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Abstract
High-throughput genotyping and sequencing techniques are rapidly and inexpensively providing
large amounts of human genetic variation data. Single Nucleotide Polymorphisms (SNPs) are an
important source of human genome variability and have been implicated in several human
diseases, including cancer. Amino acid mutations resulting from non-synonymous SNPs in coding
regions may generate protein functional changes that affect cell proliferation. In this study, we
developed a machine learning approach to predict cancer-causing missense variants. We present a
Support Vector Machine (SVM) classifier trained on a set of 3163 cancer-causing variants and an
equal number of neutral polymorphisms. The method achieve 93% overall accuracy, a correlation
coefficient of 0.86, and area under ROC curve of 0.98. When compared with other previously
developed algorithms such as SIFT and CHASM our method results in higher prediction accuracy
and correlation coefficient in identifying cancer-causing variants.

Keywords
Single Nucleotide Polymorphisms; Cancer-causing variants; Gene Ontology; Machine-learning;
Support Vector Machine

1. Introduction
Single Nucleotide Polymorphisms (SNPs) are a specific class of genomic variation
responsible for about 90% of human variability [1]. In particular the SNPs occurring in
coding regions may have higher impact affecting the function of the transcribed proteins [2].
More efficient sequencing and genotyping techniques are detecting a large amount of human
genetic variation data [3]. Different international consortiums are collecting information
about variations in human genome. The HapMap consortium [4] is characterizing common
variation and linkage disequilibrium patterns that can be related to common diseases [5,6].
The Human Variation Project [5] has been funded to collect, curate, and make accessible
information on genetic variations affecting human health. International institutions are
collaborating in the 1000 Genomes Project (http://www.1000genomes.org/) to produce the
most complete catalog of genetic variations in human population [7]. In 2005, the Wellcome
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Trust Case Control Consortium (WTCCC) has been established to understand the
relationship between human genome sequence variation and disease. Using high-throughput
technologies, WTCCC collaborators have genotyped about 14,000 patients for seven
common diseases performing one of the largest Genome-Wide Association Study (GWAS)
[8]. This effort results in an increasing number of SNPs data stored in databases available
online. Currently, the dbSNP database at the NCBI [9] collects about 20 million of validated
human SNPs. The manually curated SwissVar database [10] reports the possible pathologic
effect of about 61,000 missense SNPs and the public version of the HGMD database [11]
includes more than 74,000 mutations causing or associated with human inherited disease,
plus disease-associated/functional polymorphisms. It is evident that there is a need of
computational methods to analyze and identify functionally important variants and describe
their molecular effects. During the last decade several bioinformatics methods has been
developed to predict the effect of a particular class of SNPs resulting in Single Amino acids
Polymorphisms (SAPs) [12–14]. In general, computational methods for the prediction of the
impact of SAPs use empirical rules [15,16], Hidden Markov Models [17], Neural
Networks[18,19], Decision Tree [20,21], Random Forest [22–26] and Support Vector
Machines [27–31], algorithms relying on amino acid sequence, structure and evolutionary
information. The amino acid sequence provides information about the physico-chemical
properties of the mutated residues such as hydrophobicity, charge, polarity, bulkiness etc.
Structural information describes the structural environment of the mutation and has been
successfully used to predict the protein stability change upon mutation [32,33]. The most
important source of information for the characterization of the effect of SAPs is the
evolutionary information. The main hypothesis presumes that important amino acids will be
conserved in the protein family, and so changes at well-conserved positions tend to be
predicted as deleterious. Recently, a second generation of algorithms that includes also
knowledge-based information [24,25,28] has shown better performances with respect to
older predictors. The first developed methods SIFT [15] and PolyPhen [16] use different
representation of evolutionary information. For each mutated site, SIFT scores the
normalized probabilities for all possible substitutions using a multiple sequence alignment
between homolog proteins and PolyPhen evaluates the impact of SAPs calculating different
sequence-based features and a Position Specific Independent Counts (PSIC) matrix from a
multiple sequence alignment. Protein family HMM models implemented in PANTHER [34]
have been used to predict deleterious mutations and recently, protein three-dimensional
structure features have been shown to improve the performance of SAPs prediction
algorithms [22,27,31]. Machine learning-based methods such as PhD-SNP [30] and SNAP
[18] have shown better results with respect to traditional methods. The new class of
predictors relying on knowledge-based information results in overall accuracy higher than
80%. SNPs&GO [28] includes a new function annotation score calculated using GO terms
and MutPred [25] evaluates the impact of a given variant considering the output of several
machine learning approaches. A selected list of web available tools for the detection of
deleterious missense variants is reported in Supplementary Table 1.

Although available methods are producing valuable results in the detection of disease-
related mutations they do not provide any information about the associated pathology. Only
MutPred [25] is the first attempt of algorithm able to provide information about the disease
mechanism.

