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ABSTRACT

Motivation: Despite the rapid decline in sequencing costs,
sequencing large cohorts of individuals is still prohibitively expensive.
Recently, several sophisticated pooling designs were suggested
that can identify carriers of rare alleles in large cohorts with a
significantly smaller number of pools, thus dramatically reducing the
cost of such large-scale sequencing projects. These approaches use
combinatorial pooling designs where each individual is either present
or absent from a pool. One can then infer the number of carriers in
a pool, and by combining information across pools, reconstruct the
identity of the carriers.

Results: We show that one can gain further efficiency and cost
reduction by using ‘weighted’ designs, in which different individuals
donate different amounts of DNA to the pools. Intuitively, in this
situation, the number of mutant reads in a pool does not only indicate
the number of carriers, but also their identity.

We describe and study a powerful example of such weighted
designs, using non-overlapping pools. We demonstrate that this
approach is not only easier to implement and analyze but is also
competitive in terms of accuracy with combinatorial designs when
identifying rare variants, and is superior when sequencing common
variants.

We then discuss how weighting can be incorporated into existing
combinatorial designs to increase their accuracy and demonstrate
the resulting improvement using simulations. Finally, we argue that
weighted designs have enough power to facilitate detection of
common alleles, so they can be used as a cornerstone of whole-
exome sequencing projects.

Contact: saharon@post.tau.ac.il

1 INTRODUCTION

The need for low-cost large-scale rare mutation screens is on the rise,
with the current shift of genome-wide association studies towards
rare variants (IMa,ng]_iQ_e_Laﬂ, |2£)D_‘]). Another major application
of rare variants genotyping is in prenatal screens for rare genetic
disorders; for example, the Israeli ministry of health sponsors carrier
screening tests for a list of 36 severe and frequent genetic diseases
(with prevalence higher than 1 in 1000 live births) in 35 different
localities/communities (Zlotogora ef all, 2009). The Israeli ministry
of health also provides free-of-charge screening for Tay—Sachs, a
recessive neurodegenerative disorder which is fatal by the age of
2-3, to couples of Jewish descent (Risch, R001l; [Zlotogora et all,
m), as well as screens for Thalassemia (an inherited autosomal
recessive blood disease) to all the Arab and Druze populations
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and Jews of Mediterranean or Asiatic descent W,

Rood).

Recent studies have described how sophisticated pooling designs
for high-throughput sequencing (HTS) technologies can be used
to dramatically reduce the number of pools required for carrier
identification, and, therefore, can reduce the costs of such large

scale carrier screens drasticall% dE; icher q{],m ) HJZ“ ﬂ; Prabhu and
Peer, H X ). The cost reduction is accomplished

because most of the cost of such projects is typically in the capture
stage, which has to be performed only once per pool. Reducing
the capture cost, even at the price of increasing the amount of
sequencing, can lead to very significant decrease in overall cost
(see typical calculations in Section 6.2 below).

Using a smaller number of pools reduces the overall ability to
reconstruct the genomes, but the theory of sparse signal recovery,
also known as compressed-sensing (ICan_d_és_aLa_U, |21)Dﬂ; I]l)_ngh_d,

), guarantees that with high probability the carriers of rare
mutations can be identified.

In the traditional pooled testing setup, the result of testing each
pool is a True/False value Mﬂ(%h_?&q, [2006). This is the
framework adopted bym ) who use the number
of wild-type and mutant allele reads in each pool to infer whether a
pool contains carriers or not.

However, the information obtained by sequencing a pool of mixed
DNA is not limited to a True/False indication as to the presence of
a carrier in the pool. The number of mutant and wild-type allele
reads can be used to infer the number of carriers within each pool,
where a high number of mutant reads is an indication of a high
proportion of mutant allele carriers in the pool. This difference
between the typical pooled testing scenario and the technolo
scenario was the basis of several recent works , ;

,M) which suggested more complicated designs that
take the specific scenario into account and design more efficient
pooling and decoding strategies for identification of rare allele
carriers. IShental er gl 2010) take a random design approach to
identify extremely rare carriers whilel @) take a more
structured approach and use a design based on the Chinese reminder
theorem (CRTD) to identify rare allele carriers. These designs allow
for the identification of multiple carriers. Another design which has
been used in similar contexts is the shifted transversal design (STD)
(Thierry-Mieg, 2006; [Xin ef all, 2009).

