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ABSTRACT

Motivation: Mass spectrometry allows sensitive, automated and
high-throughput analysis of small molecules such as metabolites.
One major bottleneck in metabolomics is the identification
of ‘unknown’ small molecules not in any database. Recently,
fragmentation tree alignments have been introduced for the
automated comparison of the fragmentation patterns of small
molecules. Fragmentation pattern similarities are strongly correlated
with the chemical similarity of the molecules, and allow us to cluster
compounds based solely on their fragmentation patterns.
Results: Aligning fragmentation trees is computationally hard.
Nevertheless, we present three exact algorithms for the problem: a
dynamic programming (DP) algorithm, a sparse variant of the DP,
and an Integer Linear Program (ILP). Evaluation of our methods
on three different datasets showed that thousands of alignments
can be computed in a matter of minutes using DP, even for
‘challenging’ instances. Running times of the sparse DP were an
order of magnitude better than for the classical DP. The ILP was
clearly outperformed by both DP approaches. We also found that for
both DP algorithms, computing the 1% slowest alignments required
as much time as computing the 99% fastest.
Contact: sebastian.boecker@uni-jena.de

1 INTRODUCTION
Metabolomics deals with the identification and quantification of
small compounds below 1000 Da, and has received increasing
interest during the last years (Last et al., 2007). All organisms,
especially plants, fungi and bacteria, synthesize many different
metabolites and a large portion of them is still unknown (Fernie et al.,
2004). The genome sequence usually does not reveal information
about metabolite structure, as it does for protein structure. Newly
identified metabolites often serve as leads in drug design (Li and
Vederas, 2009; Schmidt et al., 2007), in particular for antibiotics.

For a high-throughput analysis of metabolites and other small
molecules, mass spectrometry (MS) is the predominant technology
(Cui et al., 2008; Fernie et al., 2004; Last et al., 2007). Nuclear
magnetic resonance reveals more information about the analyte, but
is inapplicable for high-throughput analysis due to its low sensitivity.
MS can be coupled with a separation method (gas chromatography,
liquid chromatography or capillary electrophoresis) to analyze
complex mixtures like cell extracts (Fiehn, 2008; Halket et al.,
2005). To obtain information beyond the compound mass,
the analyte is usually fragmented, and fragment masses are
recorded. Typically, collision-induced dissociation is combined
with liquid chromatography–MS, whereas gas chromatography–MS
uses electron impact fragmentation. The first attempt to develop
computational methods for analyzing fragmentation spectra of
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metabolites has been the DENDRAL project in 1965 (Lederberg,
1965). But the project was stopped after it became clear that
automated structure elucidation using MS data could not be achieved
at that time. Today, data analysis is still the major bottleneck in
metabolomics (Neumann and Böcker, 2010). Manual data analysis
requires time and deep knowledge of the underlying chemistry
(Werner et al., 2008). Due to the limited reproducibility of the
data, even library searches are difficult (Oberacher et al., 2009).
Additionally, spectral libraries are vastly incomplete. Methods for
de novo sequencing of non-ribosomal peptides have recently been
developed. But these methods rely on the fact that the analytes are
structurally restricted polymers with predictable fragmentation.

When manually analyzing tandem MS spectra, chemists try
to annotate fragmentation peaks and identify relations between
fragments, resulting in fragmentation pathways. This approach has
been automated by Böcker and Rasche (2008). They calculate
hypothetical fragmentation trees solely based on the MS data.
Fragmentation tree nodes are annotated with the molecular formula
of the fragments, whereas edges represent losses. To find a
fragmentation tree that shows maximum agreement with the
measured data, we search for a tree of maximum edge weight,
comparable to prize-collecting Steiner trees (Ljubić et al., 2005).
Only lists of common and implausible losses are required as
expert knowledge about fragmentation mechanisms. In Rasche et al.
(2011), experts evaluated the calculated fragmentation trees and
confirmed their excellent quality. Recently, methods to calculate
fragmentation trees from multiple MS and gas chromatography–
MS data have been developed (Hufsky et al., 2012, manuscript;
Scheubert et al. 2011).

MS analysis of similar compounds results in similar fragmentation
trees. Rasche et al. (2012) proposed local tree alignments for
the automated comparison of fragmentation trees and showed that
this method is superior to spectral comparison. Fragmentation
tree alignments even allow for inter-dataset comparisons for
datasets measured on different instruments (Rasche et al., 2012).
A tree alignment may contain matches, mismatches, insertions and
deletions, but respects the structure of the two trees. Fragmentation
tree similarity is defined via edges (representing losses) and nodes
(representing fragments). A local tree alignment contains those parts
of the two trees where similar fragmentation cascades occurred.

