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ABSTRACT

Motivation: Nucleosomes are the basic elements of chromatin
structure. They control the packaging of DNA and play a critical
role in gene regulation by allowing physical access to transcription
factors. The advent of second-generation sequencing has enabled
landmark genome-wide studies of nucleosome positions for several
model organisms. Current methods to determine nucleosome
positioning first compute an occupancy coverage profile by mapping
nucleosome-enriched sequenced reads to a reference genome;
then, nucleosomes are placed according to the peaks of the
coverage profile. These methods are quite accurate on placing
isolated nucleosomes, but they do not properly handle more
complex configurations. Also, they can only provide the positions
of nucleosomes and their occupancy level, whereas it is very
beneficial to supply molecular biologists additional information about
nucleosomes like the probability of placement, the size of DNA
fragments enriched for nucleosomes and/or whether nucleosomes
are well positioned or ‘fuzzy’ in the sequenced cell sample.
Results: We address these issues by providing a novel method
based on a parametric probabilistic model. An expectation
maximization algorithm is used to infer the parameters of the mixture
of distributions. We compare the performance of our method on two
real datasets against Template Filtering, which is considered the
current state-of-the-art. On synthetic data, we show that our method
can resolve more accurately complex configurations of nucleosomes,
and it is more robust to user-defined parameters. On real data,
we show that our method detects a significantly higher number of
nucleosomes.
Availability: Visit http://www.cs.ucr.edu/∼polishka
Contact: stelo@cs.ucr.edu or polishka@cs.ucr.edu

1 INTRODUCTION
The study of the processes governing gene regulation is a
central problem in molecular biology. One of the key factors
influencing gene expression is the complex interaction between
chromatin structure and transcription factors. The fundamental unit
of chromatin is the nucleosome, composed of 146 ± 1 bp of DNA
wrapped 1.65 turns around a protein complex of eight histones.
To elucidate the role of the interactions between chromatin and
transcription factors, it is crucial to determine the location of the
nucleosomes along the genome. In general, the more condensed
the chromatin, the harder it is for transcription factors and other
DNA binding proteins to access DNA and carry out their tasks.
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The more accessible is the DNA, the more likely surrounding
genes are actively transcribed. The presence (or the absence) of
nucleosomes directly or indirectly affects a variety of other cellular
and metabolic processes like recombination, replication, centromere
formation and DNA repair.

A handful of experimental techniques have been developed for
genome-wide mapping of nucleosomes. For instance, one can
enrich for genomic regions that are either bound to histones
(typically via chromatin immuno-precipitation or ChIP) or for
genomic regions that are free of nucleosomes (linkers). For instance,
MAINEs (MNase-assisted Isolation Nucleosomal Elements) (Zaret,
2005) isolates the portions of the DNA that are attached to
nucleosomes, because MNase preferentially digests linker regions.
Then, microarrays (ChIP-chip) or sequencing (ChIP-seq/MNase-
seq) are applied to the enriched DNA.

In this article, we concentrate on the analysis of sequencing
data, given the prevalence of MNase/ChiP-seq experiments in the
recent literature. The computational analysis of the sequencing data
usually consists of two main steps: (i) a nucleosome occupancy
coverage is computed from the process of mapping nucleosome-
enriched sequenced reads to a reference genome, followed by some
normalization steps and (ii) nucleosomes are placed according to the
peaks of the coverage profile.

Approaches based on peak calling are computationally fast and
quite accurate in resolving isolated (stable or arrayed ) nucleosomes;
however; they are not entirely reliable when more complex
nucleosome configurations are present. Observe that while it is
physically impossible for two nucleosomes to be ‘overlapping’ on
the same location on a DNA strand, it is quite common that the
population of cells from which the enriched DNA was obtained
had nucleosomes slightly ‘off-sync’ at a given genomic coordinate
(transient interaction). As a consequence, the resulting coverage
profile will exhibit a ‘blurring’ of the peaks.

Molecular biologists distinguish the case of ‘overlapping’
nucleosome from ‘fuzzy’ nucleosomes or ‘fuzzy’ regions (see
Fig. 1). For overlapping nucleosomes, the overlap is relatively small;
in the ‘fuzzy’ case, several nucleosomes are mutually overlapping
for a significant fraction of their size (see Zhang and Pugh 2011
for a review). By introducing a threshold parameter on the allowed
overlap, one can define precisely the line between ‘fuzzy’ and
‘overlapping’.

