, or
using dynamical methods, in which ensembles of structures are generated. Focusing on
static methods first, optimization of minimum energy structures has been described above
and is usually relatively straightforward, even for the large systems typically involved in
QM/MM studies. It should however be noted that typical optimization only leads to local
minima, with the identification of global minima being much more difficult and very seldom
attempted.In fact, because proteins have many minima of similar energy, it is more
important to consider many of them.

Optimization of saddle-points and reaction paths are more difficult problems. The
algorithms commonly used for TS optimization in small systems are not always well suited
to studies of large systems, such as enzymes. This is partly because such methods are
demanding computationally (e.g. calculating and manipulating a full matrix of second
derivatives becomes extremely expensive). Another reason relates to the point above about
local minima: even when it is possible a given TS, this is not very useful unless one is
confident that the TS correlates along a smooth reaction path with the surrounding minima.
Without this confidence, comparing their energies is essentially meaningless.

TS structures (saddlepoints) and associated reaction paths can be optimized in QM/MM
calculations on enzymes; approximate TS structures generally have to be found as a prelude
to such structural optimizations, and are often valuable in their own right for estimating
potential energy barriers. One approach often used in locating approximate TSs and reaction
paths on QM/MM potential energy surfaces is the so-called “adiabatic mapping”
approach.11 In this method, a reaction coordinate is selected, e.g. the distance between two
atoms. The energy of the system is then minimized while restraining this coordinate to a set
of gradually incremented values, giving an energy profile. In favourable cases, if the `steps'
taken along the path are small, then a smooth reaction path is obtained, continuous both in
energy and configuration space and can often give TS structures similar to fully optimized
TSs. Discontinuities are however frequently observed, due to structural relaxation to a
conformationally distinct reaction path, possibly involving atoms situated very far from the
reaction path. When this occurs, the energies obtained should not be used, and adiabatic
mapping should be repeated in forward and reverse directions until a smooth energy profile
is obtained. As continuous reaction paths rarely involve major motion of atoms far from the
reacting centre, it is not a big approximation to freeze the positions of all atoms more than
10 Å or so from the reaction centre - this usually much improves convergence of the
mapping procedure.

The difference in electronic energy (i.e.  from (2)) between reactants and the transition
state gives the potential energy barrier for the reaction, for that particular arrangement of
reacting groups. By including a correction for zero-point energy (for the atoms in the QM
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region), and calculating vibrational frequencies, it is possible to obtain the activation energy,
enthalpy, and free energy as one would do for a gas-phase reaction of small molecules. The
free energy is particularly valuable as it can be directly compared to experiment. One may
also be able to compute corrections to account for tunneling.24 However, doing this based on
a single reaction path will not yield exact results, as the 'real' reaction involves barrier-
crossing starting from a thermal ensemble of reactant conformations, which may all have
different reaction barriers (see Fig. 7). To get a more realistic estimate, multiple reaction
profiles can be calculated, using different starting structures taken, e.g., from MM molecular
dynamics simulations. If all the barrier heights are similar, then one has a better estimate of
(and more confidence in) the activation energy or free energy. Typically, though, they are
somewhat different, and one may wish to use either the lowest barrier (if the corresponding
reactant complex is not obviously anomalously unstable), or use some or other averaging
method. Recent work has highlighted the importance of this type of sampling.9

3.6.1 Dynamical sampling of reaction profiles—It is sometimes not possible to
obtain a profile that is representative of the reaction potential energy using the adiabatic
mapping method, for example where large structural or charge changes take place during
reaction. Also, one may wish to avoid the less accurate methods described above for
deriving average activation parameters over several different reaction paths. In cases such as
this, it can be advantageous to sample the free energy profile for the reaction by using
dynamical methods to generate an ensemble of reacting structures. One method for doing
this is the umbrella sampling approach. As with adiabatic mapping, a reaction coordinate is
selected, then a set of MD simulations are carried out, in each of which a harmonic or other
restraining “umbrella” potential is applied to keep the reaction coordinate close to a desired
value. The set of chosen values is designed to cover the range from the reactant complex to
the product complex of a given step. This yields a set of structures representative of reaction
at a finite temperature. The bias introduced by the umbrella potential can be removed using
the weighted histogram analysis method (WHAM), to generate a free energy profile along
the reaction coordinate.

