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Di Tella University, Sáenz Valiente 1010, Buenos Aires, Argentina

andrea@hsph.harvard.edu

LINGLING LI

Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care
Institute, Boston, Massachusetts 02115, U.S.A.

lingling li@post.harvard.edu

AND XIAOCHUN LI

Division of Biostatistics, Indiana University School of Medicine, Regenstrief Institute,
Indianapolis, Indiana 46202, U.S.A.

xiaochun@iupui.edu

SUMMARY

Standardized means, commonly used in observational studies in epidemiology to adjust for potential
confounders, are equal to inverse probability weighted means with inverse weights equal to the empirical
propensity scores. More refined standardization corresponds with empirical propensity scores computed
under more flexible models. Unnecessary standardization induces efficiency loss. However, according to the
theory of inverse probability weighted estimation, propensity scores estimated under more flexible models
induce improvement in the precision of inverse probability weighted means. This apparent contradiction
is clarified by explicitly stating the assumptions under which the improvement in precision is attained.
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1. INTRODUCTION

Often, epidemiological studies aim to evaluate the causal effect of a discrete exposure on an outcome. In
observational studies systematic bias due to confounding is a serious concern. For this reason, investigators
routinely collect and adjust for a large number of confounding factors in data analyses. A common analytic
strategy is to categorize the confounders and then to compare the exposure group-specific standardized
means. These are exposure group-specific weighted means of the outcome across levels of the categorized
confounders with weights equal to the empirical probabilities of the categorized confounders in the entire
sample. It is well known that overcategorization, i.e. unnecessary categorization, may induce efficiency
losses. This issue is essentially the same as the well-understood increase in variance induced by adding in
a linear regression model covariates that have no partial correlation with the outcome (Cochran, 1968). It
has been studied in a number of nonlinear regression settings, e.g. Mantel & Haenszel (1959), Breslow
(1982), Gail (1988), Robinson & Jewell (1991), Neuhauhaser & Becher (1997) and De Stavola & Cox
(2008), and has been empirically analyzed for standardized means in Brookhart et al. (2006).

The issue, however, appears to contradict well-known facts in the theory of inverse probability weighted
estimation. Specifically, a standardized mean is equal to a so-called inverse probability of treatment
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weighted mean. More precisely, it is equal to a group-specific mean of the outcome weighted by the
inverse of the empirical propensity score. An empirical propensity score is the maximum likelihood
estimate of the true propensity score, i.e. of the probability of being in the exposure group given the
confounders, under a saturated model for the probability of exposure given the categorized confounder.
The apparent contradiction is that more refined categorization corresponds to more flexible models for the
propensity score, and according to the theory of inverse probability estimation, the use of more flexible
propensity score models induces an improvement in the precision of inverse probability means, and not a
decrease in precision as regression theory indicates.

The purpose of this note is to clarify this apparent contradiction showing that indeed, efficiency losses
induced by unnecessarily refined categorizations do not contradict, and indeed are a consequence of, the
theory of inverse probability estimation.

2. THE APPARENT CONTRADICTION

Consider a cohort study in which a discrete exposure variable A, an outcome Y and a vector of pre-
exposure covariates X are measured for each of n subjects drawn at random from a study population.
Although the typical goal of such a study is the evaluation of the exposure effect on the outcome, i.e. a
comparison across exposure levels, the issues in this note are best understood by considering inference
about the outcome mean at one specific exposure level. Thus, we will assume that A is binary and that the
goal is to estimate the outcome mean at exposure level A = 1. Consider a categorization of X into J strata
and let L denote the polytomous variable that records the stratum, a subject with covariates X belongs to.
The standardized mean at exposure level A = 1 and with categorized variable L is

μ̂ ≡ En{En(Y | A = 1, L)}, (1)

where throughout for any U and V ,

En(U ) ≡ n−1
n∑

i=1

Ui , En(U | A = 1, V ) ≡
( ∑

i :Ai =1,Vi =V

Ui

) /(
n∑

i :Ai =1,Vi =V

1

)
.

For standardized means to be informative about the causal effects certain assumptions need to hold.
The issue is best articulated within the potential outcomes framework. Let Ya be the subject’s potential
outcome if, perhaps contrary to fact, he is exposed to A = a. Contrasts comparing E(Y1) and E(Y0)
quantify the causal effect of exposure. The standardized mean μ̂ is consistent for μ ≡ E(Y1) under the
following assumptions.

