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Abstract
A tissue field of somatic genetic alterations precedes the histopathological phenotypic changes of
carcinoma. Genomic changes could be of potential use in the diagnosis and prognosis of pre-
invasive squamous head and neck carcinoma (HNSCC) lesions and as markers for cancer risk
assessment. Studies of sequential molecular alterations and genetic progression of preinvasive
HNSCC have not been clearly defined. Studies have shown recurring alterations at chromosome
9p21 (location of the CDKN2A) and TP53 mutations in the early stages of HNSCC. However,
gene silencing via hypermethylation is still a relatively new idea in the development of HNSCC
and little is known about the contribution of epigenetics to the development of neoplasia, its
transformation, progression, and recurrence in HNSCC. This review examines the role of
promoter hypermethylation of tumor suppressor genes in the progression continuum from benign
papillomas to malignancy in HNSCC.
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1. Introduction
Head and neck squamous cell carcinoma (HNSCC) is one of the most prevalent cancers in
the world with over 500,000 cases diagnosed annually. In the United States, approximately
52,140 new cases are expected in 2011 with an estimated 11,460 deaths for HNC of the oral
cavity, pharynx, and larynx[1].

Despite considerable efforts, the 5-year survival rate for HNSCC has not changed
significantly making accurate and reliable stratification for prediction of outcomes
challenging. Much of this is attributed to the numerous anatomic sites and subsites from
which tumors can arise and the diversity of histologic types of tumors in these locations[2].
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Patients with advanced HNSCC are limited to a complete response of 50% and often require
long-term rehabilitation. However, early HNSCC detection increases survival to 80%. To
facilitate timely diagnosis and improve treatment, elucidation of early detection markers is
crucial. A current shortcoming in the prognosis and treatment of HNSCC is a lack of
methods and large study cohorts to adequately address the etiologic complexity and
diversity of the disease.

1.1 Genomic Advances in HNSCC
Cancer is the result of transformation from a normal to a malignant cell that results from
accumulated mutations. Acquisition of a fully malignant phenotype in colon cancer is
thought to occur as a result of multiple steps whose targets are alterations of growth-
promoting oncogenes and growth-inhibiting cancer suppressor genes [3]. The evolution in
transformation from a normal squamous epithelial cell to a cancer cell is likewise assumed
to require several steps, some defined by genetic alteration. However, the precursor lesion(s)
and sequence of events are less clearly defined for head and neck squamous cell carcinoma
(HNSCC).

1.2 Genetics of HNSCC
Early cytogenetic studies of HNSCC relied on analysis of later stage tumors and established
cell lines. Recent short-term cell cultures have indicated similar genetic changes. Common
sequences of SCC karyotype evolution appear to require initial loss of chromosome
segments, followed by tetraploidization, and ultimately loss of previously uninvolved
chromosomes from the tetraploid population [4; 5; 6]. A universal class of cytogenetic
change is deletions, also observed as loss of heterozygosity (LOH). LOH /microsatellite
instability at 3p, 9p, 17p, and 18q chromosomal locations[7] are among the most common
[5; 6; 8; 9; 10; 11]. Patients with benign premalignant lesions that harbored HNSCC specific
genetic loses and LOH had a significantly increased risk of developing cancer[12].

Mutations in the tumor suppressor p53 gene occur in 45 to 70% of HNSCC and strategies
targeting the p53 gene and protein may halt or reverse the process of tumorigenesis [13].
Another important gene product in HNSCC pathogenesis is the p16INK4a (p16) protein made
by the p16INK4a (CDKN2A) gene located at 9p21. p16 is a cyclin-dependent kinase inhibitor
that inhibits phosphorylation of the retinoblastoma protein (pRb) and blocks cell cycle
progression at the G1 to S check point[14]. Loss of p16 expression by deletion, mutation, or
hypermethylation is common in HNSCC[15; 16] and is associated with worse prognosis in
laryngeal squamous cell carcinomas[17].

