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Chromosomal common fragile sites (CFSs) are unstable genomic regions that break under replication stress and are in-
volved in structural variation. They frequently are sites of chromosomal rearrangements in cancer and of viral integration.
However, CFSs are undercharacterized at the molecular level and thus difficult to predict computationally. Newly available
genome-wide profiling studies provide us with an unprecedented opportunity to associate CFSs with features of their local
genomic contexts. Here, we contrasted the genomic landscape of cytogenetically defined aphidicolin-induced CFSs (aCFSs)
to that of nonfragile sites, using multiple logistic regression. We also analyzed aCFS breakage frequencies as a function of
their genomic landscape, using standard multiple regression. We show that local genomic features are effective predictors
both of regions harboring aCFSs (explaining ~77% of the deviance in logistic regression models) and of aCFS breakage
frequencies (explaining ~45% of the variance in standard regression models). In our optimal models (having highest
explanatory power), aCFSs are predominantly located in G-negative chromosomal bands and away from centromeres, are
enriched in Alu repeats, and have high DNA flexibility. In alternative models, CpG island density, transcription start site
density, H3K4me1 coverage, and mononucleotide microsatellite coverage are significant predictors. Also, aCFSs have high
fragility when colocated with evolutionarily conserved chromosomal breakpoints. Ourmodels are predictive of the fragility
of aCFSs mapped at a higher resolution. Importantly, the genomic features we identified here as significant predictors of
fragility allow us to draw valuable inferences on the molecular mechanisms underlying aCFSs.

[Supplemental material is available for this article.]

Chromosomal fragile sites are loci that are prone to gaps or breaks

within metaphase chromosomes. Common fragile sites (CFSs) are

observed in all humans and constitute a component of normal

chromosome structure (Durkin and Glover 2007; Freudenreich

2007). Such regions have been documented in many other mam-

malian species, including chimpanzee, gorilla, orangutan (Smeets

and van de Klundert 1990), baboon (Soulie and De Grouchy 1981),

cat (Stone et al. 1993), dog (Stone et al. 1991a,b), mouse (Elder and

Robinson 1989), and rat (Robinson and Elder 1987). CFSs have an

important role in chromosome instability; they are associated with

sister chromatid exchange hotspots (Glover and Stein 1987), viral

integration sites (Bester et al. 2006; Dall et al. 2008), and sites of

deletion, amplification, and translocation in various cancers (Arlt

et al. 2006; Durkin et al. 2008; Burrow et al. 2011). Recently, CFSs

have been shown to be preferred sites of structural variation in

stem cells (Hussein et al. 2011). Clearly, CFSs play an important

role in genome dynamics and are medically relevant.

A subset of CFSs can be specifically induced by cellular treat-

ment with aphidicolin (APH), a DNA polymerase inhibitor. Several

models have been proposed to explain the underlying mecha-

nisms responsible for preferential DNA strand breakage at APH-

induced CFSs (hereafter called aCFSs) (Durkin and Glover 2007).

Replication delay or inherent DNA replication difficulties are be-

lieved to underlie the initiation of aCFS expression (Arlt et al.

2006). Some aCFS regions undergo delayed or prolonged DNA

elongation in S phase, and cells can enter G2 phase with only 50%

of some aCFS loci completely replicated (Palakodeti et al. 2004;

Pelliccia et al. 2008). DNA breakage within aCFSs is thought to be

a consequence of failing to complete replication and/or resolving

the arrested forks prior to the end of telophase and chromosome

segregation (Chan et al. 2009). Specific DNA sequences, such as

[A/T]n and [AT/TA]n repeats, and/or the formation of non-B DNA

secondary structures within aCFSs can inhibit replicative DNA

polymerases (Shah et al. 2010) and replication fork progression

(Zhang and Freudenreich 2007). AT-rich high DNA flexibility re-

gions have been described within some aCFSs, and may affect

replication by acting as sinks for the superhelical density generated

ahead of the replication fork, hindering efficient topoisomerase

activity (Zlotorynski et al. 2003). More recently, a paucity of repli-

cation origins, inefficient origin firing, and failure to activate latent

origins have all been suggested to play a role in delayed replication
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at specific aCFSs (Palakodeti et al. 2010; Letessier et al. 2011; Ozeri-

Galai et al. 2011).

Intrinsic DNA sequence features alone are sufficient to induce

site-specific chromosomal breakage of aCFSs found at ectopic lo-

cations (Ragland et al. 2008). Unlike rare fragile sites that are as-

sociated with a single DNA element, many sequence motifs spread

throughout the aCFS region may contribute to fragility (Ried et al.

2000; Durkin and Glover 2007; Ragland et al. 2008), making the

characterization of aCFSs a computational challenge. Neverthe-

less, previous analyses of individual aCFS loci demonstrated that

these regions may be enriched in several genomic features, such

as Alu repeats (Tsantoulis et al. 2008), gene-containing regions

(Helmrich et al. 2006), histone hypoacetylation (Jiang et al. 2009),

highly AT-rich sequences, and high DNA flexibility sequences

(Mishmar et al. 1998). Unfortunately, such studies have been mostly

inconclusive at the genome-wide level. For example, a large fraction

of the fragile site FRA3B is enriched in LINE1 elements, but these

sequences are poorly represented in FRA16D; conversely, Alu repeats

dominate FRA16D (Ried et al. 2000). Similarly, highly AT-rich se-

quence content was shown to be irrelevant (Helmrich et al. 2006) or

even to have the opposite correlation (Tsantoulis et al. 2008) with

fragility. The inconsistent results reported previously are best as-

cribed to two major factors. First, most studies considered only a few

aCFSs, so the observed enrichment might not have reflected the

global trend of genomic contexts surrounding such sites. Second,

the studies analyzed the enrichment of single (and not multiple)

genomic features at aCFSs, and compared these with control regions

that differed from study to study (Mishmar et al. 1998; Helmrich

et al. 2006; Ruiz-Herrera et al. 2006; Tsantoulis et al. 2008). Some of

these studies previously used control regions that exhibited low-

frequency breakage or were characterized as aCFSs in subsequent

studies (Mrasek et al. 2010).

Traditionally, the organization of the human genome was

interrogated using a variety of chromosomal banding techniques

(Comings 1978). Differential banding patterns reflect variations in

chromatin structure and base composition among chromosomal

regions and have been correlated with various aspects of genome

function (Craig and Bickmore 1993). For example, R bands have

a higher gene and CpG island density than G bands, display higher

levels of histone acetylation, and are enriched for SINE elements.