To address this problem, we propose a new class of disease-specific predictors trained on a
subset of SAPs related to specific disease classes. One of the highest causes of mortality and
morbidity in the developed countries is cancer. Although several advances have been made
in cancer therapy [35,36], the disease mechanism is still largely unclear. Unlike Mendelian
disease where the pathology is principally related to one gene, cancer is a complex disease
that often involves several genes. Although it is difficult to dissect the contribution of each
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gene, individual variants could be indicators of disease risk [37]. To address this problem,
two machine learning-based methods have been proposed to predict cancer-causing
mutation [23,24]. CanPredict [38] combines SIFT output, a PFAM [39] and a functional-
based scores [38] to predict cancer-causing mutations and CHASM [23] takes in input
several sequence and profile features to discriminate between passenger and driver variants.
These methods are addressing two different aspects of the problem: CanPredict
discriminates deleterious mutations occurring in cancer genes from neutral variants from
dbSNP database and CHASM detects driver SAPs in cancer-related proteins. To reduce
possible over-estimation of the performances [40], we tested our method considering all the
driver cancer variants of the same protein either in training or testing set. Our disease-
specific machine learning-based predictor, which has been extensively tested on a large set
of manually annotated from different sources, results in good level of accuracy when
compared with previously implemented methods.

2. Material and methods
2.1. Terminology

In this work we use as synonymous the words single amino acid polymorphism (SAP),
missense variant and SNP although the term variant is more general and includes also
missense SNP with allele frequency lower than 0.01. We distinguished three classes of
variants: cancer-causing, neutral polymorphisms and other disease-related SAPs. We refer to
cancer-causing SAPs as the driver variants identified to play a functional role in oncogenic
cell transformation and used to test and train CHASM algorithm [23]. The missense SNPs
without any evidences of association to disease in SwissVar and recently selected as
negative cases [41] are indicated as neutral variants or polymorphisms. We also used
Synthetic passengers SAPs generated by CHASM as neutral polymorphisms. A set of
variants associated to pathologies not related to the MeSH term “neoplasms” are referred as
other disease-related variants. In the binary classification problem addressed in this paper,
all the variants are classified in Disease and Neutral. The driver cancer variants belong to the
class Disease (D). Passenger, neutral and other disease-related variants, that are not
associated with the insurgence of cancer, are classified as Neutral (N).

2.2. Datasets
The selection of a representative set of variants for the training and testing of SAPs
prediction methods is a key issue. The performances of the algorithms are strongly
dependent on the selected set of neutral and disease-related polymorphisms [42]. For this
study, we collected SAPs data from different sources. Cancer-causing variants are selected
from breast, colorectal, pancreatic tumor resequencing studies [43–45] and COSMIC
database [46] that are provided with CHASM package. Neutral variants are from Swiss-Prot
database [47] or generated by CHASM. Other disease-related variants are non “neoplasms”
disease-related variants annotated in SwissVar database [10].

In particular the neutral polymorphisms and other disease-related variants from SwissVar
have been selected according to a recently described procedure [41]. We built three main
datasets to train and test the ability of our method to detect cancer-causing variants. The
CNO dataset (Cancer and Neutral missense variants only) with a total number of 6326
variants is composed by 3163 cancer-causing variants and an equal number of neutral
polymorphisms. The 3163 cancer-causing mutations from 74 proteins in CNO dataset have
been selected from the set of driver cancer mutation used to train CHASM algorithm [23].
The 3163 neutral polymorphisms included in the CNO dataset have been randomly selected
from the subset of neutral SAPs in SwissVar database with allele frequency higher than 0.01
and chromosome sample count higher than 49 from the dbSNP database [9] build 131. The
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performance of our method has been evaluated on the subsets of the CNO dataset with
primary histology annotated in the COSMIC database as Carcinoma, Hematopoietic
Neoplasm, Lymphoid Neoplasm, Glioma and Malignant Melanoma. The Carcinoma,
Hematopoietic, Lymphoid, Glioma and Melanoma subsets are composed respectively by
1899, 461, 441, 384 and 257 driver cancer variants and an equal number of neutral
polymorphisms. To test the performance of our predictor in the discrimination between
cancer and other disease-causing variants, we build the CND dataset (Cancer, Neutral and
other Disease-related missense variants) substituting 50% of neutral polymorphisms with
same number of randomly selected from disease-related variants in SwissVar not associated
to the MeSH term “neoplasms”.

We have also tested our method in the discrimination between driver and passenger cancer
variants building the Synthetic dataset composed by the 3163 driver mutations included in
the previous two datasets and an equal number of passenger variants generated by CHASM
algorithm. The composition of the three datasets and subsets used in this work is
summarized in Table 1.