1.3 Epigenomics and Cancer
The study of human disease has focused primarily on genetic mechanisms. Dispelling the
belief that the only way to treat such conditions is by fixing or replacing damaged genes,
scientists are instead focusing on the field of epigenetics--the study of changes in gene
silencing that occur without changing the DNA sequence. Many types of epigenetic
processes have been identified--they include methylation, acetylation, phosphorylation,
ubiquitylation, and sumolyation. Epigenetic processes are natural and essential to many
organism functions, but if they occur improperly, there can be major adverse health and
behavioral effects.

Perhaps the best known epigenetic process, in part because it has been easiest to study with
existing technology, is DNA methylation. This is the addition or removal of a methyl group
(CH3). Hypermethylation is a well described DNA modification that has been implicated in
normal mammalian development, [18; 19] imprinting [20] and X chromosome inactivation
[21]. However, recent studies have identified hypermethylation as a probable cause in the
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development of various cancers [22; 23; 24]. Aberrant methylation by DNA-
methyltransferases in the CpG islands of a gene's promoter region can lead to transcriptional
repression akin to other abnormalities such as a point mutation or deletion [25]. Gene
transcriptional inactivationvia hypermethylation at the CpG islands within the promoter
regions is an important mechanism [26]. This anomalous hypermethylation has been noted
in a variety of tumor-suppressor genes (TSGs), whose inactivation can lead many cells down
the tumorigenesis continuum [26; 27; 28]. In many cancers, aberrant DNA methylation of so
called “CpG islands”, CpG-rich sequences frequently associated with promoters or first
exons, is associated with the inappropriate transcriptional silencing of critical genes [29; 30;
31]. These DNA methylation events represent an important tumor-specific marker occurring
early in tumor progression and one that can be easily detected by PCR based methods in a
manner that is minimally invasive to the patient.

1.4 Significance of DNA Methylation
When compared to the genomic , which is identical in every cell and tissue in the human
body, the epigenome is highly variable over the life course, from tissue to tissue and from
environment to environment [32]. Also, unlike genes that are inactivated by nucleotide
sequence variation, genes silenced by epigenetic mechanisms are still intact and, thus, retain
the potential to be reactivated by environmental or medical intervention[32]. There are
several current human therapeutic intervention trials to reverse deleterious epigenetic
changes. Some examples include epigenetic therapeutic trials to treat T-cell lymphoma
based on reactivation of tumor suppressor genes[33] and similar trials to prevent colorectal
cancer by inhibiting the enzyme responsible for DNA methylation[34]. Such therapies have
shown promise in halting tumor growth by reactivation of the tumor suppressor gene or by
blocking progression of precancerous epigenetic lesions. Additionally, demethylating drugs
in combination with therapeutic HPV DNA vaccines have been found to control more
effectively a variety of HPV-associated malignancies[35]. This is due to the fact that DNA
methylation is capable of decreasing expression of the encoded antigen of the DNA
vaccines[35]. In fact, preliminary studies already suggest that there is promise of improving
preventative HPV DNA vaccine therapy by the addition of the demethylating drug 5-aza-2
deoxycytidine[35].

1.5 DNA Methylation in HNSCC
Promotor hypermethylation of genes in HNSCC have been reported for p16, p14, DAP-K,
RASSF1A [36; 37; 38; 39; 40; 41; 42], RARβ2 [43; 44; 45], MGMT, a DNA repair gene that
functions to remove mutagenic (O6-guanine) adducts from DNA [46], and E-cadherin, a
Ca2+-dependent cell adhesion molecule that functions in cell-cell adhesion, cell polarity, and
morphogenesis [47].

Historically, the molecular pathogenesis of cancer has been teased out one gene at a time.
The majority of published epigenetic data in HNSCC comes from methylation specific PCR
(MSP) following bisulfite treatment, first described by Herman JG et. al. [48] (gel
electrophoresis separation of products). The success of MSP has been attributed to its
increased sensitivity, however, it generally relies on a pre-selected number of genes,
assessed one gene at a time, as opposed to high-throughput microarray based methylation
analysis [49] and multi- candidate gene applications [50]. In HNSCC, recent comprehensive
high-throughput methods from our group and others have underscored the contribution of
both genetic [15; 51; 52] and epigenetic events [42; 53; 54; 55; 56; 57], often working
together [50], in the development and progression of HNSCC.