S phase DNA replication is distinctly bimodal, and R bands corre-

spond to early replicating regions, whereas G bands correspond to

late replicating regions of the genome (Holmquist et al. 1982). Sev-

eral types of fragile sites have been observed to lie more frequently in

R bands or near the border of R and G bands (Yunis and Soreng 1984).

It has also been suggested that aCFSs are located in G-band-like re-

gions of R bands (Mishmar et al. 1999). T bands, a specific subset of R

bands, have been shown to be sites of increased chromosomal rear-

rangement, both in cancer cells and during chromosomal evolution

(Holmquist 1992). Interestingly, aCFSs may be depleted in evolu-

tionarily homologous syntenic regions conserved between mam-

mals and chicken (Ruiz-Herrera et al. 2006).

Current evidence suggests that aCFSs are caused by multiple

interplaying genomic factors (Dillon et al. 2010). Fragility may

result from several genomic properties characterizing a locus, in-

stead of a single motif or genomic feature (Durkin and Glover

2007). The wealth of genome-wide profiling studies that are now

available provides us with an unprecedented opportunity to in-

vestigate the underlying causes of chromosomal fragility. A model

that considers multiple factors simultaneously is expected to be

more biologically realistic and could illuminate how different ge-

nomic features interact to contribute to fragility. In addition, aCFSs

vary in their breakage frequency, but previous studies have not

incorporated this quantitation into their statistical models.

To advance our understanding of the relationship between

aCFSs and genomic contexts, we built statistical models to explain

the fragility of well-characterized autosomal aCFSs by considering

their genomic landscape and contrasting them with nonfragile

regions (NFRs) obtained from a genome-wide screening. We fo-

cused on CFSs induced by aphidicolin because they have been

characterized genome-wide (Mrasek et al. 2010), are the most nu-

merous CFSs, and CFSs induced by other agents might have dif-

ferent breakage mechanisms and characteristics. We used multiple

logistic regression to predict the probability of a given region to be

either an aCFS or an NFR and multiple linear regression to predict

expected breakage frequency. Finally, to evaluate performance, we

validated our models using mouse fragile sites.

Results

Defining aCFSs vs. NFRs

The cytogenetic locations of APH-induced CFSs from the genome-

wide screening (Mrasek et al. 2010) were converted to genomic

coordinates using the UCSC Genome Browser (Rhead et al. 2009).

Among the known APH-induced CFSs, we focused on 76 well-

characterized sites (Lukusa and Fryns 2008). These 76 aCFSs, which

vary in size from 0.7 to 24.8 Mb, were originally defined by cyto-

genetic analyses (Lukusa and Fryns 2008; Mrasek et al. 2010).

Notably, while some of the aCFS size variation may reflect actual

biological differences, some might also be explained (especially

in the upper size ranges) by the limited resolution of cytogenetic

methods used to define the aCFSs (Durkin and Glover 2007). We

did not use all 233 breakage regions identified by Mrasek and col-

leagues (2010) because their set included low-breakage-frequency

sites (possibly representing experimental background) and rare

fragile sites known to originate by a different molecular mechanism

(Durkin and Glover 2007; Lukusa and Fryns 2008). From the 76

well-characterized aCFSs, initially we excluded sites located on

sex chromosomes, because sex chromosomes possess very few

aCFSs (three on chromosome X and none on chromosome Y)

(Fig. 1) and are enriched in repetitive elements (Skaletsky et al.

2003; Ross et al. 2005), potentially biasing our analysis. A sub-

sequent analysis including aCFSs on chromosome X led to similar

results (see below). Our final data set, thus, consisted of 73 aCFSs

that were distributed quite broadly across human autosomes (but

none were located on chromosomes 19 and 21) and covered 462

Mb (or 14.90%) of the autosomal genome (Fig. 1; Supplemental

Table S1). Visual inspection of their genome-wide distribution

suggests that most autosomal aCFSs are located away from cen-

tromeres (Fig. 1).

To define NFRs against which to contrast aCFSs, the set of 233

known fragile regions identified in a genome-wide screen (Mrasek

et al. 2010), fragile regions from other studies (Kuwano et al. 1988;

Borgaonkar 1994), heterochromatin, and centromeric regions

were removed from the human autosomal genome (see Methods

for details). After such removal, we defined the leftover 124 frag-

ments as NFRs, ranging in size from 1.4 to 32.9 Mb and covering

1084 Mb (or 34.96%) of the autosomal genome (Supplemental

Table S2).

Genomic features

To assess the location of aCFSs relative to the global organization of

the genome, we initially used G banding, GC content, distance
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to the centromere, and distance to the telomere as potential

predictors of fragility. The advent of whole-genome sequencing

and other genome-profiling techniques has overlaid this global

organization with more specific landscape features. Therefore, we

considered a larger set of 54 genomic features, including those for

which an association with aCFSs has been suggested in previous

studies (Supplemental Table S3). This set included the above fea-

tures associated with global genome organization, as well as with

gene expression and chromatin organization (CpG islands, tran-

scription start sites, H3K4me1 histone modification sites, nuclear

lamina binding sites, and microRNA oc-

currence), DNA replication (replication

timing and replication origin density),

recombination and mutation (recombi-

nation rates and evolutionarily breakpoint

regions), and DNA sequence/structure

(direct and inverted repeats, triplex motifs,

microsatellites, low complexity A/T rich

regions, non-B DNA structures, DNA flex-

ibility, and transposable elements). The

DNA flexibility parameter (Twist) mea-

sures potential local variations in the

DNA structure, expressed as fluctuations

in the twist angle of two adjacent base

pairs (Sarai et al. 1989; Mishmar et al.

1998; Travers 2004). All these predictors

were measured in each aCFS and NFR and

prescreened based on their pairwise asso-

ciations with other predictors (a flowchart

with our predictor screening pipeline is

depicted in Fig. 2A). More specifically, we

clustered predictors using their Spearman’s rank correlation co-

efficients (Fox 2002) and selected one ‘‘representative’’ predictor

from each tight cluster to ensure that pairwise correlations be-

tween any selected predictors did not exceed 0.7 (Fig. 3). In sub-

sequent regression fits, this avoided strong multicollinearities,

keeping variance inflation factors (VIFs), which measure linear

association among the predictors in a regression, below five (Fox

2002). ‘‘Representative’’ features from each tight cluster were se-

lected based on prior evidence of association with CFSs (from the

literature; see Introduction). This prescreening produced a set of

Figure 1. Locations of 76 APH-induced common fragile sites (aCFSs) and 131 nonfragile control
regions (NFRs) used in this study. (Red) aCFSs (pink is used to differentiate among three fragile sites on
chromosome 1). (Blue) NFRs. Gray regions were excluded from the analysis because they are either rare
fragile sites or background breakage regions. (Black regions) Centromeres.