2.3. Implemented SVM-based predictors
The proposed task is to predict whether a given missense variant is a neutral or involved in
the insurgence of cancer. The task is treated as a binary classification problem for the
protein variants. The Support Vector Machine (SVM) classifies SAPs in cancer-causing
(desired output set to 0) and neutral polymorphism (desired output set to 1). The SVM
output is a number between 0 and 1 and the decision threshold has been set to 0.5. The input
features of our algorithm (SPF-Cancer) include: the amino acid mutation, its local sequence
environment, sequence-profile derived features, the output of PANTHER algorithm [34] and
a cancer-specific functional-based log-odd score calculated considering the GO slim
ontology. The final input vector consists of 51 values:

• 40 components encoding for the mutation and the local sequence environment
(Seq).

• 5 inputs features derived from sequence profile (Prof)

• 4 elements vector from the PANTHER output

• 2 elements encoding for the number of GO slim terms associated to the protein
sequence and the GO slim log-odd score (LGO).

Two other predictors have been developed considering subset of features: mutation site
specific method (SeqProf) with input features composed by the 45 elements vector
corresponding to Seq and Prof data and protein specific method (F-Cancer) with 2 elements
vector features encoding for the cancer-specific functional score (LGO). A third predictor
(SPF-All) has been developed calculating a generic functional log-odd score on the whole
set of SwissVar SAPs including all type of diseases.

2.4. Encoding sequence information
The input vector portion relative to sequence information consists of 40 values: the first 20
(the 20 residue types) explicitly define the mutation by setting to –1 the element
corresponding to the wild type residue and to 1 the newly introduced residue (all the
remaining elements are kept equal to 0). The last 20 input values encode for the mutation
sequence environment (again the 20 elements represent the 20 residue types). Each input is
provided as the number of the encoded residue type, to be found inside a window centered at
the residue that undergoes mutation and that symmetrically spans the sequence to the left
(N-terminus) and to the right (C-terminus) with a length of 19 residues [30].
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2.5. Encoding profile information
We derive for each mutation: the frequency of the wild type, the frequency of the mutated
residue, the number of totally and locally aligned sequences and a Conservation Index (CI)
[48] for the position at hand: the more a residue is functionally important the more is
conserved over evolution. The Conservation Index is calculated as:

(1)

where fa(i) is the relative frequency of residue a at mutated position i and fa is the overall
frequency of the same residue in all the alignmed positions. The sequence profile is
computed from the output of the BLAST program [49], running on the uniref90 database
(release 13.3 April 2008) (E-value threshold = 10−9, number of runs = 1).

2.6. PANTHER features
The 4 elements vector from PANTHER [32] output is composed by the probability of
deleterious mutation, the frequencies of the wild-type and new residues in the PANTHER
family alignment and the number of independent counts. In case that PANTHER does not
return any output the probability of deleterious mutation is set to 0.5 and the remaining
value has been set to 0.

2.7. Computing the LGO score
The Gene Ontology log-odds score (LGO) is computed to derive information related to the
correlation among a given SAPs effect (cancer-causing and neutral) and the protein function.
The annotation data are relative to the Gene Ontology [50] Database version 1.37 and are
retrieved at the web resource hosted at the European Bioinformatics Institute (EBI). The
version of gene ontology classification we used (Dec 2009) contains 30,304 Gene Ontology
(GO) terms. To reduce the number of terms and have more general functional terms we
consider the GO slim annotation. The GO slim is a simplified version of the GO ontology
containing a subset of the terms in the whole GO. They give a broad overview of the
ontology content without the detail of the specific terms. In this work we used the generic
GO slim ontology (release Sep. 2009) that consists of 132 different GO terms. The generic
GO slim file has been downloaded from the Gene Ontology web site
(http://www.geneontology.org/GO_slims/goslim_generic.obo). To calculate the LGO, first
we derived the GO terms (from all the three branches: molecular function, biological
process and cellular components, when available) for all our proteins in the dataset (CNO).
For each annotated term the appropriate ontology tree was used to retrieve all the parent
terms with the GO-TermFinder-0.8 tool (http://search.cpan.org/dist/GO-TermFinder/) [51]
and counting a GO term only once. When all the GO terms for each protein have been
collected, we mapped them on the generic GO slim terms using the map2slim.pl script
downloaded from the Gene Ontology web site. The LGO is finally calculated as the log-
odds score associated to each protein:

(2)

where fGO is the frequency of occurrence of a given GO slim term for the cancer-causing
(D) and neutral mutations (N) adding one pseudocount to each class. The LGO scores are
evaluated considering fGO values computed over the training sets without including in the
GO slim term counts of the corresponding test set. This strategy avoids overfitting in the
cross-validation procedure.
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2.8. Support Vector Machine software
The LIBSVM package (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) has been used for the
SVM implementation [52]. The selected SVM kernel is a Radial Basis Function (RBF)
kernel K(xi,xj) = exp(−γ∥xi − xj∥2) and γ and C parameters are optimized performing a grid
like search. After input rescaling the values of the best parameters are C = 8 and γ =
0.03125.