Tree alignments were introduced by Jiang et al. (1995) and can be
applied for RNA secondary structure comparison (Le et al., 1989).
RNA structure trees are ordered, that is, the children of any node
have a fixed order. In contrast, fragmentation trees are unordered,
as there cannot exist any sensible ordering for the sub fragments of
some fragment. In this respect, fragmentation trees are more similar
to phylogenetic trees than to RNA structure trees. Whereas efficient,
polynomial-time algorithms exist for the alignment of ordered trees,
the alignment of unordered trees is computationally hard, namely
MAX SNP-hard (Jiang et al., 1995). This implies that there exists no
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Fig. 1. Optimal fragmentation tree alignment for cystine (11 losses) and methionine (6 losses) from the Orbitrap dataset (a). (b) Fragmentation mass spectra
of cystine and methionine. The mass spectra do not share peaks. Molecular structures of cystine (c) and methionine (d). The molecular structures are not
known to the alignment method. The alignment detects the common fragmentation path of formic acid–ammonia–ethylene losses and the separate ammonia
branch. Additionally, it finds the methylthiol loss, which occurs at a later stage in cystine

Polynomial Time Approximation Scheme (PTAS) for the problem
unless P=NP (Arora et al., 1998). In case both trees have fixed
maximum out degree, an optimum alignment can be computed via
dynamic programming (DP) in polynomial time (Jiang et al., 1995).
In comparison, computing the edit distance between two unordered
trees remains MAX SNP hard even for bounded degrees (Zhang
and Jiang, 1994). An informal algorithm for aligning fragmentation
trees was presented by Rasche et al. (2012), and join nodes were
introduced to account for missing nodes in one of the trees compared.
Missing nodes result from missing peaks in one of the spectra.
Rasche et al. (2012) do not give a correctness proof or running time
analysis for the algorithm. As related work, we mention the Tree-

Constrained Bipartite Matching problem where either a node or
any of its descendants may be part of the matching; this problem is
also APX-hard (Canzar et al., 2011).

Our contribution: we modify the tree alignment algorithm from
Jiang et al. (1995) for edge similarities and local alignments, and
analyze its running time. We then show how to integrate join nodes
without increasing the worst-case running time. Next, we modify
the algorithm to allow for sparse DP, a technique common in RNA
folding (Backofen et al., 2011). This does not only decrease the
practical memory requirements of the method but, more importantly,
also severely decreases running times in practice. Furthermore, we
present an Integer Linear Program (ILP) for the fragmentation tree
alignment problem, as ILPs often solve NP-hard problems swiftly in
practice. We then evaluate all methods on real-world data, and find
that the sparse DP approach dominates the classical DP, resulting
in an 11-fold speed-up for one dataset. Somewhat unexpectedly, the
ILP is clearly outperformed by both DP approaches.

2 ALIGNING FRAGMENTATION TREES
Let T= (V ,E) be a tree; the elements of V are called nodes. In
the following, we assume all trees to be arboreal, that is, all edges

in E are directed away from some root node. By uv, we denote a
directed edge from node u to node v. Let p(v) be the parent node
of some node v. A fragmentation tree is a tree T= (V ,E) together
with an edge labeling � :E→L. In more detail, nodes V correspond
to fragments of a compound, whereas the labels L are (neutral
or radical) losses: that is, both are molecular formulas over some
fixed alphabet of elements (Böcker and Rasche, 2008). Formally,
molecular formulas are compomers or multi sets. The children of
any node of a fragmentation tree are intrinsically unordered, as there
is no sensible way to order the sub fragments of some fragment.
In our presentation, we will not consider the molecular formulas
of fragments, and concentrate on comparing losses only. As we
will see below, comparing fragments instead or comparing both
simultaneously requires only minor modifications. See Figure 1 for
two examples of fragmentation trees.

We introduce some notation used throughout this article: Let T1=
(V1,E1) and T2= (V2,E2) be the two trees we want to align. We
sometimes call T1 the left tree and T2 the right tree. Let C(v) denote
the children (nodes) of any node v in T1 or T2. In the following,
we usually assume that u is a node of T1, and v a node of T2. For
i=1,2, let ni :=|Vi| be the number of nodes in Ti , and let di be
the maximum out degree in Ti . These maximum out degrees will
be of particular interest to us, as the running time of our DP grows
exponentially in d1,d2. Let δ=min{d1,d2} and �=max{d1,d2}.

Rasche et al. (2012) introduce a similarity function σ :L×L→R

for pairs of losses (molecular formulas). We do not repeat the details
here, but note that this implies a similarity function σ :E1×E2→R

between edges of the two trees T1,T2 via σ (e1,e2)=σ (�(e1),�(e2)).
They also introduce a similarity function for fragment molecular
formulas, which induces a similarity function between nodes of the
two trees.

Furthermore, they also extend the definition of tree alignments by
introducing a join operator [see Figure 2(b)]: Given a path p1 in T1
of length two, let e1,e′1 be the edges of p1. We can assign a loss to
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Fig. 2. Two alignments of fragmentation trees based on edge similarities.
Nodes represent molecular formulas of the fragments, edges represent
molecular formulas of the losses. (a) A gap (–) is introduced for the missing
CO loss in the left tree (dashed edge and node). Losses CO and CH3 are
aligned by a mismatch (dotted edges). (b) In the left tree, the fragment after
loosing H3N is missing (dashed edges and node), whereas the fragment
after further loss of C2H2 is observed. To account for missing fragments,
we introduce the join operation. It allows to align the two successive losses
H3N and C2H2 in the right tree to a single loss C2H5N in the left tree (dotted
edges). Fragments may be missing because the corresponding peak was not
detected, for example

p1 by adding the corresponding losses �(e1)+�(e′1)∈L. This means
taking the sum of the respective compomers or the additive union of
the corresponding multisets. We then assign a similarity between
p1 and any edge e2 of T2 as σ (p1,e2)=σ (�(e1)+�(e′1),�(e2)).
Analogously, we can define a similarity for paths of length two in T2.
Obviously, this can be generalized to paths of arbitrary lengths but
here, we will limit ourselves to paths of length two. For joining
nodes in the alignment, we assume homogeneous join costs: The
penalty for joining a node is σjoin≤0, independent of the node or
edge that we want to join. Formally, this allows us to focus on the
important aspects of our algorithms, and omit some technical details.
Practically, we currently see no biologically reasonable way to assign
different scores to different join nodes, as these usually correspond
to the non-detection of a peak in one of the mass spectra.