Another shortcoming of peak-calling approaches is that they
can only report nucleosome positions and/or occupancy level.
Molecular biologists, however, need additional information about
nucleosomes. For instance, they are interested in the level of
‘fuzziness’ in certain genomic locations with respect to coding
regions (i.e. well positioned for all the cells in the sample, or
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Fig. 1. Nucleosomes are represented by ovals, mapped reads by arrows
(which correspond to 5′ →3′ prefixes of nucleosome-bound DNA). Coverage
profiles are represented as time series for forward (top) and reverse (bottom)
strands: the line style (solid, dotted and dashed) indicates peaks originating
from distinct nucleosomes. (a) represents a stable nucleosome; (b) illustrates
overlapping nucleosomes; and (c) represents ‘fuzzy’ nucleosomes

‘blurred’), or how strong is the binding between nucleosomes and
DNA. To address these shortcomings, we propose a method that
determines the accurate position of the nucleosomes independently
from the amount of overlaps in the nucleosomes. This method can
also extract other important statistics about nucleosomes, e.g. the
probability that a nucleosome is actually present, a measure of
nucleosome ‘fuzziness’, and the size of DNA fragments enriched
for nucleosomes.

Here, we propose a parametric probabilistic model for
nucleosome positioning, which we called NOrMAL, for
NucleOsome Mapping ALgorithm. NOrMAL uses Expectation
Maximization (EM) to infer its parameters. To demonstrate the
performance of our method, we report experimental results on
MAINE-seq data for Plasmodium falciparum (Ponts et al., 2010)
and Saccharomyces cerevisiae (Weiner et al., 2010). We compare
the performance of our method against the Template Filtering
(TF) algorithm (Weiner et al., 2010), which is considered the
current state-of-the-art in terms of accuracy and ability to estimate
sizes of the DNA fragments bound to nucleosomes. We also discuss
a fundamental limitation of greedy peak-calling approaches in the
case of overlapping nucleosomes and how our method addresses
this issue.

1.1 Previous work
Several landmark studies have been published in the last few
years on the chromatin structure of model organisms based on the
analysis of genome-wide nucleosome maps (Albert et al., 2007;
Field et al., 2008; Mavrich et al., 2008a, b; Ponts et al., 2010;
Shivaswamy et al., 2008; Valouev et al., 2008; Zhang and Pugh,
2011). Existing methods in the literature are based on the analysis
of the peaks in the nucleosome occupancy coverages estimated by
mapping nucleosome-enriched reads to the reference genome. The
coverage occupancy profile is an integer-valued function defined
for all genomic locations: given a position i in a chromosome
the function is equal to the number of sequenced reads that are
mapped to location i. From a probabilistic point of view, the coverage
profile represents a non-parametric distribution of the nucleosome
positions. At the time of writing, the length of the reads obtained by
second-generation sequencing (e.g. Illumina Genome Analyzer) are

limited to about 100 bases and the sequencing occurs in the 5′ →3′
direction. In the case of ChIP-seq/MAINE-seq, sequenced reads that
can be uniquely mapped to the positive strand originate from the
left boundary of nucleosome DNA fragments, while reads uniquely
mapped to the negative strand originate from the right boundary
(Fig. 1). Recall that nucleosomes are composed of about 146 bp of
DNA, so if reads are single end and shorter than 146 bp, we expect
to observe a peak in the forward and a peak in the reverse coverage
profiles at a distance consistent with the nucleosome size.

The problem of associating a peak in the forward strand with
the correct peak in the negative strand can be difficult in the case
of a large number of complex nucleosome configurations. Some
authors artificially extend the reads in the 5′ →3′ direction or they
shift the positions of the mapped read position of the forward and
reverse toward the middle of potential nucleosomes. Then, they
combine (e.g. sum) the forward and reverse modified coverages
to build a score function. In both cases, they need to determine
the amount of the extension or the size of the shift. In the former
case, the extension should account for the expected length of the
DNA fragments enriched for nucleosomes; in the latter, the shift
should be about half of the DNA fragment size. The problem of this
approach is that no extension or shift that will work equally well
for all nucleosomes in the genome. While one should expect DNA
fragments enriched for nucleosomes to be ∼146 bp, the reality is that
the digestion process can either leave nucleosome-free DNA in the
sample, or ‘over-digest’ the ends of nucleosome-bound DNA. What
complicates the matter further is that the rate of digestion is sequence
dependent (Allan et al., 2012; Weiner et al., 2010), so nucleosomes in
different genomic locations will end up with different DNAfragment
size. For this reason, it is advantageous to ‘learn’ this information
from the input data. TF (Weiner et al., 2010) is the only method we
know that can handle variable fragment sizes in a specified range,
whereas other methods require users to decide this value in advance.