2.9. Scoring the performance
The results obtained with our SVM methods are evaluated using a cross-validation
procedure on the CNO dataset. The reported data for the classification task performed by the
SVM methods are obtained adopting a 20-fold cross-validation procedure in such a way that
the ratio of the disease-related to the neutral polymorphism mutations is similar to the
original distribution of the whole set. Furthermore, all the proteins in the CNO datasets are
clustered according to their sequence similarity with the blastclust program in the BLAST
suite [49]by adopting the default value of length coverage equal to 0.9 and the percentage
similarity threshold equal to 30%. We kept the mutations detected on the same protein
cluster s in the same training set to prevent an overestimation of the results. In the
comparison with CHASM and SIFT, the methods are tested using a similar strategy used in
the CHASM paper [23]. The whole Synthetic dataset is divided in two similar subsets
composed same number of drivers and passenger cancer variants. The accuracy measures
are calculated using a 2-fold cross validation procedure. In this paper, the efficiency of the
predictors is scored using the following statistical indexes.

The overall accuracy is:

(3)

where CP is the total number of correctly predicted mutations and T is the total number of
mutations.

The Matthews correlation coefficient C is defined as:

(4)

where D is the normalization factor:

(5)

for each class s (D and N, stand for cancer-causing and neutral polymorphism, respectively);
p(s) and n(s) are the total number of correct predictions and correctly rejected assignments,
respectively, and u(s) and o(s) are the numbers of false negative and false positive for the
class s.

The coverage S (sensitivity) for each discriminated class s is evaluated as:

(6)

where p(s) and u(s) are the same as in Eq. (5).

The probability of correct predictions P (or positive predictive values) is computed as:

(7)

where p(s) and o(s) are the same as in Eq. (5) (ranging from 0 to 1).
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Finally, it is very important to assign a reliability score to each prediction. For each output
O(D), this is obtained by computing:

(8)

Other standard scoring measures, such as the area under the ROC curve (AUC) and the true
positive rate (TPR = Q(s)) at 10% of False Positive Rate (FPR = 1-P(s)) are also computed
[53].

3. Results
3.1. Method accuracy

We evaluated our method for predicting cancer-causing missense variants (SPF-Cancer)
using a 20-fold cross-validation procedure on the CNO dataset. The SPF-Cancer predictor
reaches 93% of overall accuracy, 0.86 correlation coefficient and area under the ROC curve
0.98 (see Table 2). When 10% of false positive are accepted the true positive rate is 0.94
(see Fig. 1 panel A). If predictions with reliability index (RI) higher than 4 are selected, the
method results in ~96% accuracy and 0.92 correlation coefficient on 91% of the datasets
(see Fig. 1 panel D). We also evaluated the accuracy of our algorithm on the subsets of
variants associated to different histology description in COSMIC database. In comparison
with the results on CNO dataset, our predictor shows similar performances on the
Carcinoma, Lymphoid and Glioma subsets. Contrarily, SPF-Cancer results in 2% higher
accuracy and 0.04 higher correlation coefficient on the Melanoma subset and 3% lower
accuracy and 0.06 lower correlation coefficient on the Hematopoietic subset with respect to
CNO dataset (see Table 2).

The ability of SPF-Cancer in the classification of cancer-causing missense variants, has been
tested using the CND dataset that includes 25% of variants from other diseases. In Table 2,
we show that the accuracy and the AUC of SPF-Cancer on CND dataset are only 3% lower
with respect to those on the CND dataset.

3.2. Using of filters to improve the performance
To score the improvement of accuracy resulting from the combination of protein sequence,
evolutionary and functional information, the SPF-Cancer method has been compared with
simpler SVM-based approaches including either protein sequence and profile information
(SeqProf) or only functional information (F-Cancer). On CNO dataset SeqProf and F-Cancer
methods result in 64% and 92% overall accuracies and 0.28 and 0.85 correlation coefficients
respectively (see Table 3). Thus, SFP-Cancer that includes all the input features results in
1% more accurate predictions and 0.02 higher correlation coefficient with respect to F-
Cancer. More interestingly, the SeqProf and F-Cancer results can be used as a filter to select
high reliable predictions. In ~62% of the variants in CNO dataset, for which the predictions
of SeqProf and F-Cancer methods agree (Consensus), the overall accuracy of SPF-Cancer
reaches 96% of accuracy, 0.92 correlation coefficient and 0.99 AUC (see Fig. 1 panel E). On
the remaining subset of variants (~38%) where the predictors disagree (notConsensus), SPF-
Cancer results only in 88% overall accuracy and 0.76 correlation coefficient (see Fig. 1
panel F). To explain the different level of accuracy between Consensus and notConsensus
subset we plot the distributions of the CI values for cancer-causing and neutral variant (see
Fig. 2 panel A) and calculated distances (d) between the cumulative distribution for the
Kolmogorov–Smirnov (KS) test. The resulting distances are 0.21, 0.44 and −0.22 for the
CNO, Consensus and notConsensus datasets respectively. We observed similar trend
plotting the distributions of the LGO-scores (see Fig. 2 panel B). In this case, the distances
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associated to the KS test are 0.87, 0.92 and 0.78 respectively. In Table 4 we reported the
summary of the comparison between the CI and LGO distributions.