Let T1,T2 be two trees. We define a global alignment A of T1,T2
as follows (Jiang et al., 1995): A is a tree where nodes are labeled
with pairs from (V1∪{–})×(V2∪{–}). Here, ‘–’ is the gap symbol
[see Figure 2(a)]. If we restrict labels of A to the first coordinate and
contract all edges that end in a node labeled ‘–’, we end up with the

tree T1; if we do the same for the second coordinate, we end up with
the tree T2. (In fact, we have to replace the nodes of the restricted
trees by their labels, we omit the simple technical details.) We say
that A is a local alignment if the trees originating from contracting
gap edges are induced subtrees of T1 and T2, respectively.

Different from Jiang et al. (1995), we want to score an alignment
based on the edges of the two trees. To this end, for any node a of
A but the root, let e1(a) be the unique edge in T1 that ends in the
first coordinate of the label of a, and let e2(a) be the unique edge in
T2 that ends in the second coordinate of the label of a. In case no
such edge exists, we assume e1(a)= ‘–’ or e2(a)= ‘–’, respectively.
Now, we define the score of A as∑

non-root node a of A
σ (e1(a),e2(a)).

We define σ (T1,T2) as the maximum score of a local alignment of
T1 and T2.

Scoring node pairs and scoring edge pairs are closely related: We
can push an edge score into its end node, or we can pull a node score
into its unique incoming edge. The only difference is that the root
node is not considered when scoring edge pairs. The two scorings
can be combined by introducing a particular root scoring σ∗ :V1×
V2→R for the root nodes of the alignment. In the following, we
omit the simple but somewhat tedious details, and simply note that
all algorithms presented here work both with node scoring, edge
scoring, as well as a combination thereof. A local fragmentation
tree alignment for two compounds from the Orbitrap dataset (see
Section 6) can be found in Figure 1.

3 DYNAMIC PROGRAMMING
We now present an algorithm to compute optimum fragmentation
tree alignments that has reasonable running time in practice. Our
algorithm is a modification of an algorithm by Jiang et al. (1995)
for computing global alignments of unordered trees. The reason for
these algorithms to be swift in practice is that fragmentation trees
usually have comparatively small out degree: fragments rarely have
more than, say, five child fragments. We can limit the inevitable
exponential part of the running time to this out degree.

We use DP to compute the maximal score σ (T1,T2) of a local
alignment between two trees T1,T2. Let S(u,v) be the maximal
score of a local alignment of two subtrees of T1,T2, where the
subtree of T1 is rooted in u, and the subtree of T2 is rooted in v. For
A⊆C(u) and B⊆C(v), we define Su,v[A,B] to be the score of an
optimal local alignment of subtrees rooted in u and v, respectively,
such that maximally the children A of u and B of v are used in
the alignment. Clearly, S(u,v)=Su,v[C(u),C(v)]. Furthermore, we
have Su,v[A,∅]=Su,v[∅,B]=0 for all A,B. When all S(u,v) are
known, we can compute the maximal score of a local alignment of
T1,T2 as

σ (T1,T2)= max
u∈T1,v∈T2

S(u,v). (1)

We present a recurrence for the computation of Su,v[A,B]. We
initialize Su,v[A,B]=0 for A=∅ or B=∅. Recall that T1 is the
left tree and T2 is the right tree. In the recurrence, we distinguish
three cases, namely match (including mismatches), deletion left or
deletion right, where the latter two are symmetric (Figure 3). For
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Fig. 3. Representation of the match and the deleteL recurrences of the
DP algorithm. (a) matchu,v[A,B] is the best score of matching edge ua on
edge vb, such that maximally the children A of u and B of v are used. (b)
deleteLu,v[A,B] is the best score for deleting edge ua, such that maximally
the children A of u and B of v are used. A subset B′ ⊆B of the children of v
can now be matched to the children of a

non-empty sets A⊆C(u) and B⊆C(v) we set

Su,v[A,B]=max
{

0,matchu,v[A,B],

deleteLu,v[A,B],deleteRu,v[A,B]
}

where we define

matchu,v[A,B] := max
a∈A,b∈B

{
S(a,b)+

Su,v
[
A−{a},B−{b}]+σ (ua,vb)

}
deleteLu,v[A,B] := max

a∈A,B′⊆B

{
Sa,v[C(a),B′]+

Su,v[A−{a},B−B′]+σ (ua,–)
}

deleteRu,v[A,B] := max
A′⊆A,b∈B

{
Su,b[A′,C(b)]+

Su,v[A−A′,B−{b}]+σ (–,vb)
}

(2)

Here, σ (ua,vb) denotes the score of the losses attached to arcs ua and
vb, and σ (ua,–),σ (–,vb) accordingly. Recurrence (2) is the obvious
modification of the recurrence presented in Jiang et al. (1995) for
global alignments and node similarities.