Worsham et al. Page 3

Cancer Lett. Author manuscript; available in PMC 2015 January 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



2. Delineating an Epigenetic Continuum in HNSCC
Gene silencing via hypermethylation is still a relatively new idea in the development of
HNSCC. To assess the contribution of epigenetics to the development of neoplasia, its
transformation, progression, and recurrence in HNSCC, we examined promoter
hypermethylation of tumor suppressor genes along a progression continuum from benign
papillomas to malignancy in HNSCC using a multi-candidate gene (Table 1) assay, the
Methylation Specific Multiplex Ligation-dependent Probe Amplification (MS-MLPA) assay
(MS-MLPA, Figure 1) [50; 58]. The candidate gene panel comprises 22 tumor suppressor
genes (Table 1), many of which are involved in head and neck cancer

2.1 Benign Papillomas
Papillomas are benign neoplasms of epithelium on a connective tissue core [59]. They can
involve the nose and sinuses (sinonasal papillomas - SP) as well as the respiratory tract
(respiratory papillomatosis - RP) to include the larynx, trachea, and bronchi. Both SP and
RP have a tendency to recur. Recurrent respiratory (laryngeal) papillomatosis (RRP) is an
extremely rare condition [60]. Inverted SP are associated with invasive squamous cell
carcinoma (SCC) [61] and a small percentage of RRP cases also progress to malignancy
[62].

Human papilloma virus (HPV) is frequently associated with sinonasal [63; 64] and laryngeal
[65; 66; 67] papillomas. Most HPV-positive cases of SP are of the inverted type [68].
Benign papillomas are preferentially associated with the low-risk HPV types 6 and 11,
whereas their malignant counterparts are exclusively positive for HPV-16 DNA [69].
Studies on HPV typing in benign laryngeal papillomas have demonstrated an association of
HPV-11 with a more aggressive course of the disease [70; 71]. HPV infection in inverted
papillomas [72] and in particular HPV-11 infection in RRP [73] may be an early event in a
multistep process of malignant transformation.

2.1.1 Sinonasal Papillomas—Sinonasal papillomas have been categorized histologically
as inverted, fungiform (exophytic), and cylindrical cell papillomas [74]. Inverted papillomas
are the most commonly occurring sinonasal papillomas followed by exophytic [61]. Inverted
papillomas are benign, rare sinonasal lesions well known for their local recurrence,
invasiveness and predisposition for malignant transformation. Recurrence rates vary widely,
ranging from 6% to 33%, despite management by different surgical treatment options [75].
Malignant transformation occurs in 7 to 10% of cases [61; 76]. Morphology is not useful in
determining if a lesion will recur or acquire malignant changes. A general belief is that once
excised, and in the absence of malignancy in the excised specimen, a recurrence is unlikely
to convert to malignancy [77].

Benign inverted papillomas were reported as monoclonal but lacking common genetic
alterations associated with squamous head and neck cancer [77]. To assess epigenetic
alterations of promoter hypermethylation, not previously reported in sinonasal papillomas,
we evaluated 7 patients with primary and recurrent sinonasal papillomas for aberrant
promoter methylation status using MS-MLPA and confirmed aberrant methylation using
conventional MSP[78]. We found all 7 cases had at least one epigenetic event of aberrant
DNA hypermethylation with 10 of the 22 methylation-prone genes being methylated (Table
2). Commonly methylated genes included CDKN2B, CDKN2A, TP73, and ESR1. Recurrent
biopsies from 2 inverted papilloma cases had common epigenetic events: aberrant
methylation of CDKN2B and DAPK1 in case 1, and CDKN2B in case 2, underscoring
monoclonality for these lesions [78] (Table 2).
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2.1.2 Laryngeal Papillomas—Respiratory papillomatosis (RP) is a benign disease
characterized by unregulated growth of wartlike neoplasms of the larynx, trachea, and
bronchi with propensity for recurrences (RRP). In the larynx, the stratified squamous variety
is the commonest form of papilloma [59]. The histopathology is similar at all ages.
Laryngeal papillomas usually run a benign but recurrent course. In the spontaneous
transformation of RP or RRP to squamous cell carcinoma (SCC), a progression continuum
to malignancy may not be histologically and clinically apparent, making these lesions
difficult to diagnose early in the course of the transformation of the disease. Only a small
percentage of RRP cases actually progress to malignancy [62; 79]. Transformation of
laryngeal papillomas to malignant neoplasms range from 1.25% to 42.9% [80; 81].