One common feature of these designs is that they are all
combinatorial: each individual is either present in a pool or absent
from it. Using this combinatorial approach, one can, at best, hope
to infer the number of carriers in a pool but not their identity. This
information is accumulated across the overlapping pools and the
identity of the carriers is then decoded in a manner reminiscent of
the way one solves a Sudoku puzzle.
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Limiting the discussion to such combinatorial designs is usually
considered good practice in the pooled testing and experiment design
literature dQu_and_Hwand, [2006). However, this may well be due to
the fact that the usual pooled testing setup is one where the results of
testing each pool are True/False as described earlier. Since we have
deviated from the usual framework, there is no longer a reason to
assume that combinatorial designs are optimal in any sense. In the
case of DNA pools, it is possible to pool together different amounts
of DNA from different individuals. We call such designs, where the
amount of DNA used is not constant, ‘weighted’ designs. In such
designs, the results of sequencing a pool can be used not only to infer
the number of carriers in a pool, but also to gain some information
as to the identity of the carrier within the pool.

We describe a straightforward pooling scheme, a non-overlapping
weighted design (NWD), where the individuals are divided to same-
sized groups and each group is pooled and sequenced together,
but each individual contributes a different amount of DNA to the
pool. We describe how to derive optimal designs in this setup,
and study the performance of these designs. The accuracy of
these designs has a different pattern than the accuracy of the
combinatorial designs. While the former slowly degrades as the
prevalence of carriers increases, the latter maintains perfect accuracy
for very rare mutations, but collapses at some point, when the
carriers are too dense. It is, therefore preferable to use NWDs
when the genetic variations of interest are more common. We then
describe a hybrid approach, which uses a combinatorial design
as a base design, and applies weighting to each pool of the
design. We show, using simulations, that hybrid designs outperform
their corresponding combinatorial designs. Finally, we discuss the
possibility of using NWDs for common variant detection, which
might enable significant cost reduction of large-scale whole-exome
and whole-genome sequencing projects.

The rest of this article is organized as follows. Section 2
provides some intuition as to why weighting might prove a
powerful concept. Section 3 describes a mathematical model of
the pooling and sequencing process. Section 4 describes the NWD
in more detail. Section 5 describes the hybrid approach which
can dramatically increase the ability to correctly genotype rare
mutations using overlapping pools designs. Section 6 studies the
performance of NWDs, and compares the performance of hybrid
designs and combinatorial designs using simulations. Section 6.1
describes how NWDs can be used for common allele sequencing and
Section 6.2 briefly discusses the potential reduction in sequencing
costs. Section 7 concludes our work.

2 MOTIVATION

Consider the following interesting riddle: You are given a set of n
coins, one of which is counterfeit and, therefore, has a lighter weight.
What is the minimal number of weighing required to identify the
counterfeit coins using a spring scale? Such spring scale riddles
were studied extensively [see m (@I)) for an overview]
and for simple versions of this riddle the solution generally requires
O(dlog(n)) weighings, where n is the number of coins, and d is the
(known) number of counterfeit coins m, m).

Next, consider a well known but less studied variation of this
riddle: instead of n coins, we now have n coin piles, one of which
contains counterfeit coins. In this case, the counterfeit pile can be
found with a single weighing by taking i coins from the i-th pile

and weighing all the selected coins together. Even if the number
of counterfeit piles is unknown, they can all be identified with a
single weighing. This requires taking a; coins from the i-th pile
such that the sequence {ai};’=1 is a subset-sum-distinct sequence. A
straightforward solution is to take 2i=1 coins from the i-th pile, but
denser subset-sum distinct solutions exist such as the Conway—Guy
sequence m, @).

These riddles demonstrate the power of weighted designs. The
former riddle is solved using combinatorial designs, where each
coin is either included of excluded from each weighting. The latter
riddle allows us to take a different number of coins from each pile to
and construct a much better strategy. The fact that we use a different
number of coins from each pile allows us eventually to identify any
number of counterfeit coin piles with a single weighing.

The pooled sequencing scheme resembles the coin piles problem
in the fact that we can pool different amounts of DNA from each
individual similarly to the way we take a different number of
coins from each pile. However, there are two important differences.
First, with pooled sequencing our measurements are noisy—the
proportion of mutant reads does not correspond directly to the
proportion of mutant reads in the pool. Second, the number of
carriers in a group follows a Binomial distribution, with the
parameter p being the minor allele frequency (MAF) which is either
known or unknown, depending on the exact scenario. However, in
the following sections we demonstrate how taking the weighted
approach can dramatically increase the power of pooling designs,
just as it did for the riddles described above.