As said, a variety of peak-calling algorithms have been also
developed (Albert et al., 2007; Field et al., 2008, 2009; Kaplan
et al., 2009; Mavrich et al., 2008a, b; Sasaki et al., 2009; Valouev
et al., 2008). Most of these methods have been proposed for the
analysis of ChIP-chip or ChIP-seq data to determine the position and
strength of the transcription factors binding to DNA. The problem of
detecting transcription factor binding sites is similar to nucleosome
positioning: in both cases we need to infer position of proteins
binding to DNA from the coverage profiles. However, the size of the
nucleosomes is significantly bigger than transcription factor binding
sites, as a consequence the resulting configurations of nucleosomes
can be more complex.

To summarize our experience with existing methods on the
genome-wide nucleosome study of human malaria parasite (Ponts
et al., 2010, 2011), peak calling approaches suffer from a variety
of problems. First, the coverage profile function has to be cleaned
of high-frequency noise, typically via a kernel density estimation
method (Parzen, 1962). The type of kernel and the amount of
smoothing can drastically affect the results: too much can merge
adjacent peaks, too little can leave too many noisy artifacts that can
be interpreted as individual peaks. Second, peak finding algorithms
have parameters (like the extension and the shift discussed above)
that are difficult to optimize: a set of parameter can work for a
region of a chromosome but not for another. Third, peak calling
do not properly resolve overlapping nucleosomes. For instance, TF
(Weiner et al., 2010) uses a greedy strategy: nucleosomes are placed
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according to the ‘best’ matching peaks in the score function. Once
these strong-positioned nucleosome are assigned, TF ignores any
nucleosome that overlaps with previous ones. It is relatively easy to
show that for overlapping nucleosomes the greedy strategy does not
always return the best overall placement (see Section 3 for details).

2 METHODS
Next, we propose a parametric probabilistic model to find the most likely set
of nucleosome that best ‘explain’ the mapped reads. We cast this problem in
a modified Gaussian mixture model framework. The problem of positioning
nucleosomes is then reduced to the problem of learning the parameters of the
model and finding the distribution of mixture components, which is achieved
via EM.

2.1 A probabilistic model for nucleosomes
We employ a probabilistic model for nucleosome positioning that is described
by a set of hidden and observed variables. We use N to denote the number
of DNA fragments obtained after MNase digestion. For any DNA fragment
i∈[1,N ], let xi be the starting position of the 5′-end of fragment i (obtained
by mapping a corresponding sequenced read), and let variable di ∈{+1,−1}
be the strand on which fragment i was mapped (+1 for the positive strand,
and −1 for the negative strand). Also, let zi be the length of fragment i. If we
use variable mi to denote the position of the center of the fragment i, then
we have mi =xi +(dizi)/2.

We denote with Xi,Di,Zi and Mi the random variables associated with
variables xi,di,zi and mi , respectively. Since the sequencing process is 5′ →
3′, the value of Xi is observable by means of mapping a read originating from
fragment i. Similarly, the strand variable Di is also observable. Variables Zi

and Mi can be observed directly only if sequencing produces paired-end
reads, otherwise these variables are hidden. In order to consider the most
general case, we only deal with the latter case (single-end reads).

We assume for the time being that the number K of nucleosomes is
given. We will discuss how to choose K in Section 2.3. For each DNA
fragment i, we use a hidden variable Ci ∈[1,K] representing the nucleosome
to which it belongs. Each nucleosome j∈[1,K] is described by a set of six
variables (μj,σj,�j,δ

+1
j ,δ−1

j ,πj), where μj denotes the center position of the
nucleosome j, σj is the fuzziness associated with the position of nucleosome
j, �j describes the length of DNA fragments associated with nucleosome
j, δ+1

j and δ−1
j represents the variation on fragment sizes for positive and

negative strands, respectively, and πj is the probability of nucleosome j.
The degree of fuzziness captures the variation of the position of a particular
nucleosome in the population of sampled cells. Well-positioned nucleosomes
have very low degree of fuzziness. We introduce two variables δ+1

j and δ−1
j to

model the variation of the fragment size because MNase does not only digest
nucleosome-free DNA. Given enough time, it can also digest into the ends of
the fragments bounds to nucleosomes, the rate of digestion being sequence
dependent [see, e.g. (Allan et al., 2012; Weiner et al., 2010)]. Since the
sequence composition of the 5′ end of a DNA fragment can be quite different
from the 3′ end, we need to have two different variables. The value of Ci

is drawn from (1,2,...,K) with corresponding probabilities (π1,π2,...,πK ).
Parameter πj models the contribution of j-th nucleosome to the occupancy
level, i.e. what portion of the mapped reads belong to nucleosome j.