Figure 2. Statistical workflow. (A) Potential predictor selection (prescreening). (B) Regression analysis (box ‘‘Regression Analysis’’ in A).

Genome-wide predictors of common fragile sites
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19 predictors (Table 1; Fig. 3) that were used for subsequent model

selection in our regressions (Fig. 2B). Genome-wide computational

modeling is limited by the resolution/accuracy of the genome

annotations that are available for the predictors. Some of this an-

notation, in turn, is limited by the experimental approaches used

to derive the data (e.g., many ‘‘genome-wide’’ sequencing studies

exclude repetitive sequences). Because all approaches have in-

herent error, we considered other genomic features (from Supple-

mental Table S3) as alternatives at various stages of our analyses,

with the logic that true molecular predictors of aCFSs will likely

overlap with several genomic features.

Contrasting genomic features between aCFSs and NFRs

In this analysis, we used logistic regression to contrast genomic

features between aCFSs and NFRs. Well-established techniques for

model selection applied to the 19 prescreened predictors (Table 1)

led to a model with the highest predictive power—later called the

optimal logistic model (importantly, some of the 19 prescreened

predictors were subsequently replaced with alternative choices,

i.e., predictors highly correlated with them, to produce alternative

models— see below). The optimal logistic model captures 76.97%

of the null deviance and comprises four highly significant genomic

features (Table 2; P-values are given in the table). The strongest

feature discriminating between aCFSs and NFRs was G band

coverage (individual contribution ;87%). This was a negative

predictor, indicating that aCFSs are positioned largely outside of

G bands (e.g., in G-negative bands). Average twist value, distance

to the centromere, and Alu repeat coverage were all significant

positive predictors (individual contributions ;8%, ;4%, and

;3%, respectively). Alu repeat coverage lost its significance after

Bonferroni correction for multiple testing. Thus, known aCFSs

appear to be located distant from the centromere and preferably

in a genomic landscape depleted in G bands, yet characterized by

high DNA flexibility and enrichment in Alu repeats. Note that the

existence of correlations among predictors (despite low VIFs)

implies that the sum of the relative contributions of individual

predictors does not necessarily add to 100% (the total deviance

explained by the model).

We attempted to further investigate the genomic features as-

sociated with aCFSs by replacing predictors in the optimal model

(Table 2) with predictors that were excluded during prescreening

(see above; Fig. 3) but can provide alternative interpretations (Table

3; Supplemental Table S4). For instance, we replaced average Twist

value with the coverage of low-complexity A/T-rich regions that

have been suggested to associate with aCFS breakage (Dillon et al.

2010). Coverage of low complexity A/T-rich regions was a signifi-

cant positive predictor (P = 0.00031) (model 1 in Table 3), and the

resulting model had a higher pseudo R-squared as compared

with the optimal model (80.32% vs. 76.97%). However, low

complexity A/T-rich regions had high VIFs (>5), reflecting mul-

ticollinearity (Supplemental Table S4), and therefore, we con-

sider this model to be suboptimal. We also replaced Twist with

negatively correlated predictors such as H3K4me1 site coverage

(enriched in promoter regions) (Heintzman et al. 2009), CpG

island coverage, or transcription start site density (models 2, 3, and

4 in Table 3, respectively). All of these predictors were significant

(P = 0.047, P = 0.006, and P = 0.034, respectively; for H3K4me1 site

coverage and transcription start site density, the significance was

lost after Bonferroni correction for multiple testing). The result-

ing models had lower pseudo R-squared (72.69%, 76.27%, and

72.60%, respectively) as compared to that for the optimal model

(76.97%).

Alu sequences are composed of two long A-rich stretches fre-

quently containing mononucleotide microsatellites (Arcot et al.

1995; Kelkar et al. 2011). Mononucleotide A/T repeats cause

pausing of replicative DNA polymerases in vitro (Shah et al. 2010)

and, thus, may contribute to replication difficulties within aCFSs.

Thus, we replaced Alu repeat coverage with mononucleotide micro-

satellite coverage in our modeling (model 5 in Table 3). Mono-

nucleotide microsatellite coverage was a significant positive predictor

(only) prior to Bonferroni correction (P = 0.020), resulting in a model

with a lower fit than the optimal model (74.23% vs. 76.97%). We also

replaced Alu coverage with either the coverage of mononucleotide

Figure 3. Hierarchical clustering of predictors using their Spearman
correlation coefficients computed across all 73 aCFSs + 124 NFRs. (Y-axis)
1�|correlation coefficient|. The lower predictors merge in the dendro-
gram, the higher their correlation. Predictors in black boxes were selected
as potential predictors to run our regression analysis (which includes fur-
ther predictor selection steps).
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microsatellites within or outside of Alus (models 6 and 7 in Table

3). Interestingly, the model using mononucleotide microsatellites

within Alu sequences had a better fit than the model utilizing

mononucleotides outside of Alu sequences (78.09% vs. 75.07%)

and the optimal model (78.09% vs. 76.97%). Replacing Alu cov-

erage with A/T-containing microsatellite coverage (i.e., genome-

wide microsatellites with repeats consisting of exclusively A and/or

T bases) did not yield a more predictive model (75.57% for model 8

in Table 3). However, note that, in all these models, Alu coverage

and other predictors used to replace it were significant only prior to

Bonferroni correction for multiple testing and were, in fact, the

predictors with the lowest explanatory power (among other pre-

dictors). Nevertheless, this analysis suggests that mononucleotide

A/T-rich microsatellites, particularly when located within Alus,

may substantially contribute to fragility.

Despite evidence that some aCFSs replicate late during the cell

cycle (Le Beau et al. 1998; Hellman et al. 2000; Durkin and Glover

2007), replication timing was not a significant predictor of fragility in

any of our models. Three independent replication timing data sets

were tested (Woodfine et al. 2004; Hansen et al. 2009; Ryba et al.