Merging two losses in T1 or T2 requires two additional symmetric
cases, namely join left and join right for merging in tree T1 or
T2, respectively. To speed up computations, we add an additional

prejoin case for nodes that will be joined in the alignment. We set

Su,v[A,B]=max
{

0,matchu,v[A,B],
deleteLu,v[A,B],deleteRu,v[A,B],
joinLu,v[A,B],joinRu,v[A,B]

} (3)

where we define, in addition to (2),

prejoinLu,v[A,B] := max
a∈A,b∈B

{
S(a,b)+

prejoinLu,v
[
A−{a},B−{b}]+

σ (p(u)a,vb)+σjoin

}
joinLu,v[A,B] := max

a∈A,B′⊆B

{
prejoinLa,v[C(a),B′]+

Su,v[A−{a},B−B′]
}

(4)

Here, σ (p(u)a,vb) is the score for the combined losses on the path
from p(u) to a with the loss of edge vb. Recall that σjoin≤0 is
the penalty for joining a node. Again, we initialize joinLu,v[A,∅]=
joinLu,v[∅,B]=0 for all A,B. Analogously to (4), we can define
recurrences for prejoinRu,v[A,B] and joinRu,v[A,B].

For bottom-up DP (Sniedovich, 2006), we have to find an order
in which the entries of the DP tables can be filled. Computation of
matchu,v[A,B], deleteLu,v[A,B] and deleteRu,v[A,B] only accesses
entries Su′,v′ [A′,B′], such that u′ ∈{u}∪C(u) and v′ ∈{v}∪C(v). By
processing nodes in postorder, we ensure that all Su′,v′ [A′,B′] are
previously computed for (u′,v′) 
= (u,v). For the remaining case, we
iterate |A|+|B|=0,1,...,|C(u)|+|C(v)|. Similar arguments hold for
the computation of join and prejoin nodes.

Theorem 1. Let T1= (V1,E1) and T2= (V2,E2) be two trees,
σ :E1∪{–}×E2∪{–}→R a scoring function between edge pairs,
and σjoin∈R the penalty for joining a node. For i=1,2 set ni :=
|Vi|, and let di be the maximum out degree in Ti . The maximum
score σ (T1,T2) of a local alignment of T1,T2 can be computed
in O

(
3� ·2δ ·δn1n2

)
using recurrence (3) and equation (1), where

� :=max{d1,d2} and δ :=min{d1,d2}.
The proof of the theorem is based on the following lemma:

Lemma 1. Computing Su,v[A,B] for all A⊆C(u) and B⊆C(v) is
possible using recurrence (3) in O(3du ·2dv ·dv+2du ·3dv ·du) time,
where du=|C(u)| and dv=|C(v)|.

See the Supplementary Material for proofs of Lemma 1 and
Theorem 1. Similarly to Theorem 1, we can show that any pairwise
tree alignment that does not take joining nodes into account, can also
be computed in this time. We leave out the straightforward details.

Theorem 2. A pairwise unordered tree alignment (global or local,
scoring nodes or edges or both, with similarities or costs) of rooted
trees T1,T2 can be computed in O

(
3� ·2δ ·δn1n2

)
time. Here, ni

is the number of nodes in tree Ti , and di is the maximum out
degree in Ti , for i=1,2; furthermore, � :=max{d1,d2} and δ :=
min{d1,d2}.
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4 SPARSE DYNAMIC PROGRAMMING
Applying the above algorithm to real-world instances of aligning
fragmentation trees, one can see that S(u,v)=0 holds for many
node pairs u,v. This can be attributed to two factors: First, we
are computing local alignments, so we can always choose to end
the alignment subtrees in the nodes u,v. Second, there are many
different labels found at the edges (or nodes) of a fragmentation
tree.Areasonable scoring scheme will assign negative scores to most
non-matching edge (or node) labels, so it is rather the exception than
the rule that we can find two nodes u,v with S(u,v)>0.

The idea is to ‘sparsify’ our DP tables by storing only those
table entries with positive values. Thereby, we face the following
fact: If Su,v[A,B]>0 for A⊆C(u) and B⊆C(v) then Su,v[A′,B′]>0
holds for all supersets A′,B′ with A⊆A′ ⊆C(u) and B⊆B′ ⊆C(v).
So, as soon as we have one non-zero entry in the table, then an
exponentially large part of the table will be filled with non-zero
entries, too.