Our nucleosome model assumes that our random variables are distributed
according to a normal distribution. For convenience of notation, we set
�j = (μj,σj,�j,δ

+1
j ,δ−1

j ,πj) for all j∈[1,K], and �= (�1,...,�K ). First,
we assume that variable Mi associated with the center of the fragment i for
a particular nucleosome j is distributed as follows

P(Mi|Ci = j,�)∼N (μj,σ
2
j ) (1)

where μj represents the center of the nucleosome j and σj is its fuzziness.
Second, we assume that the length Zi of fragment i for a particular

...

C

Fig. 2. The proposed graphical mixture model: shaded nodes correspond to
observed variables, white nodes correspond to hidden variables

nucleosome j is distributed as follows

P(Zi|Di =di,Ci = j,�)∼N (�j,(δ
di
j )2) (2)

where �j represents the expected size of the fragments for nucleosome j,
and δ+1

j and δ−1
j represents the variation of fragment sizes for positive and

negative strands, respectively.
Combining Equations (1) and (2) and relation xi =mi −(dizi)/2, and then

applying the rule of linear combination of independent Gaussians we obtain

P(Xi|Di=di,Ci=j,�)∼N
(
μj−(di�j)/2,σ 2

j +(δdi
j /2)2

)
(3)

Equation (3) allows one to compute the probability of a given data point
xi given the parameters of a nucleosome. Next, we describe the model for
multiple nucleosomes.

2.2 Mixture model
Next, we introduce a generative mixture model to describe the likelihood of
input data points X = (x1,...,xN ). Figure 2 shows a graphical representation
of the mixture model. In Equation (3), the only hidden random variable is C
because we already excluded variables zi from the computation. By grouping
variables Xi,Di , we can use an approach similar to a naive Bayes classifier.
Variable C represents the nucleosome to which the points belong. Thus, we
can describe the likelihood of point (xi,di) given the parameters of our model
as a mixture of distributions. Using the Bayesian rule we obtain

P(Xi|Di=di,�)=
K∑

j=1

P(Ci =j,�)P(Xi|Di =di,Ci =j,�)

=
K∑

j=1

πj f
(

xi,μj−di�j/2,σ 2
j +(δdi

j /2)2
)

(4)

where f (x,a,b)=1/
√

2πbe−(x−a)2/2b is the Gaussian density function.
Using Equation (4), we can obtain the log likelihood of observed data

points X given parameters � as

l(X |�)=
N∑

i=1

logP(Xi =xi|Di =di,�)

=
N∑

i=1

log

⎡
⎣ K∑

j=1

P(Ci=j,�)P(Xi|Di=di,Ci =j,�)

⎤
⎦

=
N∑

i=1

log

⎡
⎣ K∑

j=1

πj f
(

xi,μj−di�j/2,σ 2
j +(δ(d )

j /2)2
)⎤⎦ (5)

Given Equation (5) and the input data points X = (x1,...,xN ), we can find
an estimate the parameters of the model � via maximum likelihood

�̂=argmax�l(X |�) (6)

Recall that �= (�1,...,�K ) is a vector whose components are the
nucleosome parameters �j = (μj,�j,σj,δ

(+1)
j ,δ

(−1)
j ,πj) for all j∈[1,K].
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Fig. 3. A sketch of the proposed NOrMAL algorithm

The presence of parameters πj that correspond to hidden variables Ci prevents
us from solving Equation (6) directly. We estimate �̂ via EM. In our case,
the E step requires computing the posterior probabilities P(Ci = j|Xi =xi;�)
of data points xi,i∈[1,N ] with respect to the distribution of Ci given the
current estimate of parameters �(t)

Q(�|�(t))=EC|X ,�(t) l(X |�) (7)

During the E step, we supplement the missing data in Equation (6) with the
expected values under the current parameter estimates �(t). In the M step,
we find new parameter estimation �(t+1) by maximizing Equation (7)

�(t+1) =argmax�Q(�|�(t)) (8)

It is relatively straightforward to bound the variation parameters
(σ,δ+1,δ−1) during the iterative EM process to converge to a solution with
‘reasonable’ parameters. We can also easily introduce prior distribution for
some of the parameters. For instance, we can specify an expected distribution
for DNA fragment sizes �j , which can be estimated via gel electrophoresis
prior to sequencing.