Sampling reaction paths with umbrella sampling (or using related techniques) is quite
challenging when computing the potential energy using QM/MM methods, since the
underlying simulations require a very large number of computations of the potential energy
and its gradient (105 or more). Hence this approach is currently only routinely applicable
with low-level QM methods, such as AM1, PM3 and SCC-DFTB. Such low-level QM
methods methods tend to yield rather inaccurate energy barriers. Another difficulty with
such methods is that the free energy profile obtained may converge rather slowly with the
length of each of the simulations performed along the reaction path, as one may not sample a
truly equilibrium ensemble in the time available. The accuracy of QM/MM umbrella
sampling free energy barriers based on low-level QM methods can be improved by applying
a correction derived from adiabatic mapping studies at both the low level used for umbrella
sampling and at a higher level.2 Also, accuracy can be improved by using specifically
reparameterized semi-empirical methods for a particular system.13

Monte Carlo simulations can be used as an alternative to molecular dynamics simulations
for sampling.

4 Modelling cytochrome P450 reactions
4.1 Introduction

Cytochrome P450 enzymes (P450s or CYPs) are very important in drug discovery, because
they are involved in the metabolism of most drugs. They are also important in biosynthesis.
They dominate Phase I drug metabolism, which involves the introduction of polar functional
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groups into non-polar molecules and can lead to inactivation or activation of drugs. The
majority of P450-catalysed xenobiotic oxidation reactions in mammals occur in the liver.
Most perform a detoxification function, but complications arise in some cases from the
formation of reactive intermediates, such as epoxides. These intermediates can cause
oxidative stress to cells, e.g. by reacting with proteins and DNA. P450s share a common
active site haem (Fig. 8), that is bound to the enzyme via a cysteine residue. Information
obtained from modelling could be potentially very useful in drug discovery, e.g. to help
predict the formation of toxic metabolites in P450-mediated metabolism of lead compounds.

The catalytic cycle of P450s involves the formation of a very reactive Fe(IV) oxo species,
called Compound I (Cpd I), that is widely accepted to be the species that accounts for most
of the substrate oxidation reactivity of P450s, as well as in other haem-containing
monooxygenases.25 Computation has provided insight into the mechanisms by which
oxidative metabolism is carried out by these enzymes, as well as the nature of Cpd I.26–32

P450s provide nice examples of how QM calculations with small cluster models (see 2.2)
can provide insight into enzymes and their mechanisms. Typically, such small cluster
models would be comprised of the haem group, with the substituents replaced by hydrogen
atoms, bound to a −SH (or −SCH3) group to model the cysteinate bound to the iron. The
B3LYP density functional gives the correct ground state spin configuration of Cpd I (a
doublet), in agreement with experiment.29 As a consequence of a different alignment of the
spins of the three unpaired electrons that exist in Cpd I, a quartet spin state exists that is
slightly higher in energy than this doublet ground state (Fig. 3). The hydroxylation of small
alkanes was modelled by Shaik et al., also using the B3LYP density functional.29

Hydroxylation by P450s follows the “rebound” mechanism, which consists of hydrogen
abstraction by Cpd I, followed by radical recombination (or rebound). Hydroxylation
displays “two-state reactivity”, in which the reaction proceeds on both the closely lying
doublet and quartet spin surfaces. For methane, hydrogen abstration was found to have
similar barriers on both spin surfaces. Radical recombination was found to be barrierless on
the doublet spin surface, however, a small barrier was found for the quartet spin surface.
This result explains the experimental finding of rearranged products with radical clock
substrates.29