Recurrent respiratory (laryngeal) papillomas (RRP) present primarily as tiny warts on the
vocal cords and can be potentially life-threatening due to airway obstruction [60]. Human
papillomavirus types 6 and 11 account for 80-90% of RRP [82].

The contribution of promoter hypermethylation to the pathogenesis of RP, including
recurrences (RRP)[83] and progression to squamous cell carcinoma (SSC) was examined in
a retrospective cohort of 25 laryngeal papilloma cases included 21 RRP, two of which
progressed to SCC[84].

Promoter hypermethylation by MS-MLPA or by MSP was recorded in 22 of 25 cases.
Twenty of 22 tumor suppressor genes in the multi-gene panel had altered DNA methylation
in at least one RP biopsy. Aberrant methylation of TIMP3 and CDKN2B genes was most
frequent, occurring in 13 of 22 and 11 of 22 cases, respectively, followed by CDKN2A, APC
and VHL genes in 9 of 22 cases, and TP73, GSTP1, HIC1, MLH1 and DAPK1 genes in 5 of
22 cases.

Of the 21 RRP cases, multiple biopsies were examined for aberrant methylation in 15 cases.
Identical abnormally methylated genes were found in recurrent biopsies of 5 of 15 RRP
cases and an aberrantly methylated CDKN2B gene linked all 5 cases (cases 4, 7, 11, 12, 13)
[83] (Table 3).

Progression to SCC occurred in RRP cases 1 and 5 (Table 4). In RRP Case 1, the
papillomas in biopsies 1 through 3 were located on both the left and right vocal folds.
Subsequent dysplastic papillomas were located on both left and right true as well as false
vocal cords (biopsies 4-6, Table 3). In RRP Case 1, aberrant methylation of BRCA2 and
APC, identified in the primary biopsy, was also present in the recurrent severe dysplasia,
CIS, and recurrent SCC (Table 3). MSP confirmed MS-MLPA methylation of BRCA2
(biopsy 1), APC (biopsy 4), GSTP1 (biopsy 6), and CDKN2A (biopsies 5 and 6). MSP and
MS-MLPA were concordant for lack of methylation APC, GSTP1, and CDKN2A, and
CDKN2B (Table 4).

In RRP Case 5, aberrant methylation of BRAC2, APC and CDKN2A in the reference
papilloma biopsy and CDKN2B in biopsy 2 were also identified in the subsequent
progression lesions (Table 4). MSP confirmed MS-MLPA methylation of APC (biopsies 1
and 4) and CDKN2A (biopsies 1-3). MSP also confirmed absence of methylation for
CDKN2B (biopsies 1 and 4) and GSTP1 (biopsies 2-4) detected by MS-MLPA.

Of the 25 cases, 22 were positive for HPV-6, 2 for HPV-11 and 1 for HPV-16 and 33[84]. In
RP, human papillomavirus types 6 and 11 account for 80-90% of RP [82]. In our cohort,
types 6 and 11 account for 96% of the cases. Of the 25 cases, 22 were positive for HPV-6, 2
for HPV-11 and 1 for HPV-16 and 33[84]. HPV-11 appears to confer a more aggressive
neoplastic phenotype than HPV-6 and is associated more often with atypia and frequent
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recurrence [85]. Of the two RRP cases in this cohort positive for HPV-11, only Case 5
progressed to SCC. Though the majority of RP harbor low risk HPV 6 and 11, high-risk
HPV types 16 and 18 have been reported and multiple HPV types were detected in 11.8% of
RP [86]. RRP Case 1 with multiple HPV types (HPV-16 and 33 positive) progressed to
SCC. High-risk HPV DNA alone may be sufficient to initiate tumorigenesis in the absence
of traditional risk factors such as tobacco or alcohol use [86]. Oncogenic HPV, particularly
HPV-16, has been established as a causative agent for 25% of head and neck squamous cell
carcinoma (HNSCC) [87] and the development of laryngeal carcinoma is associated with
HPV infection [87; 88].