To negate this rather unfortunate effect, we modify our DP as
follows: for A⊆C(u) and B⊆C(v), we define S ′u,v[A,B] to be the
score of an optimum local alignment with subtrees rooted in u and
v, respectively, such that exactly the children A of u and B of v
are used in the local alignment. If no such alignment exists, we set
S ′u,v[A,B]=−∞. Then S ′u,v[∅,∅]=0, but for all A,B 
=∅ we have
S ′u,v[A,∅]<0, S ′u,v[∅,B]<0. Clearly,

S(u,v)= max
A⊆C(u),B⊆C(v)

S ′u,v[A,B]. (5)

We need one more trick in our recurrence: in (2) we have accessed
entries Sa,v[C(a),B′] and Su,b[A′,C(b)], but this is not possible for
the table S ′ as the optimal alignments might not use all the children
of a or b. To this end, we introduce

S ′u,v[A,∗] := max
B′⊆C(v)

{
S ′u,v[A,B′]

}
,

S ′u,v[∗,B] := max
A′⊆C(u)

{
S ′u,v[A′,B]

}
,

for the maximum over all subsets of C(v) or C(u), respectively. For
non-empty sets A⊆C(u) and B⊆C(v) we set

S ′u,v[A,B]=max
{

match′u,v[A,B],
deleteL′u,v[A,B],deleteR′u,v[A,B],
joinL′u,v[A,B],joinR′u,v[A,B]

} (6)

which, compared to (3), misses the lower bound 0 and uses the
definitions:

match′u,v[A,B] := max
a∈A,b∈B

{
S(a,b)+

S ′u,v
[
A−{a},B−{b}]+σ (ua,vb)

}
deleteL′u,v[A,B] := max

a∈A,B′⊆B

{
S ′a,v[∗,B′]+

S ′u,v[A−{a},B−B′]+σ (ua,–)
}

deleteR′u,v[A,B] := max
A′⊆A,b∈B

{
S ′u,b[A′,∗]+

S ′u,v[A−A′,B−{b}]+σ (–,vb)
}

(7)

For the further join recurrences, we only concentrate on the left
tree. The definition of prejoinL′u,v[A,∗] and the join recurrences at
the right tree are analogous.

prejoinL′u,v[A,B] := max
a∈A,b∈B

{
S(a,b)+

prejoinL′u,v
[
A−{a},B−{b}]+

σ (p(u)a,vb)+σjoin

}
prejoinL′u,v[∗,B] :=max

A′⊆A

{
prejoinL′u,v[A′,B]

}

joinL′u,v[A,B] := max
a∈A,B′⊆B

{
prejoinL′a,v[∗,B′]+

S ′u,v[A−{a},B−B′]
}

(8)

To summarize, the central point is that we do not have to store
any entries with S ′u,v[A,B]≤0: such entries will never lead to an
optimal alignment, as we are better off removing all nodes A,B,
plus everything below these nodes from the alignment. The only
exception to this rule is that we store the entry S ′u,v[∅,∅]=0.
Furthermore, we do not have to store entries S ′u,v[A,B] if there exist
subsets A′ ⊆A, B′ ⊆B with (A′,B′) 
= (A,B) such that S ′u,v[A,B]≤
S ′u,v[A′,B′]. In this case, we can replace an alignment that uses
children A,B of u,v, by an alignment that uses only children A′,B′
and has better or equal score. We say that an entry S ′u,v[A,B] is
dominated by entry S ′u,v[A′,B′]. For a scoring scheme that assigns
negative scores for non-matching edge (or node) labels, large parts
of the tables have negative scores or are dominated by another entry.
We do not actually have to forbid that dominated entries are stored,
as they do not interfere with our computations; rather, we are free
to leave out dominated entries when we encounter them.

The resulting tables S ′u,v are sparsely populated, and for many
vertices u,v, there are no entries with S ′u,v[A,B]>0. We can reduce
the memory consumption of the method using hash maps instead of
arrays. Hash map implementations like Cuckoo hashing (Pagh and
Rodler, 2004) or Hopscotch hashing (Herlihy et al., 2008) can carry
out all operations in constant (amortized) time. In practice, we find
that memory consumption is usually not prohibitive. In this case, we
can use lazy arrays that are not allocated until a first entry is stored.

Resolving the recurrences: Now, it is time for our final trick:
instead of computing the scores using recurrence (6–8), we
apply a successive approximation procedure similar to Dijkstra’s
Algorithm for shortest paths (Sniedovich, 2006). That is, instead
of ‘pulling’ scores from previously calculated entries, we ‘push’
scores from entries that have been finalized. For example,
assume that we have finalized the computation of some entry
S ′u,v[A,B] for fixed A⊆C(u) and B⊆C(v). Also assume that
S ′u,v[A,B]>0 as otherwise, S ′u,v[A,B] is dominated by S ′u,v[∅,∅]=
0. Then, recurrence (7) tells us that we can update other entries
of the table accordingly: if S ′u,v[A,B]>S ′u,v[∗,B] (which we
assume to be incompletely calculated so far) then S ′u,v[∗,B]←
S ′u,v[A,B]. Similarly, if S ′u,v[A,B]>S ′u,v[A,∗] then S ′u,v[A,∗]←
S ′u,v[A,B], and if S ′u,v[A,B]>S(u,v) then S(u,v)←S ′u,v[A,B].
Regarding the recurrence for match′, we iterate over all a∈C(u)\A
and b∈C(v)\B: If match′u,v[A∪{a},B∪{b}]<S(a,b)+S ′u,v[A,B]+
σ (ua,vb) then update it accordingly. If match′u,v[A∪{a},B∪{b}]≤
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match′u,v[A,B] then the entry match′u,v[A∪{a},B∪{b}] is dominated
and we can remove it from the hash map.