The solution of the crystal structure of P450cam (and subsequently of other isoforms),
together with the development of QM(DFT)/MM methods, has enabled the electronic
structure of Cpd I, and the mechanisms of oxidation reactions, to be modelled in the enzyme
environment. The most extensively studied of these reactions is the hydroxylation of
camphor at the 5-exo-position by P450cam, for which the entire catalytic cycle has been
modelled with QM/MM methods.29,32 QM/MM modelling has helped to confirm the
specific role of several active site amino acid residues in the catalytic cycle, previously
suggested by experimental studies. The protein environment is believed to have an effect on
the electronic structure of Cpd I, as differences have been observed between QM and QM/
MM calculations. The main observed difference is in the distribution of the unpaired
electron shared between the porphyrin ring and the cysteine sulfur. This difference arises
due to the electrostatic polarization by the surrounding protein and solvent of the active site
pocket, as well as through hydrogen bonding to the cysteinate sulfur.29,32,33 The electronic
structure of Cpd I does not differ significantly, however, in different P450s.33

Some P450s catalyse the hydroxylation of aromatic rings, a process that can lead to
formation of toxic products, such as arene oxides. Examples of modelling of this type of
reaction include QM (DFT) studies of the hydroxylation of benzene with a cluster
model27,28 and QM/MM modelling of the same process in the CYP2C9 enzyme.31 The
calculations on small models led to the finding of a correlation between the calculated
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energy barriers for hydroxylation of different substituted benzenes, and experimentally
derived Hammett constants.27 This type of relationship could be potentially extended to
other substituents and could have applications in predicting drug metabolism.

4.2 Practical considerations
Modelling metalloenzymes, such as P450s, often require extra factors to be taken into
account, such as obtaining convergence to the correct electronic state. Some of these factors
are discussed below.

4.2.1 Choice of QM method—As mentioned in section 2.2, different levels of QM
theory differ in their speed and accuracy. Ideally, one would perform all QM calculations
with the most accurate ab initio method, together with the largest available basis set.
Unfortunately, for systems with more than a few atoms this is impractical (though QM/MM
calculations with high-level correlated ab initio methods are now possible for some enzymes
and small transition metal complexes).2,34

The Fe(IV) oxo species is obviously central to P450 reactivity, so a method that can
accurately model transition metals is required. Standard semi-empirical methods are not up
to the task. Consequently, umbrella sampling QM/MM MD simulations on P450 reactions
have not yet been reported, as the results are unlikely to be reliable. Correlated ab initio
methods are also not a generally practical option for modelling these systems at present, due
to computational expense. The B3LYP density functional is a popular method for modelling
P450-catalysed reactions, and has been shown to perform well for this type of
system.9,30–33,35 A significant draw-back of B3LYP, and many other density functionals, is
the lack of treatment of dispersion interactions, the attractive part of van der Waals
interactions. The dispersion interaction is missing in many density functionals because of the
approximate manner in which electron correlation is modelled. Whilst this does not have an
effect on the calculated electronic structure of Cpd I, it can lead to errors (typically
overestimation) in calculations of energy barriers when modelling reactions. Several
empirical corrections to add dispersion interactions to B3LYP have been developed, such as
those by Grimme.36 Recent calculations with such a method (B3LYP-D) on several
hydroxylation and epoxidation reactions of Cpd I show the importance of including
dispersion effects:37 better agreement with experiment was observed, compared with similar
calculations without the correction. The energy barriers were lowered, because the
dispersion correction is greater for the transition state than the Michaelis complex: the
substrate is closer to Cpd I in the transition state, and so is stabilized more by dispersion
interactions than the reactant complex, due the R−6 dependence of the correction.

4.2.2 Finding the correct wavefunction for Compound I—The electronic structure
of the reactive oxygen species, Cpd I, is not trivial to model: convergence to the correct
wavefunction can be difficult. This section provides guidance on obtaining the correct
wavefunction for Cpd I in both QM and QM/MM models. These points might appear
specific to this system, but they also have more general applications in the modelling of
complex inorganic and bioinorganic systems. It is also important to note that QM/MM
studies cannot side-step the usual problems of electronic structure theory (e.g. choice of
appropriate method, basis set etc.), and that QM/MM methods offer the same number of
options in the electronic structure calculation as analogous QM-only studies.