2.2 HNSCC Tumors
2.2.1 HNSCC Cell lines—Recently, in paired HNSCC primary A) and recurrent or
metastatic (B) UMSCC-11A/11B, UMSCC-17A/17B, and UMSCC-81A/81B cell lines,
using MS-MLPA, we identified nine genes, TIMP3, APC, KLK10, TP73, CDH13, IGSF4,
FHIT, ESR1, and DAPK1 that were aberrantly methylated in paired HNSCC primary A) and
recurrent or metastatic (B) UMSCC-11A/11B, UMSCC-17A/17B, and UMSCC-81A/81B
cell lines[50].The most frequently hypermethylated genes were APC and IGSF4 observed in
3/6 cell lines, and TP73 and DAPK1 observed in 2/6. For KLK10 and IGSF4, TIMP3 and
FHIT, and TP73, in recurrent/metastatic cell lines, promoter hypermethylation was a disease
progression event, indicating complete abrogation of tumor suppressor function for KLK10,
IGSF4, and TIMP3, and gene silencing of one of two copies of TP73. Hypermethylation of
IGSF4, TP73, CDH13, ESR1, DAPK1, and APC were primary events in UMSCC-17A.
Gene silencing through promoter hypermethylation was observed in 5/6 cell lines and
contributed to primary and progressive events in HNSCC [50]. In addition to genetic
alterations of gains and losses, epigenetic events appear to further undermine a destabilized
genomic repertoire in HNSCC.

2.2.2 Primary HNSCC Tissue—Subsequently [43] , we evaluated aberrant methylation
status in 28 primary HNSCC using MS-MLPA and confirmed aberrant promoter
methylation using conventional MSP and real time PCR. MS-MLPA promoter methylation
profiling identified RARβ, APC, and CHFR as frequent epigenetic events. Promoter
hypermethylation of RARβ and APC in both early and late stage tumors and of CHFR in
only late stage tumors appear to suggest an epigenetic progression continuum, with CHFR
as a late event and a putative diagnostic biomarker for late stage disease[43]. In another
study of 79 primary laryngeal squamous cell carcinoma, aberrant methylation of ESR1 and
HIC1 signified independent markers of poorer outcome[89].

3. A hypothetical epigenetic progression model
Based on the results of the described studies in benign papillomas, recurrent laryngeal
papillomas with subsequent progression to SCC, and DNA methylation events in primary
HNSCC and cell lines, a postulated hypothetical model is described in Figure 1. In benign
and recurrent paillomas, frequently methylated genes included CDKN2B, CDKN2A, APC,
VHL, TP73, GSTP1, HIC1, MLH1and DAPK1[78; 83]. Epigenetic events of progression
from recurrent benign to squamous carcinoma were noted for promoter hypermethylation of
CDKN2B, CDKN2A, APC, and BRCA2 tumor suppressor genes[83].

In HNSCC paired cell lines, hypermethylation of IGSF4, TP73, CDH13, ESR1, DAPK1, and
APC were primary events. For KLK10 and IGSF4, TIMP3 and FHIT, and TP73, in
recurrent/metastatic cell lines, promoter hypermethylation was a disease progression event
(Figure 1). DNA hypermethylation events in primary HNSCC tissue include RARβ, APC,
CHFR, CDKN2A, CDKN2B, BRCA2, HIC1, and ESR1[43; 50; 89].
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3.1 Significance of methylation events in the tumorigenesis progression continuum from
benign and recurrent papillomas to squamous cell carcinoma