2010). These data sets were found to be highly correlated (all pairwise

Pearson correlation coefficients were above 0.7, data not shown) and

therefore appear to be robust. The utilization of replication origins has

been recently hypothesized to be altered in aCFSs (Palakodeti et al.

2010; Letessier et al. 2011). However, origin density was not signifi-

cant in our models, independent of the three replication origin data

sets used in our analyses (Cadoret et al. 2008; Karnani et al. 2010;

Chen et al. 2011).

Table 1. The 19 genomic features (after prescreening) used as potential predictors in regression analyses

Predictors Type of dataa Data source Previous studiesb

Global genome organization
G-bands Coverage (Furey and Haussler 2003) (� [Mishmar et al. 1999])
GC content Average Genome-wide screen (� [Mishmar et al. 1998])

(+ [Tsantoulis et al. 2008])
Distance to the telomere Distance Genome-wide screen
Distance to the centromere Distance Genome-wide screen

Gene expression/chromatin structure
CpG islands Coverage (Karolchik et al. 2003)

(Rhead et al. 2009)
Nuclear lamina binding sites Coverage (Guelen et al. 2008)
miRNA sites Coverage (Griffiths-Jones et al. 2007)

DNA sequence/structure and replication
Alu repeats Coverage (Karolchik et al. 2003) (+ [Tsantoulis et al. 2008])

(Rhead et al. 2009)
LINE1 repeats Coverage (Karolchik et al. 2003)

(Rhead et al. 2009)
LINE2 repeats Coverage (Karolchik et al. 2003)

(Rhead et al. 2009)
DNA transposons Coverage (Karolchik et al. 2003)

(Rhead et al. 2009)
Dinucleotide microsatellites (>5 repeats) Coverage (Abajian [http://espressosoftware.com/sputnik/])
Inverted repeats Coverage (Cer et al. 2010)
Directed repeats Coverage (Cer et al. 2010)
Triplex motif Coverage (Cer et al. 2010)
Replication timing Assigned value (Ryba et al. 2010) (Weddington et al. 2008)
Origin of replication Density (Karnani et al. 2010)

(Chen et al. 2011)
(Cadoret et al. 2008)

Recombination and mutational pathways
Recombination rate Assigned value (Myers et al. 2005)
Evolutionary breakpoint regions Coverage (Larkin et al. 2009) (0 [Ruiz-Herrera et al. 2006])

aType of value for each predictor. (Coverage) Percentage of a particular fragile or nonfragile region that overlaps with a feature. (Assigned value) Value of
the predictor for a particular interval. If there is no predictor interval that overlaps with the query interval, the query interval is marked as NA. If there is more
than one predictor interval that overlaps with the query interval, the assigned value is calculated as the weighted average based on interval lengths.
(Density) Counts of a feature normalized by the interval length. (Distance) Distance measured from the closest terminus of the region to either centromere
or telomere.
b+ predictor is enriched in fragile sites (positive predictor); � predictor is enriched in nonfragile sites (negative predictor); 0 is nonsignificant.

Table 2. Optimal multiple logistic regression model contrasting
autosomal aCFSs with NFRs

Predictor
Standardized

coefficient VIFb P-value
Relative

contribution

G-band coverage �5.4497 1.921 2.73 3 10�7 87.31
Twist (DNA flexibility) 2.1765 3.372 2.26 3 10�3 7.93
Distance to the

centromere
0.9974 1.286 1.14 3 10�2 4.45

Alu repeat
coverage (log)a

1.4043 2.412 3.47 3 10�2 3.05

Pseudo R-squared 76.97

aSignificance is lost after Bonferroni correction for multiple testing.
b(VIF) Variance inflation factor.
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Finally, we repeated our analysis including X chromosomes

(here, all 76 aCFSs and 131 NFRs were used; chromosome Y was

excluded as female cells were analyzed by Mrasek and colleagues

[Mrasek et al. 2010]). The results (pseudo R-squared of 77.16%)

(Supplemental Table S5) were similar to those obtained for auto-

somes only (Table 2).

Effect of genomic features on the frequency of aCFS breakage

Across the genome, various aCFSs do not break with the same

probability. Mrasek and colleagues (2010) evaluated breakage fre-

quency of aCFSs within 25,000 peripheral blood lymphocyte-

derived metaphase spreads and observed that only ;10% of aCFSs

detected were fragile at a frequency >1%. We used these data to

examine genomic features potentially affecting aCFS breakage

frequency, focusing on the 73 APH-induced autosomal aCFSs, and

performing a standard multiple regression analysis. Different var-

iable selection approaches starting from the 19 prescreened pre-

dictors (Table 1) all led to a model (later called the optimal standard

model) accounting for ;45% of variation in aCFS breakage fre-

quency and containing four significant predictors (Table 4): dis-

tance to the centromere (P = 0.00014), G-band coverage (P = 0.0337;

loses significance after Bonferroni correction for multiple testing),

CpG island coverage (P = 0.00135), and evolutionary breakpoint

region coverage (P = 0.00000116). Two of these features (distance to

the centromere and G-band coverage) were also identified as dis-

criminators (with the same sign) between aCFSs and NFRs in the

optimal logistic regression model above (Table 2), and CpG island

coverage was a significant predictor in an alternative logistic model

(model 3 in Table 3). Most importantly, evolutionary breakpoint

region coverage (individual contribution ;31.9%) emerged as a new

positive predictor highly relevant to aCFS breakage frequency. Our

optimal standard model suggests that the frequency of breakage

of aCFSs appears to increase in a genomic landscape rich in evolu-

tionary breakpoints, distant from the centromere, located in

G-negative bands, and depleted in CpG islands.

We next added to or replaced the four significant predictors

identified above (Table 4) with predictors excluded during pre-

screening (Supplemental Table S6). Transcription start site density

was found to be a significant (P = 0.0023) negative predictor, and

the model including it (model 1 in Supplemental Table S6) had

explanatory power only slightly lower than that for the optimal

model (43.37% vs. 45.30%). Coverage of H3K4me1 histone mod-

ification sites, Twist, and coverage of low complexity A/T-rich re-

gions (models 2, 3, and 4, respectively, in Supplemental Table S6)

were not significant. All these alternative standard regression

models had predictors with low VIFs (Supplemental Table S7).