3 MODEL OF A POOLING SCHEME

We start by describing a model of the pooling and sequencing
process. A pooling design involving k pools and n diploid individuals
is given by a matrix My, where M; ; is the weight of the j-th
individual in the i-th pool. In a binary design, the weight is either
0 or 1, while in a weighted design the entries are in Ry. x is
a vector indicating the number of mutant alleles of each carrier,
so in general x€{0,1,2}". In the context of carrier screens, each
individual has at most one mutant allele so in that case x € {0, 1}".
This is the case when homozygosity of the mutant allele is deadly
or can be otherwise detected without genetic tests, and provides a
good approximation when the alleles of interest are rare. For ease
of notation, we treat x as a number between 0 and 2" — 1 (or 3" —1),
taking the binary (ternary) representation of the number as the vector
description of x. Similar models were previously used by

201d) and|Shental er al] ©01d). _

A normalized design is denoted M and is simply the same design
after the weights have been normalized such that the sum of weights
in a pool is 1/2, since each individual donates two alleles to the pool.

We denote g; the proportion of mutant alleles in the i-th pool after
preparation, given, in vector form, by g(x) =Mx.

We denote « the probability that the sequencing machine identifies
a mutant allele as a wild-type allele or vice versa. This is more
likely when the mutation is a single nucleotide polymorphism (SNP)
and less likely when the mutation is an indel of several bases. A
conservative estimate of the probability of a single base read error
is 1% ,M). Therefore, error reads are relevant when
screening for SNPs, but not when screening for indels of several
bases, as in the case of AF'508 associated with Cystic Fibrosis (Rowe
et al.my The probability p; that a single read in pool i is a copy
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of a mutant allele is given by:
pi(x)=(—a)qi(x)+o(1—g;(x)).

This probability can be interpreted as the probability that a mutant
read is read correctly by the sequencer plus the probability that a
wild-type read is read with an error, transforming it to a mutant read.

The expected coverage of the genomic location of interest is
denoted r and depends on various factors, such as the expected
number of reads of the sequencing technology and the length of the
sequenced region.

We assume that the total number of wild-type allele reads
and mutant allele reads in the i-th pool, denoted W7; and MU;,
respectively, both follow a Poisson distribution with parameters
Awr,(x)=r(1—p;(x)) and Apy,(x)=rp;(x), respectively. This
implies that the total number of reads is distributed Pois(r) regardless
of the content of the pool due to the properties of the Poisson
distribution deh,nmmﬂ,h_‘ZQﬂ). While this assumption is of some
debate, [see, e.g. mn, we follow the existing literature
in using it [see, e.g. Erlich et al. (2010)].

The output of the HTS is the number of both the wild-type and
mutant reads in each pool and is denoted y ={WT;, M U,-}i.‘: 1

3.1 Inference under the model

The posterior probability that a carrier-assignment vector x
generated a given read output y is given by:

P(x]y) x P(y|x)p(x),

where ¢(x) is the prior distribution of x. For example, if the
prevalence of the mutant allele in the population is 8 and x has m
carriers, then @(x)=0"(1 — )21, assuming the allele in question
is located on an autosome. The probability P(y|x) is given by the
product of two probabilities: The probability of observing the given
number of wild-type reads and the probability of observing the
given number of mutant reads. Since the values of y are known,
this probability can be written as a function of x:

k
fE=Pe)=]][P0ilx)
i=1
k MU; WT;
=[ et AMU OO, ) AW )
i MU;! WT;!
k
MU; T
oc [ [raew, MY = apgu, ep ™.
i=1
The choice of the optimal assignment vector x depends on the
criterion we wish to optimize. In the context of carrier screens, Erlich
etal. , ) count only a perfect reconstruction of the carrier
vector as success. In this case the optimal assignment of x is the
maximum posterior (MAP) assignment:

xMaP(Y) = argmax P(y|x)P(x).