3.3. Comparison with other predictors
We compared the performance of SPF-Cancer with those obtained by SIFT, CHASM and a
similar SVM-based predictor with generic GO slim-based score (SPF-All) calculated using
whole set of disease-related variants (see Table 5). On the Synthetic dataset, SIFT and
CHASM result in 68% and 80% overall accuracies and 0.22 and 0.60 correlation
coefficients respectively. Thus, SPF-Cancer shows more than 10% higher accuracy and
correlation coefficient with respect to CHASM. SPF-Cancer also results in 2% higher
overall accuracy and 0.06 higher correlation coefficient when compared with SPF-All. To
estimate the significance of the differences between the four predictors, we calculated the χ2

obtained comparing the confusion matrix SPF-Cancer with those of SPF-All, CHASM and
SIFT. The associated probabilities to observe this differences by chance are 3.4×10−5,
8.6×10−82 and 0 respectively for SPF-All, CHASM and SIFT.

3.4. GO score analysis
The GO score used in this work, has been calculated using GO slim terms. To better
understand the ability of the method to correctly classify cancer-causing mutations score, we
compare the values of cancer-specific and generic LGO scores. In particular the comparison
between the LGO values calculated on the dataset driver cancer variants and on the dataset
including all disease-related variants has been used to detect GO terms associated to cancer.
Although the LGO scores are dependent on the training set, their relative values obtained in
comparison with generic LGO scores provide an estimation of the GO terms’ occurrences.
Thus, a positive difference between the cancer-specific and generic LGO scores indicates an
enrichment of the relative GO terms in the cancer specific dataset while negative difference
corresponds to GO terms more abundant in the dataset including all disease-related variants.
In Fig. 3 the scatter plot of the generic LGO score versus the cancer-specific LGO score for
each GO slim term. The interesting GO functions are those corresponding to the points far
from the diagonal. The points with negative generic LGOs and positive cancer-specific
LGOs are those with GO slim functions related to cancer. The points with cancer-specific
LGOs close to zero and higher generic LGOs are those with GO slim functions generally
associated to the all the pathologies in SwissVar dataset. For example, in our study we
observed that Growth (GO:0040007) and Kinase Activity (GO:0016301) GO slim terms
have stronger association to cancer showing respectively cancer-specific LGOs 4.02 and
3.30 and generic LGOs 2.63 and 1.78. Other interesting GO slim terms associated to all the
diseases are the Transporter Activity (GO:0005215) and Oxygen Binding (GO:0019825)
which have respectively cancer LGOs −7.77 and −4.09 and generic LGOs 1.20 and 2.99.
There are also GO slim terms that have similar values for cancer and generic diseases LGO
scores. Two examples are the Carbohydrate Metabolic Process (GO:0005975) that has
similarly related cancer and all the diseases in our dataset resulting in LGO scores
respectively 2.55 and 2.23, and the Calcium Ion Binding (GO:0005509) that is not related to
cancer and slightly associated to all the diseases showing LGO scores −0.01 and 0.56
respectively.

4. Discussion
In general cancer-specific prediction methods have been trained either to discriminate
between passenger and driver cancer-causing SAPs in a known cancer-related protein or to
detect cancer-causing using a negative set of neutral SAPs in proteins with different
functions. SPF-Cancer method has been tested on both tasks. We built the CNO dataset
selecting all the cancer-causing variants used to train and test CHASM method and an equal
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number of randomly selected neutral polymorphism from a curated set of variants recently
used to test the performances of predictive algorithms [41]. The results obtained on this
dataset should be considered as upper bound performances since we selected only neutral
variants with allele frequencies higher than 0.01 for which their annotation is expected to be
more accurate. To compare our methods against previously developed algorithms we use the
Synthetic dataset for which neutral missense variants are generated by CHASM algorithm.

The SPF-Cancer predictor tested in cross-validation on CNO dataset, resulting in 93%
overall accuracy and 0.86 correlation coefficient. With respect to the whole CNO dataset,
our algorithm shows better performance in the detection of variants annotated as Malignant
Melanoma and lower performances on Hematopoietic Neoplasm variants. When compared
against CHASM on the Synthetic dataset, SPF-Cancer shows about 10% better accuracy and
0.2 better correlation coefficient. The development of cancer-specific predictor is justified
by the improvement of 2% in overall accuracy and 0.06 in correlation coefficient resulting
from the cancer-specific LGO scores. Differences between cancer-specific and generic
predictors are higher when other disease-related variants are included in the dataset (data not
shown). Although SPF-Cancer shows 3% lower accuracy on the Synthetic dataset with
respect to CNO dataset, this difference can be due to the unknown annotation of the
passenger variants generated by CHASM.