It is common practice to treat by QM a truncated model of Cpd I, in which all of the haem
substituents are replaced by hydrogen atoms: this model system has an overall charge of
zero. Previous calculations on Cpd I of P450cam have shown the importance of allowing
sufficient relaxation of the system in minimization, and correct treatment of protonation
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states and hydrogen bonding (e.g. of the haem propionates, if these are included in the QM
region).30,38 The appropriate degree of truncation of the cysteinate ligand for QM or QM/
MM calculations is a matter of debate. Some groups recommend modelling the cysteine
sidechain as a thiolate group (−SH), while others choose a methyl mercaptide ligand
(−SCH3) or the entire cysteine residue, suitably `capped' by hydrogen atoms. It has been
suggested that the thiolate group results in a more accurate description of the Cpd I
wavefunction in QM calculations on cluster models,32 whereas the methyl mercaptide ligand
is more representative in QM/MM models. The differing suitability of the two different
cysteine models is because small cluster models typically lack groups that donate hydrogen
bonds to the thiolate group in the protein, but these hydrogen bonds are included in larger
(e.g. QM/MM) models. The electronic structure of Cpd I is quite sensitive to the hydrogen-
bonding environment of the cysteinate sulfur.33

To begin mechanistic calculations, the first step is to carry out a calculation on the QM or
QM/MM model of Cpd I in its quartet state, using either a restricted or unrestricted open-
shell DFT approach. The doublet ground state is more difficult to obtain initially, as is
explained below. In the restricted approach the alpha and beta electrons are assigned to the
same set of molecular orbitals, whereas in the unrestricted approach the alpha and beta
electrons have separate orbitals. The latter approach is often required for open-shell systems.
Convergence to the `correct' quartet state (see above) is usually facile with modern
electronic structure packages with high-quality initial guesses (see below) and good SCF
optimization routines. The initial guess is the trial wavefunction that is used as a starting
point for the electronic structure program. The quartet state has three unpaired electrons; two
are located in Fe—O π* orbitals and the remaining one is distributed amongst the sulfur pπ
orbital and the meso carbons of the haem (termed the a2u orbital), as shown in Fig. 9. As in
QM studies of open-shell transition metal species, the converged solution should be
carefully checked (by inspecting molecular orbitals, atomic charges, atomic spin densities
etc.) to ensure that it corresponds to the expected one. This can be done either by detailed
inspection of the output file or by visualization of the molecular orbitals. The doublet
electronic state of Cpd I, in contrast, usually cannot be obtained from the software's initial
guess, which tends to converge instead to higher energy doublet states with very different
orbital occupations. The correct solution can be obtained by using a modified form of the
converged orbitals for the quartet state, with orbital occupations changed to effectively
switch the spin of the a2u electron. This is done most conveniently starting from a set of
restricted open shell DFT orbitals. The resulting initial guess can then be used to optimize
the doublet state wavefunction and then the associated geometry. An unrestricted open-shell
density functional treatment is needed for these calculations, as the occupation pattern of
alpha and beta orbitals differs. This approach should yield the correct ground-state (doublet)
wavefunction for Cpd I.

5 Comparison with experiment
The discussions above illustrate that modelling enzyme-catalysed reactions now can give
useful, reliable and predictive results. Comparison with experiment is obviously an
important test and allows validation of molecular models and computational techniques.
There are now many examples where modelling techniques of the type described above have
been used, with success, to model the reactions catalysed by enzymes giving qualitative (or,
at best, quantitative) agreement with experiment.39 Some examples, and approaches for
comparisons with experiments, are highlighted here.

Transition state theory underlies the comparison of calculated barriers with experimental
rate constants: there is much evidence that transition state theory provides a good general
framework for enzyme-catalysed reactions. It is a theory that accounts for the rates of
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chemical reactions in terms of free energy differences between reactants and transition state;
it is not the theory that enzymes stabilize the transition state (as first proposed by Pauling).