Genetic alterations in CDKN2A and CDKN2B genes, which map to 9p21, have been linked
to malignant progression in HNSCC [15; 90; 91]. Inactivation of the CDKN2B (p15) and
CDKN2A (p14 and p16) genes at the genomic and epigenetic level is a frequent event in
human oral SCCs and in HNSCC [50; 52; 92]. The presence of aberrant methylation of
CDKN2A and pCDKN2B in precancerous oral tissues [92] implicates methylation of these
genes as early events in the pathogenesis of oral lesions. APC (adenomatosis polyposis coli)
is a tumor suppressor gene originally implicated in colon cancer. Genetic and epigenetic
alterations in this gene have since been recognized in other malignancies including OSCC,
gastric cancers and esophageal adenocarcinomas. Uesugi et al. [93] previously reported
mutations and/or deletions of APC in primary OSCC and suggested that loss of APC
function contributes to carcinogenesis in the oral region. APC inactivation as a result of
promoter hypermethylation occurred in 25% of OSCC cell [93]. APC (adenomatosis
polyposis coli) is a tumor suppressor gene originally implicated in colon cancer. Genetic and
epigenetic alterations in this gene have since been recognized in other malignancies
including OSCC, gastric cancers and esophageal adenocarcinomas. Aberrant methylation of
CDKN2A, CDKN2B, APC, and BRCA2 in initial benign, recurrent and subsequent
transformation biopsies[83] indicate these as early events and provides evidence of a
monoclonal progression continuum to SCC (Figure 1).

Alterations of RARβ, APC, and CHFR via DNA hypermethylation identified in primary
HNSCC, have several implications. Decreased expression of RARβ has been associated with
increased keratinizing squamous differentiation in HNSCC cells and pharmacological doses
of retinoid ATRA (9-cis-RA) induced RARβ in HNSCC cells, resulting in restoration of a
more normal differentiation [94]. More importantly, RARβ2 silencing by promoter
hypermethylation was shown to be an early event in head and neck carcinogenesis and 5-
Aza-CdR restored RARβ2 inducibility by ATRA in most cell lines [95]. We reported CHFR
as a solely late stage 4 event, occurring in 7/28 HNSCC [43], suggesting a role for CHFR in
tumor progression with potential utility as a biomarker of late stage disease. Treatment with
the methyltransferase inhibitor 5-aza-2'-deoxycytidine induced re-expression of CHFR [96].
Additionally, because cancer cells that lack CHFR expression have shown to be more
susceptible to the microtubule inhibitor taxol [96], silencing of CHFR by methylation can
serve as a marker for predicting sensitivity to particular chemotherapeutic agents. APC, like
RARβ, was hypermethylated in early and late stage tumors, suggesting DNA methylation of
APC and RARβ as earlier epigenetic events, when compared to CHFR.

4. Concluding remarks and perspectives
Epigenetic events of promoter hypermethylation are emerging as one of the most promising
molecular strategies for cancer detection and represent an important tumor-specific marker
occurring early in tumor progression. In benign papillomas, the high frequency of DNA
hypermethylation events supports the utilization of gene silencing mechanisms as one of the
driving forces behind their growth, reiterating DNA hypermethylation events as hallmarks
of sinonasal and laryngeal papilloma pathogenesis, some of which are initiating clonal
alterations in the recurrence continuum in some sinonasal[78] and RRP cases [83]. Aberrant
methylation of BRCA2, APC, CDKN2A (p16) and CDKN2B, detected in the initial and all
subsequent transformation biopsies in some RRP, appears to be an early event in the
pathogenesis of laryngeal papillomatosis tracing a monoclonal progression continuum to
SCC.

Epigenetic alterations identified in precancerous lesions with biomarker potential would
have high clinical significance in risk assessment and early detection, and may also serve as
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molecular targets for chemopreventive interventions. Because promoter hypermethylation is
potentially reversible, the molecules that regulate methylation status of DNA are considered
promising targets for new cancer therapies.
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Figure 1. A postulated hypothetical epigenetic progression model
DNA hypermethylation of CDKN2B, CDKN2A, APC, BRCA2, DAPK1, HIC1, TP73, and
ESR1 suggest early events in the tumorigenesis continuum from benign to primary SCC.
CDH13, CHFR, IGSF4, and RARB (bolded) appear to be primary tumor-specific events and
KLK10 and FHIT progression to metastasis-specific events.
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