SPF-Cancer is also able to discriminate between cancer-causing variant and other disease-
related mutations, while reaching 90% of accuracy on the CND dataset where 50% of the
neutral polymorphisms are replaced with variants related to non “neoplasm” diseases. The
improvement of the performances resulting from the combination of site-dependent
sequence and profile features and functional information can be quantified in 1% higher
accuracy and 0.02 higher correlation coefficient with respect to the GO score-based method.
In addition, using two different methods it is possible to select a subset of highly accurate
predictions. In 62% of the mutations where the sequence and profile-based (SeqProf) and
GO score-based (F-Cancer) predictions agree, SPF-Cancer results in 3% better accuracy and
0.06 better correlation with respect to the performance on the whole CNO dataset. On the
subset of variants where predictions are in disagreement (NotConsensus) the low
performances are justified by the reverse trend in the distributions of the Conservation Index
for cancer-causing and neutral variants (d = −0.22). Finally, the comparison between cancer-
specific and generic LGO score values allows the estimation of the functional enrichment in
cancer-related proteins. For example we observed enrichment of GO terms Growth and
Kinase Activity in cancer-related proteins and Transporter Activity and Oxygen Binding in
the whole set of disease-related proteins.

In conclusion, we present a new machine learning-based algorithm (SPF-Cancer) to predict
cancer-causing variants. The SPF-Cancer method that has been extensively tested on a large
set of variants is a valid alternative to previously developed algorithms. Considering that
cancer is a complex disease that can involve multiple genes, SPF-Cancer reaches a good
level of accuracy also when compared with previously developed algorithms such as SIFT
and CHASM. The comparison between SPF-Cancer and SPF-All method indicates that
cancer-specific LGO term score improves the prediction accuracy. The calculation of
cancer-specific LGO values allows to rank with higher scores those proteins annotated with
GO term functions involved in the development of cancer. This suggests new strategies for
the development of the next generation of disease-specific algorithms able to discriminate
between the genetic variants related to a specific disease and other class of pathologies.
Finally, scoring the deleterious effect of missense variants using sequence profile-based and
functional-based methods allows to select higher confident predictions where both methods
predictions agree. For this subset of high quality predictions (62%), the SPF-Cancer method
results in 96% overall accuracy and 0.92 correlation coefficient.
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Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Performance of SPF-Cancer method. ROC curve of SPF-Cancer method on CNO and CND
(panel A) on CNO dataset and Consensus and Not Consensus subsets (panel B).In panels C,
ROC curves of SIFT, CHASM, SPF-All and SPF-Cancer on the Synthetic dataset. Plot of
the accuracy (Q2), correlation coefficient (C) and percentage of the dataset (DB) as a
function of the reliability index (RI) for SPF-Cancer method on CNO dataset (panel D) and
Consensus (panel E) and Not Consensus subsets (panel F).
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Fig. 2.
Distributions of the Conservation Index and LGO on CNO dataset. Boxplot of the
distributions for the Conservation Index (Panel A) and LGO scores (panel B) on CNO and
Consensus and NotConsensus subset respectively for cancer-causing (Disease) and neutral
variants (Neutral).
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Fig. 3.
General and cancer-specific LGO scores. Scatter plot of the generic vs the cancer-specific
LGO scores (LGO[All] and LGO[Cancer]) for each GO slim term (panel A). Color scale is
related to the value of LGO[Cancer]-LGO[ALL]. In panel B, zoom of the plot in the region
of LGO scores between −5 and 5.

Capriotti and Altman Page 16

Genomics. Author manuscript; available in PMC 2012 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Capriotti and Altman Page 17

Ta
bl

e 
1

D
at

as
et

s 
co

m
po

si
tio

n.

D
at

as
et

D
ri

ve
rs

P
as

se
ng

er
s

N
eu

tr
al

O
th

er
 d

is
ea

se
T

ot
al

C
N

O
31

63
–

31
63

–
63

26

C
ar

ci
no

m
a

18
99

–
18

99
–

37
98

H
em

at
op

oi
et

ic
46

1
–

46
1

–
92

2

L
ym

ph
oi

d
44

1
–

44
1

–
88

2

G
lio

m
a

38
4

–
38

4
–

76
8

M
el

an
om

a
25

7
–

25
7

–
51

4

C
N

D
31

63
–

15
81

15
82

63
26

Sy
nt

he
tic

31
63

31
63

–
–

63
26

T
he

 C
N

O
, C

N
D

 a
nd

 S
yn

th
et

ic
 d

at
as

et
s 

ar
e 

co
m

po
se

d 
by

 th
e 

sa
m

e 
se

t o
f 

dr
iv

er
 c

an
ce

r 
va

ri
an

ts
 a

nd
 r

es
pe

ct
iv

el
y 

on
ly

 n
eu

tr
al

 p
ol

ym
or

ph
is

m
s 

(C
N

O
),

 n
eu

tr
al

 a
nd

 o
th

er
 d

is
ea

se
-r

el
at

ed
 v

ar
ia

nt
s 

(C
N

D
) 

an
d

pa
ss

en
ge

r 
ca

nc
er

 v
ar

ia
nt

s 
ge

ne
ra

te
d 

by
 C

H
A

SM
 a

lg
or

ith
m

 (
Sy

nt
he

tic
).