5.1 Comparison of activation energies and free energies with experimental rate constants
The rate of a reaction, kcat is related to the activation free energy, ΔG‡, by

(3)

in terms of transition state theory. The activation free energy is the difference in free energy
between the reactants (or lowest energy complex along the reaction path) and the highest
energy transition state. As outlined in section 3.6.1 above, activation free energies can be
calculated e.g. by umbrella sampling MD simulations. They can also be estimated by adding
an estimated activation entropy (ΔS‡) to a calculated potential energy barrier. Corrections
for any volume changes, recrossing (a transmission coefficient) and quantum effects such as
tunnelling and zero point energy should also be included for a full calculation of ΔG‡.24,40

Many calculations on enzymes (e.g. using adiabatic mapping or similar methods, section
3.6) give only potential energy barriers: these are easier to obtain.

It is possible to calculate activation free energies for some enzyme reactions in very good
agreement with experiment, as discussed in section 5.2 below. Even simple calculations of
potential energy barriers can be useful and predictive, however. This is shown, for example,
by the excellent correlation between potential energy barriers and (the log of) experimental
rate constants for two enzymes, phenol hydroxylase (PH) and para-hydroxybenzoate
hydroxylase (PHBH), for series of alternative substrates. PH and PHBH are flavin-
dependent enzymes that catalyse the hydroxylation of phenols, with high specificity. This is
an important step in the microbial degradation of aromatic compounds, such as lignin from
wood. Various substituted phenols are also hydroxylated by these enzymes, including
halophenols, hence reactions catalysed by PH and PHBH have potential applications in the
detoxification of aromatic pollutants.

The PH-catalysed hydroxylation of phenol41 and PHBH-catalysed hydroxylation of p-
hydroxybenzoate42 were studied using QM/MM methods, along with halogenated
derivatives. The crystal structures of PH from Trichosporon cutaneum in complex with
phenol and PHBH from Pseudomonas fluorescens in complex with p-hydroxybenzoic acid
were used. QM/MM calculations were performed, using the CHARMM program, at the
AM1/CHARMM22 level of theory. The QM region consisted of the flavin ring and the
substrate (and the sidechain of Asp54 for PH). The proposed mechanism for both PH and
PHBH is electrophilic aromatic substitution of the substrate by C4a-hydroperoxyflavin,
resulting in the formation of a cyclohexadienone (Fig. 10). The reaction in PH was
calculated to proceed stepwise via deprotonation of the hydroxyl moiety of the substrate by
Asp54, activating the aromatic ring to enable hydroxylation by the hydroperoxyflavin
molecule. For PHBH, the substrate was modelled with the hydroxyl group deprotonated. For
PH, higher-level QM calculations were performed using a small gas phase model system at
the HF, MP2 and B3LYP/6–31+G(d) levels of theory, to test the AM1 energies. AM1 was
found to overestimate the activation energy for hydroxylation by around 10 kcal mol−1. This
was apparent both from comparison with experimental kcat values and barriers calculated
with higher levels of QM theory.

Energy barriers for the hydroxylation in PH and PHBH were also computed for a variety of
chlorinated and fluorinated substituted substrates (only fluorinated substrates in the case of
PHBH). Overall, the substituents increased the energy barrier. On the basis that the
electrophilic attack of the hydroperoxyflavin cofactor on the substrate is believed to be rate-
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limiting in the overall reaction cycle (for most of these substrates under typical conditions),
the calculated energy barriers for the different substrates were compared to the experimental
rate constants for their overall conversion by PH or PHBH. A linear correlation was found
between the logarithm of the experimental rate constants (ln kcat) and the calculated energy
barriers (ΔE‡) for the reaction of the hydroperoxyflavin cofactor with the substrate.

The good correlations indicate that the structural model and mechanism employed in this
work provide an appropriate description of the rate-limiting step in the reaction cycles of PH
and PHBH. The results also show that the enzyme-catalysed reaction is adequately described
by transition state theory (and that activation entropies, and other factors, are similar for
similar substrates). Although the calculated barriers were too high (because of the
limitations of the AM1 method, which often significantly overestimates barriers as
mentioned above), the results showed that the barriers are useful in a qualitative way. The
correlation, which was observed for fluorinated substrates in PHBH, and both chlorinated
and fluorinated substrates in PH, shows the potential of QM/MM methods for developing
quantitative structure-activity relationships (QSARs). This is remarkable given that an
adiabatic mapping approach was used with only a single pathway for each substrate. The
good correlation shows that calculations of potential energy barriers, e.g. by adiabatic
mapping, is a useful and predictive approach for some enzymes.