2.3 Choosing the number of nucleosomes
The method described above assumes that the number of clusters K is known.
The problem of selecting the best value for K is as challenging as selecting
the optimal number of clusters in k-means clustering. One can estimate the
number of clusters by looking at the support area of the occupancy coverage,
but this will be quite inaccurate because ‘fuzzy’ nucleosomes correspond to
wider peaks, and the support area is bigger for them.

Here, we propose a simple but effective heuristic to find K . We
start by (1) placing the maximum possible number of non-overlapping
nucleosomes uniformly distributed on the chromosome, that is K = (size of
the chromosome)/(expected size of a nucleosome), where the expected size

of nucleosomes is underestimated. Then, (2) we run our EM algorithm until
convergence (‘soft learning’). We will then (3) check the distance between the
clusters, and merge those that have too much overlap (above a user-specified
threshold). In case of multiple overlaps for a nucleosome, we merge it with
the closest one. We repeat (2) and (3) until no additional clusters are merged.
After a few cycles, we will obtain a set of non-overlapping clusters that best
explain the given data points. Overlapping nucleosomes are merged into new
ones and then the position of new nucleosomes are learned from the data.

This procedure will give us a good estimate on the number of clusters as
well as a rough estimate of the nucleosome positions. To further improve
accuracy for other model parameters, we perform one iteration of ‘hard
learning’ by assigning each data point xi its maximum probable cluster.
Nucleosome clusters will partition the set of input points, which in turns will
allow us to compute their parameters more accurately. The pseudo-code of the
algorithm is shown on Figure 3. The running time of NOrMAL is dominated
by the running time of Learning step (Algorithm 1, line 6). Observe that the
probability that a data point belongs to far-away nucleosomes is close to zero,
so one can avoid unnecessary computations by computing updates only for
clusters in close vicinity of each point.

The running time is dominated by the heuristic used to find the number of
nucleosomes K . In order for the algorithm to scale to eukaryotic genomes,
additional optimization steps will have to be implemented. For instance,
during the early stage of soft learning (i.e. active cluster merging), the
algorithm could be applied to small ‘chunks’ of chromosomes. Then,
when the number of merges reduces substantially, the nucleosome maps
for each chunk could be combined and algorithm would continue to the
hard-learning step.

2.4 Practical considerations
Our method requires users to specify three parameters, namely the threshold
for allowed overlap between adjacent nucleosomes, the prior � on
nucleosome sizes and its weight λ.

The threshold for allowed overlap can significantly affect the output: the
more overlap is allowed, the more nucleosomes can be placed. In the current
implementation, this parameter has to be specified by the user. The prior � on
the nucleosome size and its weight λ control the propagation of ‘knowledge’
from data points on forward strand to data points on the reverse strand, and
vice versa. Based on our experience, if the prior size � is within 30 bp of
the ‘true’ fragment size, then the algorithm is consistent in its output.

Our implementation has some additional internal parameters that we
are not expecting users to change. While inferring the parameters of our
mixture models, some clusters will tend to cover most of the data points
using large variances: a common trick to avoid this from happening is to
introduce hard limits on such parameters. Our implementation has range
limits for the nucleosome sizes and variance to force the method to converge
to ‘reasonable’ nucleosome sizes/variances in the early stage of the iterative
process. These parameters have been chosen loose enough so by the end
of the iterative process, the limits for nucleosome size and variance are
rarely hit, and the output is not significantly affected. The hard-learning step
completely ignores those upper limits.

Additional details on parameter selection will be found in the on-line User
Manual.

3 EXPERIMENTAL RESULTS
We carried out extensive benchmarking between our proposed
method NOrMAL and TF (Weiner et al., 2010). We selected TF
because it is considered the current state-of-the-art. It is the only
method that, in addition to inferring nucleosome positions, can
extract nucleosome fragment sizes and binding scores. TF differs
from the traditional peak-calling algorithms because it does not
look for peaks in the coverage profiles, but it places nucleosomes at
the peaks of a correlation score matrix. Due to its greedy strategy,
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Table 1. The parameters used to generate the reads in Figure 4, and the
corresponding output results from TF and NOrMAL

Parameter True value TF NOrMAL

μ1 210 208 206
�1 130 125 134
μ2 300 301 300
�2 150 149 148

TF has significant limitations when dealing with fuzzy/overlapping
nucleosomes, as explained next.