 C
ar

ci
no

m
a,

 H
em

at
op

oi
et

ic
, L

ym
ph

oi
d,

 G
lio

m
a 

an
d 

M
el

an
om

a 
ar

e 
su

bs
et

s 
of

 C
N

O
 c

om
po

se
d 

by
 d

ri
ve

r 
ca

nc
er

 v
ar

ia
nt

 w
ith

 p
ri

m
ar

y
hi

st
ol

og
y 

de
sc

ri
pt

io
n 

an
no

ta
te

d 
in

 C
O

SM
IC

 d
at

ab
as

e.

Genomics. Author manuscript; available in PMC 2012 October 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Capriotti and Altman Page 18

Ta
bl

e 
2

Pe
rf

or
m

an
ce

s 
of

 th
e 

m
et

ho
d.

D
at

as
et

Q
2

P
[D

]
S[

D
]

P
[N

]
S[

N
]

C
A

U
C

C
N

O
0.

93
0.

93
0.

93
0.

93
0.

93
0.

86
0.

98

C
ar

ci
no

m
a

0.
93

0.
93

0.
94

0.
94

0.
93

0.
87

0.
98

H
em

at
op

oi
et

ic
0.

90
0.

93
0.

87
0.

88
0.

93
0.

80
0.

96

L
ym

ph
oi

d
0.

93
0.

93
0.

92
0.

92
0.

93
0.

85
0.

98

G
lio

m
a

0.
94

0.
93

0.
96

0.
96

0.
93

0.
89

0.
99

M
el

an
om

a
0.

95
0.

93
0.

98
0.

98
0.

93
0.

90
0.

99

C
N

D
0.

90
0.

87
0.

93
0.

92
0.

86
0.

79
0.

95

O
ve

ra
ll 

ac
cu

ra
cy

 (
Q

2)
, p

os
iti

ve
 p

re
di

ct
iv

e 
va

lu
e 

(P
) 

Se
ns

iti
vi

ty
, C

or
re

la
tio

n 
co

ef
fi

ci
en

t (
C

) 
an

d 
ar

ea
 u

nd
er

 th
e 

R
O

C
 c

ur
ve

 (
A

U
C

) 
ar

e 
de

fi
ne

d 
in

 m
et

ho
ds

 s
ec

tio
n.

 D
 (

D
is

ea
se

) 
an

d 
N

 (
N

eu
tr

al
) 

ar
e

re
sp

ec
tiv

el
y 

ca
nc

er
-c

au
si

ng
 a

nd
 n

eu
tr

al
 v

ar
ia

nt
s 

in
 C

N
O

 d
at

as
et

. I
n 

C
N

D
 d

at
as

et
 N

 (
N

eu
tr

al
) 

va
ri

an
ts

 a
re

 b
ot

h 
ne

ut
ra

l a
nd

 o
th

er
 d

is
ea

se
-r

el
at

ed
.

Genomics. Author manuscript; available in PMC 2012 October 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Capriotti and Altman Page 19

Ta
bl

e 
3

Se
le

ct
in

g 
m

or
e 

ac
cu

ra
te

 p
re

di
ct

io
ns

.

M
et

ho
d

Q
2

P
[D

]
S[

D
]

P
[N

]
S[

N
]

C
A

U
C

P
M

Se
qP

ro
f

0.
64

0.
66

0.
58

0.
63

0.
70

0.
28

0.
70

10
0

F-
C

an
ce

r
0.

92
0.

92
0.

93
0.

93
0.

92
0.

85
0.

97
10

0

SP
F-

C
an

ce
r

0.
93

0.
93

0.
93

0.
93

0.
93

0.
86

0.
98

10
0

C
on

se
ns

us
0.

96
0.

96
0.

95
0.

96
0.

97
0.

92
0.

99
62

N
ot

C
on

se
ns

us
0.

88
0.

90
0.

90
0.

87
0.

87
0.

76
0.

95
38

O
ve

ra
ll 

ac
cu

ra
cy

 (
Q

2)
, p

os
iti

ve
 p

re
di

ct
iv

e 
va

lu
e 

(P
) 

Se
ns

iti
vi

ty
, C

or
re

la
tio

n 
co

ef
fi

ci
en

t (
C

) 
an

d 
ar

ea
 u

nd
er

 th
e 

R
O

C
 c

ur
ve

 (
A

U
C

) 
ar

e 
de

fi
ne

d 
in

 M
et

ho
ds

 s
ec

tio
n.