The explanatory power (percentage of variance or deviance

explained) for the breakage frequency model (45.30%) was lower

than that obtained for the aCFS vs. NFR model (76.97%). There are

two possible explanations. First, the breakage frequency data that

we used came from one study (Mrasek et al. 2010). Therefore, some

portion of the observed variation in breakage frequency across

aCFSs may have actually been due to the stochastic nature of fra-

gility in the APH-induced experimental assay. Second, even though

the overall correlation in breakage frequency among individuals was

high, some fragile sites exhibited a high degree of variability in

breakage frequency between individuals (Supplemental Fig. S1).

Validation in cloned aCFSs

Because our models were derived and estimated using aCFSs initially

defined by low-resolution cytogenetic methods, it was important to

assess their predictive behavior for aCFSs mapped at higher resolu-

tion, i.e., with fluorescence probes around the breakage area (Ruiz-

Herrera et al. 2006). We were able to find high-resolution genomic

coordinates of 18 autosomal cloned aCFS either using BAC accession

numbers (Ciullo et al. 2002; Fechter et al. 2007; Reshmi et al. 2007;

Bosco et al. 2010; Pelliccia et al. 2010; Blumrich et al. 2011) or data

collected by Ruiz-Herrera and colleagues (Ruiz-Herrera et al. 2006).

Among these, 14 (FRA2C, FRA2G, FRA2H, FRA3B, FRA4F, FRA6E,

FRA6F, FRA7B, FRA7G, FRA7H, FRA9E, FRA11F, FRA11G, and

FRA13A) overlapped with aCFSs cytogenetically defined by Mrasek

and colleagues (Mrasek et al. 2010), while high-resolution co-

ordinates for the remaining four (FRA1E, FRA7E, FRA7I, and

FRA16D) did not overlap with their cytogenetic coordinates (Sup-

plemental Table S8). This was not completely unexpected, as both

cytogenetic banding and fluorescent mapping methods have in-

herent technical limitations that contribute to variation among

coordinates. Because of this uncertainty, these four aCFSs were ex-

cluded from further analysis.

We investigated genomic regions of the 14 cloned aCFSs de-

fined by the intersection of their cytogenetically and clonally de-

fined coordinates. Using the models described above (Tables 2, 4),

we recalculated values for the significant predictors of the smaller

genomic segments delineated by the intersection coordinates. In-

terestingly, in the logistic regression model, using genomic features

defined at a higher resolution led to higher or equal expected

probabilities of being fragile sites (as compared to using cytoge-

netic coordinates) for 10 of the 14 aCFSs tested (FRA2G, FRA2H,

FRA3B, FRA4F, FRA6E, FRA7B, FRA7H, FRA9E, FRA11F, and

FRA13A). The remaining four aCFSs (FRA2C, FRA6F, FRA7G, and

FRA11G) had slightly lower probabilities (Supplemental Table S9).

Similarly, using the high-resolution genomic features, our standard

regression model predicted an equal or higher than expected

breakage frequency (as compared with using cytogenetic coordi-

nates) for 11 out of 14 aCFSs (Supplemental Fig. S2). This analysis

illustrates that our models capture important aspects of the molec-

ular biology underlying aCFSs and are not a by-product of the lack of

resolution of current genome-wide aCFS data.

Validation in mouse fragile sites

For additional validation, we tested the ability of our models derived

from human data to predict 24 known APH-induced mouse fragile

Table 4. Optimal multiple standard regression model for
breakage frequency of autosomal aCFSs

Predictor
Standardized

coefficient VIFb P-value
Relative

contribution

Evolutionary
breakpoint region
coverage (log)

0.5466 1.012 1.16 3 10�6 31.90

Distance to the
centromere

0.4305 1.109 1.42 3 10�4 20.96

CpG island
coverage (log)

�0.3618 1.142 1.35 3 10�3 15.39

G band coveragea �0.2230 1.038 3.37 3 10�2 7.07

Multiple R-squared 45.30
Adjusted R-squared 41.77

aSignificance is lost after applying Bonferroni correction for multiple
testing.
b(VIF) Variance inflation factor.
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sites (Elder and Robinson 1989; Helmrich et al. 2006). The use of the

optimal (Table 2) and alternative (Table 3) logistic regression

models resulted in 79% and 71%–79% correct predictions, re-

spectively (Supplemental Table S10). Unfortunately, we cannot de-

rive a false positive rate, as the lack of a genome-wide screen for

mouse aCFSs precludes defining mouse NFRs. See Supplemental

Note for details of the mouse fragile sites analyses.

Discussion
In this study, we posed the following questions. First, which ge-

nomic features are enriched or depleted in APH-induced CFSs, and

how much does each feature contribute to fragility? Second, what

are the genomic features that aggravate fragility of aCFSs? Third,

are models built based on the analysis of cytogenetically mapped

aCFSs also relevant for predicting the available finely mapped

aCFSs? We showed that our models predict aCFSs with high accu-

racy, explain a large portion of the observed variation in breakage

frequency, and validate finely mapped aCFSs.

In the genome-wide aCFS vs. NFR logistic regression model

(Table 2), G-band coverage is the dominant predictor, while average

Twist value, distance to the centromere, and Alu repeat coverage

have important but smaller roles. The same observations emerge

when validating aCFSs mapped at a higher resolution, suggesting

the robustness of our conclusions. Moreover, the model has a high

success rate for predicting aCFSs in the mouse genome, despite the

limited number of identified mouse fragile sites and unavailability

of a negative control for mouse. That G banding is the strongest

predictor may be due, in part, to the scale at which aCFS fragility

information is available to us. G-banding and aCFSs (Mrasek et al.

2010) were both identified at the cytogenetic level, while most of

the other genomic features we examined were identified at the

primary sequence level. Our study, thus, depends on the accuracy

with which the cytogenetic G-banding map was annotated onto

the genome sequence (Furey and Haussler 2003). Nevertheless, the

preferential location of aCFSs in G-negative bands has been

described previously (Yunis and Soreng 1984; Hecht 1988).

Two predictors of genome-wide aCFS breakage frequency

(Table 4) coincide with features identified in the aCFS vs. NFR

comparison, namely distance to the centromere and G-band cov-

erage. CpG island coverage is a significant predictor in the optimal

standard regression model (Table 4) and in one of the alternative

logistic regression models (model 3 in Table 3). However, evolu-

tionary breakpoint region coverage is a significant predictor only in

the breakage frequency model (Table 4), while Alu repeat coverage

is significant (prior to Bonferroni correction for multiple testing)

only in the logistic model (Table 2). Therefore, our results suggest

that genomic features differentiating between aCFSs and NFRs and

genomic features that affect fragility level of aCFSs are not neces-

sarily the same.