The setup for the comparison is as follows. The input parameters
for NOrMAL are the prior size of the nucleosome fragments and the
allowed amount of overlap between nucleosomes. For TF, we used
default parameters unless specified otherwise. The default allowed
range of nucleosome size for TF is [100,200], which centered around
the expected nucleosomes size of ∼146 bp.

Synthetic data: first, we want to illustrate the challenge for existing
nucleosome positioning methods to deal with the placement of
overlapping nucleosomes. The problem derives from the difficulty
in distinguishing two overlapping nucleosomes from the ‘fuzzy’
case. To define precisely this problem, we need to introduce a
threshold parameter: if the percentage of overlap between two
nucleosomes exceeds the threshold, then they should be considered
‘fuzzy’, otherwise they should be treated as separate overlapping
nucleosomes. It is relatively easy to show that the greedy strategy
does not always give the optimal nucleosome placement in
case of overlapping nucleosomes. To do so, we have created a
small synthetic dataset that contains reads corresponding to two
overlapping nucleosomes. Although we could have used our own
parametric model to generate the synthetic data, to avoid the
possibility of giving an advantage to our method, we generated
the input data according to the template function described in
(Weiner et al., 2010). The parameters for nucleosome positions
(μ1 and μ2) and nucleosome sizes (�1 and �2) that we used to
generate the reads are reported in Table 1. Figure 4A illustrates
the coverage profile for mapped reads. Observe that there are two
peaks on forward and reverse strands, which indicates the presence
of two nucleosomes. The percentage of overlap is roughly 35%.
In the first case, we allowed such amount of overlap in both TF
and NOrMAL (Fig. 4B for TF and Fig. 4C for NOrMAL). Both
methods correctly reported two overlapping nucleosomes. Observe
the error bars attached to the boundaries of nucleosomes reported by
NOrMAL, which indicate the positional variance (or ‘fuzziness’) of

the corresponding boundary (each bar has length 3

√
σ 2

i +δ
di
i

2
). TF

does not provide such information.
In the second case, when the parameters are set so nucleosomes

are not allowed to overlap >30%, only one nucleosome should
be reported. Figure 4D and E illustrates the output of TF and
NOrMAL, respectively. Observe that now there is a fundamental
difference: TFs greedy strategy reports the presence of the first
nucleosome, but then it completely ignores the data corresponding
to the second nucleosome. This is an entirely arbitrarily choice and
the user will not be even aware of this. In contrast, NOrMAL reports
one nucleosome positioned near the centroid of the data points and
correctly indicates that the variance of the nucleosome boundaries

A

B

C

D

E

F

G

Fig. 4. An example of two overlapping nucleosomes. (A) Coverage profile
from synthetic data (forward strand on top, reverse strand on bottom), where
nucleosomes overlap on ∼35% of their length; nucleosomes detected using
TF allowing maximum 35% overlap (B), NOrMAL allowing maximum 35%
overlap (C), TF allowing only 30% overlap, [100,200] (D) and NOrMAL
allowing only 30% overlap (E); nucleosome reported by TF with nucleosome
size range [40,200] (F) and [100,300] (G)

in this case is very high, indicating that this nucleosome should be
considered ‘fuzzy’.

In addition, TFs positioning results are very sensitive to its
main input parameter, namely the allowed range for nucleosome
fragment sizes. With the default size range [100,200], TF reports
one nucleosome (Fig. 4D). When we extend the range to [40,200],
TF detects one small nucleosome by incorrectly matching the two
strongest (but closest) peaks (Fig. 4F). If we change the range to
[100,300], TF reports one large nucleosome, this time matching the
outmost peaks (Fig. 4G). Even if we allow a larger overlap, TF will
still produce the nucleosome in Figure 4G (data not shown). Since
the allowed range for nucleosome size in TF is a hard boundary,
the results are very dependent from the choice of this parameter.
NOrMAL is more robust in that regard because the prior distribution
for the fragment sizes in NOrMAL is ‘soft’ and it can adapt to
the data.

Real data: the challenge for nucleosome position inference is that
the true positions of the nucleosomes are unknown. The lack of
a ‘ground-truth’ makes it very hard to benchmark the existing
computational methods. To compare between methods, we can only
use conservative indicators. We argue that a valuable indicator is
the number of reported nucleosomes. Nonetheless, it is difficult to
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Table 2. Experimental results on the S. cerevisiae dataset: number of
nucleosome detected by TF and NOrMAL and corresponding execution
time (bold numbers indicate the maximum)

Chromosome No of mapped TF Time NOrMAL Time
reads (s) (s)

1 16 688 1 033 1.38 1 078 6.86
2 78 543 4 284 7.37 4 394 84.56
3 30 589 1 583 4.43 1 618 8.49
4 138 801 7 975 16.36 8 014 369.11
5 55 601 2 986 4.02 3 101 38.80
6 26 141 1 403 1.63 1 453 4.45
7 101 981 5 727 9.84 5 817 126.34

argue about performance in objective terms. That is why the first
dataset we considered is from S. cerevisiae (Weiner et al., 2010).
This was the original dataset for which TF was designed. The results
of TF on this dataset are assumed to be accurate.