 D
 (

D
is

ea
se

) 
an

d 
N

 (
N

eu
tr

al
) 

ar
e 

re
fe

rr
ed

 to
ca

nc
er

-c
au

si
ng

 a
nd

 n
eu

tr
al

 v
ar

ia
nt

s.
 P

M
 is

 th
e 

pe
rc

en
ta

ge
 p

re
di

ct
ed

 v
ar

ia
nt

s 
of

 C
N

O
 d

at
as

et
.

Genomics. Author manuscript; available in PMC 2012 October 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Capriotti and Altman Page 20

Ta
bl

e 
4

C
om

pa
ri

so
n 

of
 th

e 
di

st
ri

bu
tio

n 
of

 C
on

se
rv

at
io

n 
In

de
x 

an
d 

L
G

O
 s

co
re

.

D
at

as
et

C
on

se
rv

at
io

n 
In

de
x 

(C
I)

L
G

O
 s

co
re

M
[D

]
M

[N
]

d
p-

va
lu

e
M

[D
]

M
[N

]
d

p-
va

lu
e

C
N

O
61

.0
47

.8
0.

21
2.

5×
10

−
61

56
.2

9.
0

0.
87

0

C
on

se
ns

us
71

.0
42

.1
0.

44
0

62
.9

8.
8

0.
92

0

N
ot

 C
on

se
ns

us
48

.8
63

.1
−

0.
22

9.
4×

10
−

26
47

.6
10

.1
0.

78
0

M
[D

] 
an

d 
M

[N
] 

ar
e 

th
e 

m
ed

ia
n 

va
lu

es
 f

or
 c

an
ce

r-
ca

us
in

g 
(D

) 
an

d 
ne

ut
ra

l (
N

) 
va

ri
an

ts
 r

es
pe

ct
iv

el
y.

 d
 is

 th
e 

di
st

an
ce

 b
et

w
ee

n 
th

e 
cu

m
ul

at
iv

e 
di

st
ri

bu
tio

ns
 o

f 
ca

nc
er

-c
au

si
ng

 a
nd

 n
eu

tr
al

 v
ar

ia
nt

s.
 P

-v
al

ue
 is

as
so

ci
at

ed
 to

 K
ol

m
og

or
ov

–S
m

ir
no

v 
te

st
.

Genomics. Author manuscript; available in PMC 2012 October 01.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Capriotti and Altman Page 21

Ta
bl

e 
5

C
om

pa
ri

so
n 

w
ith

 o
th

er
 m

et
ho

ds
.

D
at

as
et

Q
2

P
[D

]
S[

D
]

P
[N

]
S[

N
]

C
A

U
C

P
M

SI
FT

0.
61

0.
62

0.
66

0.
60

0.
56

0.
22

0.
64

95

C
H

A
SM

0.
80

0.
85

0.
73

0.
76

0.
87

0.
60

0.
88

10
0

SP
F-

A
ll

0.
88

0.
88

0.
87

0.
87

0.
88

0.
75

0.
94

10
0

SP
F-

C
an

ce
r

0.
90

0.
91

0.
90

0.
90

0.
91

0.
81

0.
96

10
0

O
ve

ra
ll 

ac
cu

ra
cy

 (
Q

2)
, p

os
iti

ve
 p

re
di

ct
iv

e 
va

lu
e 

(P
) 

Se
ns

iti
vi

ty
, C

or
re

la
tio

n 
co

ef
fi

ci
en

t (
C

) 
an

d 
ar

ea
 u

nd
er

 th
e 

R
O

C
 c

ur
ve

 (
A

U
C

) 
ar

e 
de

fi
ne

d 
in

 M
et

ho
ds

 s
ec

tio
n.

 D
 (

D
is

ea
se

) 
an

d 
N

 (
N

eu
tr

al
) 

ar
e

re
sp

ec
tiv

el
y 

dr
iv

er
 a

nd
 p

as
se

ng
er

 c
an

ce
r 

va
ri

an
ts

. T
he

 la
tte

r 
ha

ve
 b

ee
n 

ge
ne

ra
te

d 
by

 C
H

A
SM

. P
M

 is
 th

e 
pe

rc
en

ta
ge

 p
re

di
ct

ed
 v

ar
ia

nt
s 

fo
r 

th
e 

Sy
nt

he
tic

 d
at

as
et

. T
he

 c
on

fi
de

nc
e 

in
te

rv
al

 f
or

 Q
2,

 C
 a

nd
 A

U
C

ca
lc

ul
at

ed
 o

n 
th

e 
tw

o 
su

bs
et

s 
is

 ≤
0.

01
.

Genomics. Author manuscript; available in PMC 2012 October 01.