Assumption 1. Consistency: Y = YA.

Assumption 2. Positivity: pr(A = 1 | L) > 0.

Assumption 3. No unmeasured confounders: Y1 and A are conditionally independent given L , because
in such a case

μ = E{E(Y | A = 1, L)}. (2)

The apparent contradiction discussed in this note refers to the asymptotic behaviour of μ̂ under two
categorizations, one more refined than the other. The essence of the matter is best understood by considering
the extreme case contrasting the asymptotic behaviour of the adjusted average μ̂ with that of the crude
unadjusted average,

μ̃ ≡ En(Y | A = 1).

Our discussion focusses on this comparison. The well-known risk of bias induced by underadjustment,
i.e. by failure to adjust for an important confounder, is vividly unmasked in this extreme case: μ̃ does not
generally converge in probability to E(Y1). Formally, μ̃ converges to E(Y1 | A = 1) which is not generally
equal to E(Y1) because Y1 and A may share the common determinant L . Consistency of μ̃ requires that,
in addition to Assumptions 1–3, at least one of the following two independencies hold.
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Assumption 4. The variables Y and L are conditionally independent given A = 1.

Assumption 5. The variables A and L are independent.

In the Appendix we show that μ̂ solves the inverse probability weighted estimating equation

En

{
A

En(A | L)
(Y − μ)

}
= 0, (3)

whereas μ̃ solves the inverse probability weighted estimating equation

En

{
A

En(A)
(Y − μ)

}
= 0 (4)

whence the apparent contradiction emerges. Specifically, both En(A | L) and En(a) can be regarded as
efficient estimators of the propensity score π (l) ≡ E(A | L), the former under a saturated model on L
and the latter under the smaller model that assumes independence of A and L . According to the theory of
inverse probability estimation, inclusion of covariate L in an efficiently estimated model for the propensity
score should not be detrimental to the efficiency with which E(Y1) is estimated even if the covariate is
not needed for bias correction. This appears to contradict the fact that under Assumptions 1–3, μ̃ is more
efficient than μ̂ when Assumption 4 holds and Assumption 5 fails.

3. EXPLAINING THE APPARENT CONTRADICTION

The apparent contradiction arises because of the vagueness of the statement about the efficiency gains
induced by including L in the propensity score estimators, which does not explicitly mention the assump-
tions required for its validity. To explain the contradiction, let A denote the model defined by Assumptions
1–3, let B denote the model defined by Assumptions 1–4 and let C denote Assumptions 1–3 and 5.

Both μ̂ and μ̃ are consistent for E(Y1) under model B or C but only μ̂ is consistent for E(Y1) under
model A.

The estimator μ̂ is asymptotically efficient under model A and under model C but μ̃ is asymptotically
efficient under model B. These efficiency results are best understood by examining the likelihood

Ln( f A,Y,L ) = L1,n( fL , fY |A,L )L2,n( f A|L ), (5)

where

L1,n( fL , fY |A,L ) =
n∏

i=1

fL (Li ) fY |A,L (Yi | Ai , Li ), L2,n( f A|L ) =
n∏

i=1

f A|L (Ai | Li ).

Model A imposes restrictions on the law of (Y1, L , A) but not on the distribution f A,Y,L of the observed
data (Y, L , A) (Gill et al., 1997) and hence is a nonparametric model for the observables. Because the
estimator μ̂ is the plug-in estimator of μ = E{E(Y | A = 1, L)}, it is the maximum likelihood estimator
of μ under the nonparametric model A.

Model C restricts the law f A|L entering the second term on the right-hand side of (5) since Assumption
5 postulates that f A|L = f A. Because by (2), μ depends only on the components of the law entering in
the L1,n-part of the likelihood (5), the maximum likelihood estimators of μ under models A and C must
agree. Thus, μ̂ is the maximum likelihood estimator of μ under model C and consequently asymptotically
efficient, i.e. avar(μ̂) is equal to the semiparametric variance bound for μ under the model. We let avar(·)
denote the variance of the limiting distribution, hereafter.