5.2 Towards chemical accuracy for energy barriers
PHBH has also been used to test and demonstrate high level QM/MM methods. As
mentioned above, while relative barriers for different PHBH substrates are calculated
usefully with a semi-empirical (QM/MM method (with the AM1 method), the absolute
barriers are significantly too high. This is typical for semi-empirical methods, which often
give barriers (and reaction energies) that are wrong by 10 kcal mol−1 or more. DFT methods
give much better results, but suffer from some limitations (such as lack of dispersion in
many functionals, and significant errors in energies in some cases).43 Higher level QM
methods (such as the ab initio MP2 and CC methods) can be significantly more accurate,
and can now be applied in QM/MM calculations on enzymes. A local treatment of
correlation with these methods, and density fitting, reduces their computational expense
without appreciably reducing their accuracy. This means that, in the best cases, it is now
possible to calculate activation energies in enzymes to within chemical accuracy (within 1
kcal mol−1) using first principles methods (i.e. methods that are not specifically
parameterized for a particular application). With such high level, computationally expensive
methods, only potential energy barriers can be calculated directly. In fact, geometry
optimization is usually not feasible at these levels either, so structures are typically
optimized at a DFT/MM level, and `single point' energies calculated for these structures at
the higher level. Activation entropies can be estimated approximately from the difference
between free energy and potential energy barriers at a (semi-empirical) QM/MM level,
calculated with e.g. umbrella sampling and adiabatic mapping, respectively. The composite
free energy barriers calculated in this way (i.e. high level QM/MM potential energy barriers,
with thermal and zero-point vibrational corrections, added to the estimated activation
entropy) can be compared to apparent activation energies derived from experimental rates
using transition state theory (Eqn. 3).

These high level QM/MM calculations were first used to model reactivity in two well
characterized enzymes:2 PHBH (see 5.1) and chorismate mutase (CM). CM catalyses a key
step in the shikimate pathway, important to plants, funghi and bacteria in the production of
aromatic amino acids. This step is the conversion of chorismate to prephenate, for which the
mechanism is the same in the enzyme as it is in solution (Fig. 2). This feature has facilitated
the discovery of the important factors that contribute to the rate acceleration (of > 106)
observed in the enzyme-catalysed reaction.
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Claeyssens et al. performed B3LYP, MP2, LMP2 and LCCSD(T0) QM/MM calculations on
PHBH and CM (the L in the acronyms indicates local correlation, CCSD(T0) denotes
coupled-cluster theory with single and double excitations, and approximate treatment of
triple excitations). The conformational flexibility of the enzymes was taken into account by
averaging the results over multiple pathways (16 for CM, 10 for PHBH). Initial structures
were sampled from AM1 QM/MM MD simulations and the reaction pathways optimized
with B3LYP QM/MM. The computed average activation enthalpies with LCCSD(T0) were
13.1 (±1.1) and 13.3 (±1.5) kcal mol−1 for CM and PHBH respectively. These are in
excellent agreement with the (apparent) experimental activation enthalpies of 12.7 and 12.0
kcal mol−1. HF (particularly), B3LYP and LMP2 showed poorer agreement with
experiment, indicating that a high-level electron correlation treatment such as LCCSD(T0) is
necessary to make quantitative predictions of activation energies in these enzymes.
Activation entropies were estimated by comparing mean activation enthalpies with
activation free energies (from lower-level AM1/CHARMM umbrella sampling calculations,
as mentioned above). The resulting free energy barriers were very close to the values
derived from experiments; they agreed within 1–2 kcal mol−1. These calculations show that
QM/MM calculations can achieve near-chemical accuracy for enzyme-catalysed reactions.
They also indicate that transition state theory provides a good general framework for the
behaviour of enzymes. This is important because transition state theory underlies
comparisons of calculated barriers with experimental kinetics.