For all other cases, similar updates can be performed, which
we only sketch here: For deleteL′ we iterate over all a∈C(u)\
A and B′ ⊆C(v)\B; if deleteL′u,v[A∪{a},B∪B′]<S ′a,v[∗,B′]+
S ′u,v[A,B]+σ (ua,–) then update it accordingly. Updates have to
be performed as soon as an entry is finalized, that is, it cannot
be changed by any future modifications. Finding finalized entries
is similar to the order of computations in the previous section; we
omit the technical details.

The above algorithm has exactly the same worst-case running time
complexity as the initial recurrence from Section 3. But in practice,
we can get even faster, at least in cases where the arrays are very
sparse: to this end, finalizing some entry deleteL′u,v[A,B] triggers
updates for all subsets B′ ⊆C(v)\B. But only those B′ can lead to
relevant updates where S ′a,v[∗,B′]>0 holds. Otherwise, the updated
entry will be dominated by S ′a,v[∗,∅]=0. If we iterate over the hash
map for those B′ with S ′a,v[∗,B′]>0 then the worst-case running

time increases to O
(
4� ·2δ ·δn1n2

)
, assuming constant time access

to the hash map. However, in practice, running time decreases if the
DP tables are sparsely populated. We stress that the sparse DP still
guarantees to find the optimal solution.

5 INTEGER LINEAR PROGRAMMING
ILPs are a classical approach for finding exact solutions of
computationally hard problems. We now present an ILP for
computing a pairwise unordered tree alignment. Again, let T1=
(V1,E1),T2= (V2,E2) be the input trees with V1∩V2=∅. As the ILP
is edge based, we have to introduce some additional notation: Let
e∈Ei , i∈{1,2}, be any edge in one of the two given trees. We denote
by D(e) the set of edges in the subtree rooted at the head of e, and by
N (e) :=Ei \({e}∪D(e)) the non-descendant edges of e. For an edge
e, we define p(e) to be the parent edge, and p∗(e) :={p(e),p(p(e)),...}
all of its ancestor edges. Finally, F (e) :=D(p(e))∩N (e) is the
‘extended family’ of e, that is, all descendants of e’s parent edge,
except for e and its descendants.

We start with the ILP without considering the join operation
(ILP 1) and use the following binary variables: Iff an edge e′ ∈
(E1∪E2) appears in the aligned subtree, we have ze′ =1; iff this
edge is aligned to a gap, we have ye′ =1. Finally, iff an edge e∈E1
is aligned to an edge f ∈E2, we have x{e,f } =1. The constraints (10)
ensure for each edge that we decide whether this edge is used in the
alignment and if, how it is aligned. The inequalities (11) ensure that
the subgraphs of T1 (and T2) are proper trees. Finally, (12) ensure
that the obtained alignments are consistent: assume an alignment
〈e,f 〉 then we cannot also align a descendant of e with a non-
descendant of f and vice versa. The conditional term following the
universal quantifier simply avoids redundancy.

Based thereon, we can construct an ILP allowing join operations

(ILP 2). Therefore, we require additional binary variables x(i)
{e,f }

(with i∈{1,2},e∈Ei,f ∈E3−i), which are 1 iff the joined edges
(p(e),e) are aligned with f . Technically, we also require x{e,f } =
1 in such a case. Note that this amount of additional variables
is necessary to compose a linear objective function, when the
join costs cannot be computed only based on align- and gap
costs. Furthermore, we introduce binary variables φe′ , e′ ∈ (E1∪E2),
which are 1 iff the edge e′ is used as a parent edge within

Table 1. The three datasets used in this study

Characteristics of the datasets Orbitrap MassBank Hill

Number of compounds 97 370 102
Number of non-empty trees 93 343 102
Maximum out degree 7 6 10
Average/median out degreemax 3 2 5
Number of alignments 4278 58 653 5151

Fragmentation trees were computed for all compounds. Only non-empty trees were
considered for tree alignment. The maximum out degree of a single tree is denoted by
out degreemax . Number of alignments is given without self-alignments.

a join (e.g., φp(e)=1 if the former x(i)
{e,f } variable is 1). We

use the shorthands σ (1)(e,f ) :=σ (e+p(e),f )+σjoin−σ (e,f ) and

σ (2)(e,f ) :=σ (e,f +p(f ))+σjoin−σ (e,f ) in the objective function.
Constraints (15)–(17) are analogous to the former ILP. While (18)

guarantees that joins are always separated from each other within
an input tree, (19) ensures that at most one joined alignment may
occur for any edge. Inequalities (20)–(22) make sure that a parent
edge e′ is only marked as a joined parent iff all its aligned children
are joined with e′. Finally, (23) guarantees that we do not align two
joined edges with each other.

6 EXPERIMENTAL RESULTS
To evaluate our work, we used three different test datasets (Table 1).
The Orbitrap dataset (Rasche et al., 2012) contains 97 compounds,
measured on a Thermo Scientific Orbitrap XL instrument. The
MassBank dataset (Horai et al., 2010) consists of 370 compounds
measured on a Waters Q-Tof Premier spectrometer. The Hill dataset
consists of 102 compounds measured on a Micromass Q-Tof,
published by Hill et al. (2008). We omit the experimental details.
Fragmentation trees were computed using ILP as described in Rauf
et al. (2012). Self-alignments were excluded from the analysis.