Model B imposes the restriction fY |A=1,L = fY |A=1 and hence it restricts the law fY |A,L in L1,n . The
estimator μ̂ is not the maximum likelihood estimator under model B because it does not exploit this
restriction. In fact, under model B, μ̃ is asymptotically efficient. Furthermore, μ̃ is asymptotically strictly
more efficient than μ̂ unless Assumption 5 also holds. Proof of these results can be found in the online
Supplementary Material. We are now ready to explain the contradiction.
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Given an arbitrary function d(l) and any π (l), let μ̂d (π ) denote the solution to

En

{
A

π (L)
d(L)(Y − μ)

}
= 0. (6)

The following Lemma, a corollary of the theory laid out in Robins et al. (1994), states the precise result
of the theory of inverse probability weighted estimation that the gain in efficiency of μ̃ over μ̂ appears to
contradict.

LEMMA 1. Given one of the models A, B or C for the observables, let π̂(l) and π̃ (l) be the maximum
likelihood estimators of f A|L (1 | l) under two nested models for f A|L that are correctly specified under the
assumptions of the given model. Then √ n{μ̂d (π̂) − μ} and √ n{μ̂d (π̃) − μ} converge to mean zero normal
distributions. If π̂ (l) is the estimator of f A|L (1 | l) under the larger model, then

avar{μ̂d (π̂ )} � avar{μ̂d (π̃ )}.

Observe that because μ̂ solves (3) and μ̃ solves (4) we can write μ̂ = μ̂d1 (π̂ ) and μ̃ = μ̂d1 (π̃) with
d1(l) = 1, π̂ (l) = En(A | L = l) and π̃(l) = En(A). The improved efficiency of μ̃ over μ̂, i.e. the fact that
generally avar(μ̃) is strictly smaller than avar(μ̂), under modelB does not contradict Lemma 1 because π̃ (l)
does not meet its premise. Specifically, Lemma 1 makes the premise that π̃ (l) is computed under a model
for f A|L that is correctly specified under the given model, in the case of our concern, model B. However,
π̃ (l) = En(A) is the fitted value under a model for f A|L that assumes that A and L are independent, an
assumption not made by model B.

The efficiency gains conferred by μ̃ over μ̂ under model B can be deduced from the general theory of
efficient inverse probability estimation in semiparametric models for missing data (Robins et al., proposi-
tion 8.1, 1994). In the Supplementary Material we apply this theory to show that: (a) μ̃ is asymptotically
equivalent to μ̂d2 (π̂ ) with d2(l) = E(A | L = l) and (b) μ̂d2 (π̂), and therefore μ̃, is semiparametric efficient
under B.

In conclusion, the fallacy arises because the claim about efficiency gains assumes an explicit model for
the law of (A, L , Y ) and it requires that both propensity score models be correct under the given model.
However, En(A) is the efficient propensity score estimator under a model not implied by model B, so the
efficiency claim does not apply.

4. CONCLUDING REMARKS

Our analysis extends to inference in marginal structural mean models for the effect of a, possibly
polytomous, exposure A given, a possibly strict, subset Z of the confounders L . These models assume that
E(Ya | Z ) = m(a, Z ; β), where m(·) is known and β unknown. Estimators of β are obtained by solving
(6) with A/π (l) replaced by an estimator of 1/ f A|L (A | L), μ replaced by m(A, Z ; β) and with d(l) of the
dimension of β. When Assumption 5 holds, using 1/ f̃ A(A) where f̃ A(A) = En{Ia(A)} and Ia(A) is the
indicator that A = a yields consistent and asymptotically normal estimators of β that are generally more
efficient than those obtained using 1/ f̂ A|L (A | L) where f̂ A|L (A | l) = En{Ia(A) | L = l}. Once again, this
raises an apparent contradiction with inverse probability weighted estimation which can be explained as
in § 3.
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APPENDIX

For any given law f (l, a, y), define the new law f ∗(l, a, y) = f (l)I1(a) f (y | a, l). Then E{E(Y |
A = 1, L)} = E∗(Y ) where E(·) and E∗(·) denote expectations under f and f ∗ respectively. But,
f ∗(l, a, y)/ f (l, a, y) = I1(a)/ f (a | l), so E∗(Y ) = E{I1(a)Y/ f (A | L)} thus proving that E{E(Y | A =
1, L)} = E{AY/ f (1 | L)} for any f and A binary. That μ̂ solving (3) also admits the representation (1)
follows by applying this result when f is the empirical law.
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