5.3 Predicting selectivity
For many types of problem, getting the absolute barrier height for an enzyme reaction is
actually not particularly important; often the prediction of selectivity is a more practical (and
useful) goal. The ability to predict the products formed during drug metabolism by P450s,
for example, could help in the design of new drug molecules and avoid some of the effects
associated with adverse drug reactions. Drug molecules often contain several sites at which
oxidation may take place. Oxidation at one site may lead to detoxification, but oxidation at
another position in the drug molecule may lead potentially to formation of a toxic
metabolite. The preferred site of oxidation is often dictated by which site in the substrate is
closest to the Cpd I oxygen: this is controlled by interactions between the substrate and the
amino acid residues in the active site. Other more subtle geometrical factors, beyond a
simple carbon-oxygen distance, can also play a role. In cases where more than one
orientation of a substrate molecule is possible within the active site, the intrinsic reactivity of
the oxidation sites may be the dominating factor in determining product formation. QM/MM
methods are able potentially to account for both of these factors, as the QM part of the
calculation takes Cpd I reactivity into account, and the effect of the substrate orientation is
modelled by the inclusion of the protein environment in the MM region. It is critically
important, however, to consider different possible binding modes (which could be generated
practically e.g. by molecular dynamics simulations and/or docking).

Oxidation of small alkenes such as propene and cyclohexene is an excellent test case for
probing the ability of modelling methods to predict selectivity in product formation.9 In
some bacterial P450 isoforms, the oxidation of propene results in formation of propene
oxide, whereas the oxidation of cyclohexene results in both cyclohexene oxide and the
allylic hydroxylation product (Fig 12). This experimental observation is not trivial to
explain. QM/MM energy profiles were calculated for different structures taken from MD
simulations, to sample conformations of the enzyme-substrate complexes. These structures
were selected based on angle and distance criteria such that the substrate was oriented in
`reactive' positions. The calculations showed that calculated relative energy barriers were in
good agreement with experimentally observed product ratios, but only when multiple
conformations were modelled. This example shows that QM/MM methods are a promising
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approach for predicting selectivity in P450 enzymes, but also highlights the need for
extensive conformational sampling.

As in most studies of P450 reactions, DFT methods have been used to model these systems.
As mentioned in section 4.2 above, many DFT methods do not include dispersion. Recent
calculations on alkene oxidations in P450s show that it is important to include this effect.37

These calculations studied small models using DFT methods. The addition of the empirical
dispersion correction was shown to result in improved selectivity predictions compared to
calculations performed without the correction. On the basis of this and similar findings (and
because the use of such a correction adds virtually no computational cost), we recommend
the inclusion of this type of correction in all future B3LYP-based calculations on P450
enzymes, and indeed for other enzymes.