For our evaluations, we use a scoring function very similar to
the one from (Rasche et al., 2012), evaluating pairs of losses and
pairs of fragments. For losses nl1, nl2, we distinguish between
size-dependent positive match scores σ (nl,nl) :=5 + number
of non-hydrogen atoms and size-dependent negative mismatch
scores σ (nl1,nl2) :=−5 number of different non-hydrogen atoms.
For fragments f1, f2, we use size-dependent positive match
scores σ (f ,f ) :=5 + number of non-hydrogen atoms and size-
independent negative mismatch scores σ (f1,f2) :=−3. We allow
insertion/deletions, as well as joining two subsequent losses, both
without penalty. The idea behind this ad hoc scoring is to reward
or penalize large losses stronger than small losses, whereas non-
matching fragments are penalized independent of size. See Rasche
et al. (2012) for details.

We implemented the DP algorithms in Java 1.6. For the sparse
DP, we used lazy arrays to store the DP tables. We solved the
ILP via branch and cut using CPLEX 12.1 in its default settings.
Computation was done on two different but comparable computers,
namely on a quad-core 2.2 GHz AMD Opteron processor with 5 GB
of main memory for the DP algorithms, and on a quad-core Intel
Xeon E5520 with 2.27 GHz in 32-bit mode for the ILP, using 2 GB
RAM per job. For the DP algorithms, we repeated computations five
times, reporting the minimum running time for each instance.
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max
∑

e∈E1 ,

f ∈E2

σ (e,f )·x{e,f }+
∑

e′∈E1

σ (e′,–)·ye′ + ∑
e′∈E2

σ (–,e′)·ye′ (9)

s.t. ye+
∑

f ∈E3−i

x{e,f } =ze ∀i∈{1,2},e∈Ei (10)

ze′ +ze′′ ≤1+ze ∀i∈{1,2},e∈Ei,e
′ ∈D(e),e′′ ∈F (e) (11)

x{e,f }+x{e′,f ′} ≤1 ∀i∈{1,2},e∈Ei,f ∈E3−i, (12)

e′ ∈D(e),f ′ ∈N (f ),[if i=2: f ′ 
∈p∗(f )]

x{e,f },ye′ ,ze′ ∈{0,1} ∀e∈E1,f ∈E2,e′ ∈ (E1∪E2) (13)

ILP 1: The ILP for pairwise unordered tree alignment without join operations

max
∑

e∈E1 ,

f ∈E2

(
σ (e,f )x{e,f }+

∑
i∈{1,2}

σ (i)(e,f )x(i)
{e,f }

)
+ ∑

e′∈E1

σ (e′,–)ye′ + ∑
e′∈E2

σ (–,e′)ye′ (14)

s.t. ye+φe+
∑

f ∈V3−i

x{e,f } =ze ∀i∈{1,2},e∈Ei (15)

ze′ +ze′′ ≤1+ze ∀i∈{1,2},e∈Ei,e
′ ∈D(e),e′′ ∈F (e) (16)

x{e,f }+x{e′,f ′} ≤1 ∀i∈{1,2},e∈Ei,f ∈E3−i, (17)

e′ ∈D(e),f ′ ∈N (f ),[if i=2: f ′ 
∈p∗(f )]

φe′ +φe′′ ≤1 ∀e′ ∈ (E1∪E2),e′′ =p(e′) (18)

x(1)
{e,f }+x(2)

{e,f } ≤x{e,f } ∀e∈E1,f ∈E2 (19)

x{e,f }−x(i)
{e,f } ≤1−φe′ ∀i∈{1,2},e∈Ei,e

′ =p(e),f ∈E3−i (20)

ye≤1−φe′ ∀i∈{1,2},e∈Ei,e
′ =p(e) (21)

x(i)
{e,f } ≤φe′ ∀i∈{1,2},e∈Ei,e

′ =p(e),f ∈V3−i (22)

x(i)
{e,f }+φf ′ ≤1 ∀i∈{1,2},e∈Ei,f ∈E3−i,f

′ =p(f ) (23)

x{e,f },ye′ ,ze′ ,x
(i)
{e,f },φe′ ∈{0,1} ∀i∈{1,2},e∈E1,f ∈E2,e′ ∈ (E1∪E2) (24)

ILP 2: The ILP for pairwise unordered tree alignment including join operations

For the Orbitrap and the MassBank dataset, we found that for
over 98% of the instances, the running time was in the range of
microseconds for both DP algorithms. For these datasets, we only
evaluate total running times for all alignments. For MassBank,
the classical DP (Section 3) finished in 4.2 s for an all-against-
all alignment of 343 trees, whereas sparse DP (Section 4) only
required 1.8 s. For Orbitrap, the classical DP finished in 5.4 s for
the all-against-all alignment of 93 trees, whereas sparse DP required
0.6 s, a 9-fold speed-up. In contrast, the ILP needed 9.6 min for all
alignments in the MassBank datasets and 14.5 min for all alignments
in the Orbitrap dataset.