Our genome-wide model demonstrates that G-banding is

negatively correlated with aCFSs; in other words, most aCFSs are

located within G-negative (R) bands, which are also the functional

regions of the genome (Mishmar et al. 1999). The additional pre-

dictors identified in our study provide further insight into the

chromosomal organization surrounding aCFSs and the mecha-

nisms underlying aCFS expression, as discussed below.

Alu repeat coverage

Alu repeats have been documented previously to be enriched

in aCFSs (Tsantoulis et al. 2008), and our optimal logistic model

including Alu repeats has high predictive value (Table 2). Mecha-

nistically, Alu repeats have been studied extensively for their effect

on nonhomologous recombination, which might impact chro-

mosome stability (Cordaux and Batzer 2009; Konkel and Batzer

2010). Most Alu repeats contain mononucleotide microsatellites

(Arcot et al. 1995; Kelkar et al. 2011) which are involved in repli-

cation slippage, unequal crossing over, secondary structure for-

mation, and DNA polymerase inhibition (Bhargava and Fuentes

2009; Shah et al. 2010). Therefore, a role for mononucleotide

microsatellites in genomic instability is well supported. We found

mononucleotide microsatellite coverage to be a significant (prior

to Bonferroni correction for multiple testing) positive predictor,

although the model including it in place of Alu coverage had lower

explanatory power (Table 3). Notably, the logistic regression model

with mononucleotide microsatellites located within Alus had a

slightly higher overall fit than the model including Alu coverage.

Thus, it is possible that mononucleotide microsatellites may be the

factor that actually contributes to aCFS fragility, due to a high

correlation in occurrence of Alu repeats and mononucleotide

microsatellites.

AT sequence content and DNA flexibility

Experimental studies have shown that long AT/TA palindromes

and AT-rich sequences are associated with replication stalling and

aCFS breakage (Dillon et al. 2010). G-negative bands are hetero-

geneous with regard to base composition and may contain AT-rich

isochores (Costantini et al. 2006). We found Twist percentage

(Sarai et al. 1989) to be a significant, positive predictor in the op-

timal logistic model contrasting aCFSs with NFRs (Table 2), which

concurs with a previous study (Mishmar et al. 1998). Our results

suggest that aCFSs tend to be located in G-negative banding regions

that have AT-rich isochores with a high density of AT-rich repeats or

a high A/T-base pair content (Mishmar et al. 1998, 1999). Therefore,

our results agree with the notion that aCFSs might be located in

G-band-like regions of R bands (Mishmar et al. 1999).

CpG island coverage

We found that CpG island coverage is negatively associated with

both breakage frequency and the probability of being an aCFS

(Table 4 and model 3 in Table 3, respectively). Also, in some al-

ternative logistic regression models, transcription start site cover-

age and H3K4me were also significant negative predictors (H3K4me1

loses its significance after Bonferroni correction for multiple testing)

(models 4 and 2 in Table 3, respectively). This finding is counter-

intuitive, given the dogma that G-negative bands display a higher

density of genes, CpG islands, and histone acetylation, relative to

G-positive bands (Craig and Bickmore 1993). One interpretation of

our results is that aCFSs reside within G-negative chromosomal iso-

chores that adopt a less open chromatin structure, relative to NFRs.

Because DNA repair mechanisms are known to be more efficient in

open chromatin and active gene regions (Mellon et al. 1986), NFRs

may be able to repair DNA more efficiently than aCFS regions.

Replication timing

Delayed replication has been considered to be a key molecular

feature associated with aCFS expression (Arlt et al. 2006; Palumbo

et al. 2010). However, we found G-negative banding to be the

dominant predictor of fragility in our aCFS vs. NFR model, and

initial studies examining G vs. R banding patterns and S-phase

replication timing showed that G-negative bands are replicated
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early in S phase (Holmquist et al. 1982). Thus, despite the obser-

vation that some aCFSs remain incompletely replicated at the end

of S phase (Palakodeti et al. 2004; Pelliccia et al. 2008), late repli-

cation of G bands per se is not a genome-wide predictor of fragility

(see below). Instead, our modeling suggests that aCFSs may be

sequences that experience replication delays but that lie within

otherwise early replicating regions of the genome.

Late-replicating regions of the genome are known to harbor

heterochromatin and centromeres, both highly repetitive se-

quences (Holmquist et al. 1982). Recently, genome-wide studies of

replication timing have been performed, primarily examining rep-

lication dynamics within unique and low-complexity sequences of

the genome. In these studies, repetitive DNA sequences are excluded

from the sequencing analyses (Hansen et al. 2009), or arrays are used

that are underrepresented for heterochromatic regions of the ge-

nome and do not contain centromeric DNA (Woodfine et al. 2004).

These methodological limitations notwithstanding, we used the

replication timing data from three studies (Woodfine et al. 2004;

Hansen et al. 2009; Ryba et al. 2010) to determine whether it is

a predictor of chromosomal fragility. However, we found neither

replication timing nor content of early replicated regions to be

a significant predictor in any of our models. Possibly, some aCFSs

have average replication timing under normal physiological con-

ditions but exhibit delayed or late replication under APH-induced

stress. Replication timing can change with developmental stage and

cell type (Hansen et al. 2009; Pope et al. 2010).

Density of replication origins

Recent studies of FRA3B suggest that differential utilization of

replication origins contributes to fragility of aCFSs (Palakodeti et al.

2010; Letessier et al. 2011). However, we did not find the density of

replication origins to be a significant genome-wide predictor in our

models. We utilized origin-mapping data derived both computa-

tionally and experimentally (Cadoret et al. 2008; Karnani et al.

2010; Chen et al. 2011). Notably, the densities of computationally

predicted vs. experimentally mapped replication origins were not

highly correlated (Fig. 3), suggesting limitations in one or both of

these approaches. The computational prediction of replication

origins uses abrupt base skew changes to partially differentiate

leading versus lagging DNA strand switches (Chen et al. 2011).

However, a similar signal can be generated from a transcription

start site. Experimental mapping of replication origins exhibits

substantial variation among platforms utilized in the same labo-

ratory (Karnani et al. 2010), and the set of origins identified by

several platforms has a high false negative rate (low sensitivity).

While aCFSs and NFRs appear to have a similar density of repli-

cation origins, they might differ in replication origin efficiency

(Palakodeti et al. 2010; Letessier et al. 2011) or utilization (Gilbert

2010). In fact, a recent analysis suggested that the failure to activate

origins in response to replication stress and fork stalling was in-

volved in FRA16C instability (Ozeri-Galai et al. 2011).