6 Conclusions
Enzymes are complex systems and to model their reaction mechanisms computationally is
no simple task. The potential benefits, from testing hypotheses for reaction mechanisms, to
elucidating the factors that govern selectivity and catalysis, make the effort more than
worthwhile. There are many different computational methods that can be used to study
enzyme catalysed reactions, and the choice of an appropriate method is an important
consideration. To successfully model an enzyme-catalysed reaction, there are also many
other details that require attention. Energy barriers for the chemical steps of enzyme
reactions can now be calculated to a high degree of accuracy in the best cases, though less
accurate calculations can also provide useful mechanistic insight. However, high accuracy is
not needed for all types of application.
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Fig. 1.
Lysozyme is an example of a classic `textbook' enzyme, and was the first to have its
mechanism proposed based on structural data. However, the previously commonly taught
mechanism (where the reaction proceeds via a oxocarbenium ion) is probably wrong.
Crystallography and electrospray ionization mass spectrometry of mutant hen egg white
lysozyme, or a fluorinated substrate, support formation of a covalent intermediate. QM/MM
calculations also support formation of the covalent intermediate in the wild type enzyme
with the natural substrate.3 Representative snapshots from QM/MM (PM3/CHARMM22)
umbrella sampling molecular dynamics simulations of the transition state (left hand side)
and the covalent intermediate (right hand side) are shown. Only atoms in the QM region are
shown, for clarity (i.e. the D site NAM sugar and the side-chains of Glu35 and Asp52). The
distance between Asp52 Od2 and the D site NAM C1 decreases from ~ 2.9 Å in transition
state (indicated in the figure) to ~ 1.4 Å in the covalent intermediate. `Link' atoms are shown
in yellow: these are QM hydrogen atoms added to the system at the QM/MM boundary to
satisfy the bonding requirement of QM atoms where the boundary separates covalently
bonded atoms. Reproduced from ref.3
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Fig. 2.
Energy profile for a reaction proceeding from reactants (R) to products (P) via a transition
state (TS). The energy barrier for the reaction (ΔE‡) is the difference in energy between the
reactants and transition state. The example reaction given here is the Claisen rearrangement
of chorismate to form prephenate, which is catalysed by the enzyme chorismate mutase (see
Section 5.2).
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Fig. 3.
In a QM/MM calculation on an enzyme-catalysed reaction, the system is split into two
regions: a small region encapsulating the reaction at the active site (shown here in ball and
stick representation) is modelled with a QM method, while the rest of the enzyme (and
surrounding solvent etc) is modelled using MM. The enzyme illustrated is a (truncated)
model of CYP101 (cytochrome P450cam) with cyclohexene bound.9
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Fig. 4.
Fatty acid amide hydrolase (FAAH) is a promising pharmaceutical target for the treatment
of pain, anxiety and depression. QM/MM calculations on the formation of the covalent
adduct between FAAH and the O-arylcarbamate inhibitor URB524 showed that reaction was
only possible in one of the two possible binding modes shown here (OR. II), thus identifying
the productive binding mode. This prediction was subsequently validated by X-ray
crystallography.14 Figure reproduced from ref.15
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Fig. 5.
The three possible protonation states of a histidine side chain in the modelling of a protein.
Care must be taken to choose the most-likely state for each histidine side-chain in a protein
model. This can be achieved by inspection of the local hydrogen-bonding environment.
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Fig. 6.
Typical QM/MM partitioning for modelling reactions of cytochrome P450 enzymes. The
example shown here is cyclohexene in the active site of P450cam. The MM and QM atoms
are shown in lines and ball and stick representation, respectivey. Inset: (a) the link atom (L)
and (b) frozen orbital methods for satisfying the valences of QM atoms at the QM/MM
boundary.
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Fig. 7.
Two-dimensional representation of the potential energy surfaces (PESs) for a reactant and
transition state for an enzyme catalysed reaction. Potential energy barriers (Δ‡E) calculated
using the adiabatic mapping are subject to variation, depending on the choice of starting
structure when using different structures from MD simulations. This is due to the many
conformational minima on both the reactant and transition state PESs. To obtain accurate
barriers, it is often necessary to either average over many calculated barriers or to use a
dynamical sampling method, such as umbrella sampling.
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Fig. 8.
The haem prosthetic group found in cytochrome P450 proteins. The haem iron is bound to a
cysteinate residue in the enzyme.
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Fig. 9.
Schematic representation of the singly occupied molecular orbitals in a truncated model of
Compound I, the active species in cytochrome P450, in the quartet spin state. The alternative
spin orientation for the electron in the a2u + pσ (S) orbital shown in parentheses corresponds
to the doublet spin state. The doublet and quartet spin states are close in energy and hence
both can be involved in reaction.29,32,33
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Fig. 10.
Electrophilic aromatic hydroxylation by hydroperoxyflavin catalysed by phenol hydroxylase
(PH)41 and para-hydroxybenzoate hydroxylase (PHBH)42. R' is H in PH and  in PHBH.
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Fig. 11.
B3LYP/6–31(d)/CHARMM27 QM/MM energy profiles for the Claisen rearrangement of
chorismate to prephenate in (a) water and (b) chorismate mutase. Representative structures
are shown for (c) chorismate, (e) prephenate and (d) the transition state for the
rearrangement. Reproduced from ref.44.
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Fig. 12.
Oxidation of propene and cyclohexene by bacterial cytochrome P450 enzymes. These
systems provide a test case for the prediction of selectivity using QM/MM methods.9,37
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