To compare NOrMAL and TF, we used the following setup. The
main range parameter for TF was set to [80,200], which is slightly
wider than the default parameters. We did not want to penalize TF,
since NOrMAL does not have any hard limits for the nucleosome
sizes. For NOrMAL, the main parameter is the prior expected value
for the nucleosome sizes: we used 140 bp to hit the middle of the
specified range of TF. The threshold value of allowed overlap for
both methods was set at 35%. All other parameters were left to
default values. The results of both methods are reported in Table 2.
Observe that NOrMAL is slower, but it returns on average 2.6%
more nucleosomes than TF.

If we compare the distribution of reported nucleosome sizes
(Fig. 5), both methods provide consistent results. To compare how
reported nucleosomes are related to each other, we performed a
matching procedure. We built a bipartite graph, where a node
corresponds to a reported nucleosome (each part corresponds to one
of the two methods). The bipartite graph is fully connected, and the
weight on edge (u,v) is the squared distance between nucleosome
u and v: when the distance between u and v exceeded 50 bp, we set
the weight to ∞. Then we solved the weighted assignment problem
between the two sets using the Hungarian method. The distribution
of pairwise distances between matching nucleosomes is shown in
Figure 6. Observe that the distribution is a unimodal bell-shaped
curve with mean and mode having near zero value. The number of
matched (common) nucleosomes is 81.44% of the total: 8.29% and
10.27% are unique to NOrMAL and TF, respectively.

While the dataset for S. cerevisiae is considered to have relatively
stable set of nucleosomes (Weiner et al., 2010), the dataset
for the human malaria parasite P. falciparum has very dynamic
nucleosomes (Ponts et al., 2010). The considered dataset consists
of seven time-points (namely, 0, 6, 12, 18, 24, 30 and 36 h),
each related to a different stage on the cell cycle (Roch et al.,
2003). The experiment assumes that cells are ‘synchronized’ at
each time-point, but the synchronization is not perfect due to
experimental limitations. As a consequence, we expect a large
number to nucleosomes to exhibit a ‘fuzzy’ behavior.

First, we performed nucleosome placement with the same setup
as with the yeast dataset. The distribution of fragment sizes is quite
different in this case (Fig. 8). NOrMAL reports fragment sizes

80 100 120 140 160 180 200
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Fig. 5. Size distribution of reported nucleosomes for S. cerevisiae

0 20 40-40 20

Fig. 6. Distribution of pairwise distances between corresponding
nucleosomes reported by TF and NOrMAL for S. cerevisiae

0 20 40-40 20

Fig. 7. Distribution of distances between corresponding nucleosomes
reported by TF (range [80,200]) and NOrMAL for P. falciparum
(chromosome 1) across all seven time-points

with a mean value of 105 bp and mode value of about 120 bp,
whereas TF reports a distribution with mean and mode of about
84 bp. If we perform the matching of the reported nucleosomes, the
distribution of distances is much wider than for yeast (Fig. 7). Now
only 50% of all detected nucleosomes are in common between two
methods. A total of 32.38 and 17.62% are unique to NOrMAL and
TF, respectively. As expected, the disagreement between NOrMAL
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Fig. 8. Size distribution of reported nucleosomes for P. falciparum
(chromosome 1) across all seven time-points

and TF is much higher on this dataset, due to presence of a much
higher fraction of overlapping/fuzzy nucleosomes.