Distance from the centromere

We observed a positive association between the presence of aCFSs

and distance from the centromere, suggesting that chromosomal

regions located farther away from the centromere have a higher

probability of being aCFSs. Moreover, the farther away from the

centromere, the higher is the breakage frequency of aCFSs. Several

genomic contexts/features are known to vary along the length of

a chromosome, creating a change in genomic landscape that affects

the rates of various mutational events (Hardison et al. 2003; Kvikstad

et al. 2007; Ananda et al. 2011). The best subset selection procedure

we applied to select the optimal set of predictors in our regressions

favors models with a small number of predictors. Therefore, in re-

ality, distance from the centromere might be selected as an effective

proxy capturing the effects on fragility of multiple genomic features

as they vary along the length of the chromosome.

Enrichment of evolutionary breakpoint regions

Evolutionary breakpoint regions are genomic sites of intra- and

inter-chromosomal breakages that were found to be frequently

reused among ten amniote genomes analyzed (Larkin et al. 2009).

From our study, this predictor is significant only in the breakage

frequency model, where it is, in fact, the dominant predictor. Since

the aCFS vs. NFR model includes a larger data set (73 aCFSs + 124

NFRs) than the breakage frequency model (73 aCFSs), the lack of

predictive power of evolutionary breakpoints in the former model

cannot be explained by sample size limitations. Our results suggest

that evolutionary breakpoint regions are enriched specifically in

highly fragile aCFSs.

Statistically, we cannot establish a causality direction, i.e.,

whether (1) evolutionary breakpoint regions make existing aCFSs

more fragile, or (2) aCFSs are, indeed, hotspots of evolutionary

breakpoints. Some human aCFSs were found to have orthologous

aCFSs in other mammals, e.g., other primates (Smeets and van de

Klundert 1990; Ruiz-Herrera et al. 2004), carnivores (Stone et al.

1991a,b, 1993), and mouse (Glover et al. 1998; Shiraishi et al. 2001;

Krummel et al. 2002; Matsuyama et al. 2003; Rozier et al. 2004;

Helmrich et al. 2006, 2007). Analysis of such loci is expected to

shed light on the causative agents of fragility (CFSs vs. evolution-

ary breakpoints). A locus-specific analysis indicated that, for in-

stance, both human and mouse orthologous CFSs are enriched in

AT-repeats (Shiraishi et al. 2001). In addition, recent evidence

suggests that evolutionary breakpoint regions are enriched for re-

peats that might alter chromatin conformation or recruit trans-

posable elements and trigger genome instability (Farré et al. 2011).

For a definite answer to this puzzling question, a genome-wide

analysis of sequence features still conserved for such orthologous

aCFSs is required. Nevertheless, our modeling suggests that some

features of chromosomal regions that are conserved in their evo-

lutionary fragility across species separated by hundreds of million

of years (Larkin et al. 2009) are also associated with fragility of these

regions in the human genome under conditions of replication

stress. This implies similarity in the mechanisms of chromosomal

fragility at micro- and macroevolutionary levels. Larkin and

colleagues (2009) discovered that evolutionary breakpoint regions

are enriched in structural variants, SNPs, genes, and pseudogenes,

and depleted in recombination hotspots and most conserved ele-

ments. The significance of evolutionary breakpoint regions in our

modeling might capture a combination of some of these factors.

Summary
The ultimate goal of our computational analysis is to develop accu-

rate and reliable models that can aid in the prediction of locations

and fragility levels of aCFSs within individual human genomes.

Using the models we describe here, we can currently predict the

probability that a given chromosomal region is an aCFS and its

corresponding breakage frequency, based on genomic context. We

demonstrate that our models remain valid when we apply them to

a handful of aCFSs that have been mapped using fine-scale fluores-

cence probe labeling. Our models did not identify several ‘‘expected’’
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genomic features as being significant predictors of genome-wide

chromosomal fragility. This does not eliminate these characteristics,

which include replication timing and replication origin density,

from the list of potential contributors to aCFS instability. Rather, our

findings support the idea that, although aCFSs share characteristics

that predict fragility globally (such as those found in our optimal

models), other genome features might be contributors to only

a unique subset of aCFSs. A full understanding of the mechanisms

of aCFS instability will require further computational and ex-

perimental analyses. With advances in genome-wide sequencing

technologies, we will soon be in a position to identify locations of

chromosome breakage at the base pair level, allowing a more

detailed analysis of aCFSs in individual genomes.

Methods

Mapping genomic locations of aCFSs and NFRs
The cytogenetically determined locations of all 73 autosomal
aCFSs, as determined previously (Lukusa and Fryns 2008; Mrasek
et al. 2010), were converted to human genomic coordinates (hg18)
using the UCSC Genome Browser (Rhead et al. 2009). Breakage
frequencies were obtained for three distinct individuals but pre-
sented high inter-individual concordance (correlations around
0.96–0.99); we, therefore, used the average breakage frequency
across the three individuals for each aCFS.

The NFR set was constructed from regions that did not exhibit
breakage after induction by aphidicolin in the genome-wide screen
by Mrasek and colleagues (Mrasek et al. 2010) and were not indicated
as fragile sites in other studies (Kuwano et al. 1988; Borgaonkar 1994).
From these, we further excluded centromeric regions because they are
enriched in minisatellites (Vergnaud and Denoeud 2000) and het-
erochromatin regions that do not have DNA sequence available. Sex
chromosomes were also excluded from our initial analyses because of
their high repetitive element content (Skaletsky et al. 2003; Ross et al.
2005). In all, we utilized 124 autosomal NFRs.

Calculating and prescreening predictors

Genomic features (Supplemental Table S3), as assigned to each
aCFS and NFR, were downloaded from the UCSC Genome Browser
(Rhead et al. 2009) or from the literature (see Supplemental Table
S3 for references). The hg18 human genome annotations were
used for most features, and those available only for other human
genome assemblies were mapped to hg18 with the lift-over tool in
Galaxy (Blankenberg et al. 2011). Most features were available in
the corresponding data sets as genomic intervals and were inter-
sected with aCFS or NFR cytogenetic coordinates to calculate
coverage (percentage of overlap) for large-scale genomic features or
density for small motifs. For replication timing, we used a weighted
average value when several data intervals overlapped with an aCFS
or an NFR. Features were measured as coverage (percentage), motif
density, or average value across an interval, depending on their
type (Table 1; Supplemental Table S3), and each was transformed to
approximate a Gaussian distribution. The gaps in assembly were
subtracted from each aCFS and NFR prior to calculating coverage,
density, or assigned value.