The Hill dataset contains trees with much higher maximum out
degree, so we performed a more detailed running time analysis.
Classical DP required 13.9 min and sparse DP finished in 1.3 min,
an 11-fold speed-up. Running times of the ILP could only be
measured without allowing join operations. For 1241 instances,
computations run into the memory limitation of 2 GB. For the

remaining alignments, the ILP finished in 11.24 h. Hence, we
excluded the ILP from our detailed analysis. To get an overview
of the differences in the running times between hard and easy
alignments, we sorted the instances by their running times in
increasing order. This was done separately for each algorithm. See
Figure 4 (top) and Table 2. For both algorithms, we found that the
99% fastest alignments need nearly as much computing time as the
remaining 1% slowest alignments. We further sorted all instances
by the running time of the classical DP (see again Figure 4). We
found that for every instance, sparse DP requires less time than the
classical DP.

7 CONCLUSION
Fragmentation trees are a tool to overcome the limitations of spectral
library search, as they, for the first time, enable us to retrieve not
only exact hits, but also similar compounds from a spectral database.
But performing the workflows proposed by Rasche et al. (2012) on
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(a)

(b)

Fig. 4. Running times for the Hill dataset with 5151 individual alignments.
(a) Total running times when instances are sorted by individual running
times. For any fraction x%, we calculate the total running time of the x%,
instances for which the alignment was computed faster than for any of the
remaining instances. For example at 50% one can find the running time
that was needed to compute the 50% fastest instances. For each algorithm,
instances were sorted separately. Note the logarithmic y-axis. (b) Individual
running times for the 200 slowest instances of the classical DP algorithm.
Instances are sorted by their running time for the classical DP algorithm.
One can see that running times of the classical DP are outperformed by that
of the sparse DP

a large database requires tree alignments to be executed extremely
fast. In this article, we have presented three exact algorithms for
the alignment of fragmentation trees. We find that the sparse DP
approach dominates the classical DP, resulting in an 11-fold speed-
up for one dataset. ILPs have an excellent record of providing fast
algorithms for NP-hard problems. Thus, it is rather unexpected
that, for the problem discussed here, the ILP is usually clearly
outperformed by both DP approaches; still, it has the potential to
solve those instances that are ‘hard’ for DP-based algorithms. Also,
in such cases we may use the ILP as a heuristic, solving only its LP
relaxation and applying some integer rounding algorithm, many of
which are standard in state-of-the-art ILP solvers.

Table 2. Running times for the Hill dataset

Algorithm All 90% fastest 99% fastest 1% slowest

DP 833.3 s 133.5 s (16.0%) 437.9 s (52.6%) 395.4 s (47.4%)
Sparse DP 75.3 s 13.9 s (18.5%) 33.9 s (45.0%) 41.4 s (55.0%)

Speed up 11-fold 10-fold 13-fold 10-fold

We report running times in seconds and as fractions of the total running time for all
instances (5151 alignments). We also report running time for the 90 and 99% fastest and
for the 1% slowest alignments. For both algorithms, instances were sorted separately.

When larger datasets become available, we expect the total
running time of an all-against-all alignment to increase more than
quadratic with dataset size: We have shown above that a large
fraction of the total running time stems from a few ‘hard’ alignments
which, in turn, correspond to a few trees in the dataset that are
large and, in particular, have high out degrees. We conjecture that
for larger datasets, the running time spent on computing the 99%
fastest alignments will be significantly smaller than the running time
spent on the 1% slowest alignments. Here, even faster methods
for computing fragmentation tree alignments are sought. We will
evaluate whether our ILP is capable of solving these ‘hard’ instances
faster than a DP-based approach, as its running time is not directly
dependent on the out degree of the trees.

We have put particular focus on fragmentation trees that are hard
to align, namely large trees with high out degrees. Small trees with
low out degree seem to be less interesting since they often belong to
small compounds (<300 Da). Often, these compounds are ‘knowns’
(that is, reference measurements of the compound can be found
in a spectral library) and can be identified by spectral comparison.
Also, small fragmentation trees contain less information for, say,
classifying an unknown compound. Nevertheless, we believe that
we can also speed up alignments when one of the fragmentation trees
is relatively small: this may be achieved using some preprocessing
for small trees with, say, less than four losses.

We conjecture that running time of the DP (Theorems 1 and 2)
can be improved to O(2d1+d2 ·poly(d1,d2)n1n2) using the Möbius
transform (Björklund et al., 2007), but this appears to be of
theoretical interest only.

In our evaluations, we have used a scoring function similar to
the one by Rasche et al. (2012). Both scorings lack any statistical
explanation and should be refined in the future using, say, log
odds scores. Also, the effect of merging two or possibly even
more nodes has to be investigated. Both questions were beyond
the scope of this work. Another interesting question is whether
polynomial-time methods for tree alignment of unordered trees, such
as the constrained tree edit distance (Zhang, 1996), can be used
for aligning fragmentation trees: whereas the restrictions imposed
by Zhang (1996) have no sensible interpretation in the context of
fragmentation trees, quality of results may still be sufficient for
certain applications.

Aligning fragmentation trees allows for an automated
classification of unknown compounds into compound classes.
Thus, large-scale compound screens can easily be searched for
compounds of interest. This may be useful in the search for signaling
molecules, biomarkers, or novel drugs and the identification of
illegal drugs or toxins. In conjunction with other methods from
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systems biology, the concept can help to identify new metabolic
pathways based on tandem MS experiments.
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