Two examples of the disagreement between TF and NOrMAL
are shown in Figure 9. Forward and reverse coverage profiles with
extension to 35 bp are shown on top. Nucleosomes are represented
by ovals, where the height of each oval represents the confidence
score. NOrMAL also reports the variance associated with the left
and the right boundary, represented with error bars. In Figure 9
(top), we have labeled corresponding nucleosomes 1–6. Some
observations are in order. First, nucleosome 3 is an incarnation
of the synthetic example in Figure 4D and E. The coverage
profile around coordinate 800 shows two heavily overlapping
nucleosomes that should be reported as one ‘fuzzy’ nucleosome.
However, TF reports the position of the nucleosome using the
stronger pair of forward/reverse peaks and completely ignores
the other pair of peaks. As a consequence, the coordinate of the
reported nucleosome is shifted compared to the centroid of the
four peaks. NOrMAL instead correctly places one nucleosome at
the centroid with a relatively high ‘fuzziness’ score. Nucleosome
3 is also quite fuzzy, and it is better placed by NOrMAL. Some
disagreement exists on nucleosome 6 as well. The left boundary
of that nucleosome detected by TF correspond to a very weak
peak. This is due to the fact that TFs placement is based on
the correlation score rather than the intensity of the peak. In
fairness, both methods assign nucleosome 6 a very low confidence
score. Finally, TF detects additional nucleosomes a and b, whereas
NOrMAL reports additional nucleosome c. All these nucleosomes
have low confidence scores. Our method did not report a and b
because it explained the data using fuzzy nucleosome 2. NOrMAL
should have merged nucleosome c to nucleosome 1, but because the
overlap did not exceed the chosen threshold those two nucleosomes
were not merged.

Figure 9 (bottom) illustrates a more complex example of the
coverage profile: even for trained experts placing nucleosomes here
would be very challenging. The output of NOrMAL and TF are
quite consistent for nucleosomes associated to strong peaks. In the
regions with high density of peaks, TF tends to place nucleosomes
of small sizes (see also Fig. 10) and pack them as tight as possible
according to allowed overlapping threshold.
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Fig. 9. Two examples of nucleosome maps for chromosome 1 of
P. falciparum (top: ‘0’ is location 148 500 bp, bottom: ‘0’ is location
111 500 bp): forward and reverse coverage profiles are shown on top;
nucleosomes are represented by ovals where the height of each nucleosome
represents the confidence score

In order to increase the agreement between TF and NOrMAL,
we tried to extend the range of nucleosome sizes for TF to [20,250].
The new fragment size distributions are shown on Figure 10.
Observe that by comparing Figures 8 and 10, the size distribution
for NOrMAL are the same (only truncated in Fig. 8), while the
distribution for TF has changed completely, again pointing out how
this range parameter can drastically change the results. Using the
extended range, TF was allowed to place smaller nucleosomes so
the mode and the mean of the size distribution shifted to smaller
values. According to the authors of TF, such small nucleosomes
can be due to problems in the experimental procedure, namely
overexposing the sample to the MNase digestion. However, the gel
electrophoresis analysis shows that the expected size of sequenced
fragments in our samples after digestion was about 130 bp in
length (without adapters). We speculate that TFs approach might
have a problem when the range of admissible nucleosome sizes is
too wide, and the algorithm confuses boundaries of neighboring
nucleosomes.
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Fig. 10. Size distribution of reported nucleosomes for P. falciparum
(chromosome 1) across all seven time-points

Table 3. Number of nucleosomes reported for P. falciparum (chromosome 1)
for different time-points (TF, parameter in square brackets is the range of
admissible nucleosome sizes, bold numbers indicate the maximum)

Time (h) TF [80–200] TF [20–250] NOrMAL

0 1 720 2 031 1 934
6 1 491 1 826 1 720
12 1 461 2 158 2 043
18 1 185 1 665 1 537
24 1 440 1 910 1 766
30 1 723 2 229 2 443
36 1 701 2 514 2 788

The number of reported nucleosomes for all time-points is shown
in Table 3. Observe that for time-points 0–24 h, the number of
nucleosomes reported by NOrMAL is between TF with range
[80,200] and [20,250]. However, recall that the extended range
[20,250] is likely to be unreliable. For time-point 30 and 36 h,
NOrMAL identifies a higher number of nucleosomes. The 30 and
36 h marks correspond to the schizont stage of the P. falciparum life
cycle (Roch et al., 2003). During this stage, the parasites divide, the
chromatin compacts and a large number of nucleosomes are added.

4 CONCLUSION
We described a parametric probabilistic model for nucleosomes
positioning framed in the context on a modified Gaussian mixture
model. Our method directly addresses the challenges imposed
by overlapping and fuzzy nucleosomes, their detection and
the inference of their characteristics. We demonstrated with a

synthetic example that the current state-of-the-art method does not
properly handle complex overlapping configurations. We have also
shown that NOrMAL is significantly more robust to user-defined
parameters. On real data, our method detects a higher number of
nucleosomes. Although our method is currently slower than TF,
the processing time is still modest compared to other steps in the
sequencing pipeline and we believe the efficiency of NOrMAL can
be improved.
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