In order to limit the number of, and correlations among,
features used as potential predictors for our regression models, we
performed a prescreening (Fig. 2A). We used hierarchical clustering
based on pairwise Spearman’s rank correlation coefficients (dis-
tance = 1�|coefficient|) to parse 54 features into tightly correlated
groups (clusters) and selected 19 of them, each representing one
such group and having correlations below 0.7 with one another.

Notably, considering only the 73 aCFSs, or both the 73 aCFSs and
the 124 NFRs, produced similar clustering patterns and led to
selecting the same predictors. Such prescreening facilitates sub-
sequent regression model building. It reduces computational time
for best subset selection algorithms (see below; since computa-
tional time doubles for every additional predictor, excluding ;30
features reduced the computational burden by a trillion-fold).
Moreover, it improves estimation through the model-building
process, providing a higher ‘‘observations per predictor’’ ratio. This
is especially important for logistic regression, where estimation is
performed by numerical maximum likelihood and requires suffi-
ciently large sample sizes to converge. Note that prescreening
predictors by clustering mitigates, but does not eliminate, the risk
of multicollinearity in our regressions (even though potential
predictors are picked to have relatively low pairwise correlations,
overall linear associations might still be high). We, therefore, still
evaluate multicollinearity using variance inflation factors during
model building (see below).

Regression analyses

Two types of regressions were used in our study—logistic and
standard multiple linear regression. The former models a binary
response (aCFS = ‘‘1’’ vs. NFR = ‘‘0’’) and the latter an approximately
continuous response (breakage frequency of aCFSs). For both re-
gressions, we (1) performed transformations on the 19 potential
predictors to approximate Gaussian distributions; for the standard
regression, also the response (breakage frequency) was trans-
formed by natural logarithm to regularize its distribution and en-
sure homoscedasticity in the fits, (2) ran a best subset selection
algorithm to select a smaller subset of predictors based on the
Akaike information criterion, (3) checked this subset of predictors
for autocorrelation using the partial autocorrelation function—no
absolute partial autocorrelations above 0.15 were detected in any
of the analyses, (4) identified and removed influential data points
(outliers), based on Cook’s distances computed with the model
comprising this subset of predictors (we removed points with
Cook’s distance larger than 4/[sample size – number of predictors – 1],
which corresponded to ;0.02 and 0.05 for the logistic and stan-
dard regression, respectively), (5) further reduced the model it-
eratively eliminating predictors based on their coefficients’
P-values and variance inflation factors; this led to models retain-
ing only predictors significant or marginally significant after
Bonferroni correction for multiple testing and with variance in-
flation factors below 5 (unless noted otherwise), and (6) considered
quadratic models comprising square and pairwise product terms
obtained from these final sets of predictors—no quadratic terms
were found significant in any of the analyses (Fox 2002). Common
graphical diagnostics (e.g., residual plots) (Supplemental Fig. S3)
were also employed to assess model performance throughout
the process. The pipeline of our regression analysis is depicted in
Figure 2B.

For both regressions, we evaluated the final models and in-
dividual contributions of the predictors retained in them based on
explained deviance (logistic regression) or variance (standard re-
gression). For the logistic regression, we calculated the pseudo
R-squared of a model using (Do–D)/Do, where Do is the null deviance
and D is the residual deviance of the model. We calculated the
relative contribution of each predictor to a model using [(Do–D) �
(Do–D(�p))]/(Do–D), where D(�p) is the deviance of the smaller
model obtained removing the predictor of interest. For standard
regression, we calculated the R-squared of a model using (TSS –
SSE)/SSE, where TSS is the total sum of squares and SSE the residual
sum of squares of the model. We calculated the relative contribu-
tion of each predictor to a model using the partial R-squared,
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which is defined as (SSE(�p) – SSE)/SSE(�p), where SSE(�p) is the re-
sidual sum of squares of the smaller model obtained removing the
predictor of interest.

All regression analyses were implemented in the R statistical
package version 2.11.1 (R Development Core Team 2011). All tools
developed for this project are freely available at the Galaxy
(Blankenberg et al. 2011) website, http://main.g2.bx.psu.edu/.
Tools ‘‘Logistic Regression’’ and ‘‘Partial R-squared’’ can be found
under ‘‘Multiple Regression,’’ and tool ‘‘Assigned Weighted Average
Value of Genomic Feature’’ can be found under ‘‘Regional Varia-
tion.’’ The ‘‘Standard Multiple Regression’’ tool used here was al-
ready available in Galaxy.

Cloned aCFSs

Eighteen autosomal aCFSs mapped by fluorescence probes (i.e.,
‘‘cloned’’) (Ciullo et al. 2002; Ruiz-Herrera et al. 2006; Fechter et al.
2007; Reshmi et al. 2007; Bosco et al. 2010; Pelliccia et al. 2010;
Blumrich et al. 2011) were studied. For analysis, we intersected
their cloned and cytogenetically defined coordinates. For four
CFSs, we found no intersections, although clonally defined co-
ordinates were adjacent to the cytogenetically defined coordinates.
The 14 intersected regions were used to validate our logistic and
multiple regression models. We recalculated values for significant
predictors using the same method we used with aCFSs defined at
the cytogenetic level. Next, we compared breakage frequency and
probability to be an aCFS for the intersected regions vs. their cy-
togenetically defined counterparts.

Mouse fragile sites and genomic contexts

Cytogenetic locations of 24 known APH-induced mouse fragile
sites (Elder and Robinson 1989; Helmrich et al. 2006) were con-
verted to mouse genomic coordinates (mm8). For 16 of these sites,
breakage frequencies were estimated from 266 mouse cells (Elder
and Robinson 1989). Genomic features for each mouse fragile site
were calculated similarly as for human aCFSs. We used rodent B1s
as an equivalent to Alu repeats in human as both evolved from the
7SL RNA gene (Yang et al. 2004). Mouse fragile sites were used as
a test set to validate our multiple logistic regression for aCFSs
prediction. We consider 0.5 to be the threshold for a positive call
assuming equal probability to observe fragile and nonfragile re-
gions. Breakage frequencies of mouse fragile sites were used to
validate our multiple linear regression for breakage frequency.
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