Finding the MAP can be a computationally difficult problem.
m M), apply a simple heuristic to the output of GPSR

(Gradient Projection for SEarse Reconstruction) to approximate the

optimal solution while M) use minimal discrepancy.
m M), show that belief propagation (BP) is superior

to the other methods as a decoding method. This is probably due to
the fact that BP does take into account the prior information and the
discrete nature of the vector x. Therefore, whenever it is not feasible
to identify xpap by exhaustive iteration, we adopt the Monte Carlo
belief propagation scheme of ) as our method for
finding xpAp-

Although the perfect reconstruction criterion is suitable in the
context of carrier screens, when thinking about sequencing in
the context of association studies, a more suitable criterion for
optimization is the probability of successfully sequencing an
individual at a given location. We define a suitable loss function
for the case of x€ {0, 1}"* by:

d
L(x,x*>=—$ZH{x,~=x;’<},
i=1
which can be interpreted as (minus) the percentage of correctly
classified individuals when the true value is x but our assignment is
x*. The loss function for the case of x € {0, 1,2}" has to be adjusted
to account for two alleles instead of one.
Given the loss function, the optimal assignment x*(y) is defined
as the minimizer of the expected loss:

x*(y)Zargmin y _ P(y[x)P(x)L(x.x").

This framework is general and can be used with other loss functions.
For example, the optimal assignment is xpap if the loss function is:

d
L(x,x*)= —H]I{x,- =x;k}.
i=1
Similarly, one can assign different penalties to type-1 and type-2
erTors.

4 NON-OVERLAPPING WEIGHTED DESIGNS

We begin our analysis by analyzing non-overlapping weighted
designs (NWDs). In NWDs, a group of n individuals is divided into
g groups of d individuals and each group of d individuals is pooled
into one pool which is then sequenced. Such a scheme reduces the
number of pools required for sequencing by a constant factor of
d, compared to the more sophisticated overlapping pools designs
such as CRTD and STD which require only O(+/n) pools. However,
the actual factor of reduction in the number of pools achieved by
these designs in practice is between 5 and 6 for n=1000 for any
design with reasonable performance and even much less for smaller
cohorts. We, therefore, find that even for very large cohorts NWDs
with d =5 or d =6 require roughly the same number of pools as do
combinatorial designs such as CRTD and STD.

Using such non-overlapping weighted designs has a number of
advantages over combinatorial pooling schemes:

* They are easy to implement: While pooling with CRTD,
STD or a random design requires either expensive robotic
equipment or laborious manual processing that is prone to
irreversible errors, a trained multi-channel pipette user can
implement an NWD in a manner of minutes. For example,
pooling d =5 plates of 96 wells into 96 pools can be done
by setting the pipette to the first weight, and transferring this
amount from each well in the first sample plate to the same
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well in the pooling plate. The pipette is then set to the second
weight and the process is repeated using the second sample
plate, then the third and so forth.

They are easy to analyze: Sophisticated pooling designs
require belief-propagation or similar algorithms to decode.
These algorithms are computationally demanding and
heuristic. Moreover, when the number of carriers increases,
these algorithms tend to oscillate and cannot be used for
meaningful inference. The fact that the pools in an NWD
are independent and contain a small number of individuals
allows for rapid enumeration over the entire set of carrier
configurations, thus overcoming these issues.

They are easy to optimize: While the problem of finding an
optimal compressed sensing design remains an open one, the
problem of designing the optimal weighting scheme for a
pool is easy to approach, as we demonstrate in the following
section.

They are more robust: The decoding of overlapping pooling
strategies is based on crossing information between pools
by means such as message passing, which creates complex
dependencies between the different pools in the decoding
process. In an NWD, the decoding of each pool is based upon
that pool only, and, therefore, a pool that was not sequenced
properly due to some problem along the pipeline does not
influence the other pools.

4.1 Finding the optimal NWD

For a given set of parameters (n,d,o,r,0) and a set of weights w=
{wi}fl:l, we can write down the expected loss EL(w):

oo 2¢-1

STIES YD IS

Yuu :OyWT =0 x=0
PPy Yoy POLGEX™ Yy V)

Since y,,,, is a Poisson variable with A,y in the range [ar, %] and
similarly y,, is a Poisson variable with Ay7 in the range [%,r], the
infinite sums can easily be approximated to an arbitrary degree of
accuracy by defining:

F\(1—e;5) F'(1=5ir) iy

ERTEED YD VD >

Yy =0 Yy =F~'(5:5) x=0
(P(X)P()’MU vywr |'x)L(x"x*(yMU ’yWT ))’

where F_l(l —e€;A) is the (1—e)-th quantile of the Poisson
distribution with rate . EL¢(w) is simply the true EL(w) minus
the tails of the sums.

Because of the choice of the summation limits, the probability of
the set of omitted y values is bounded by 1 —(1— €)2. The summand
is a probability and so the omitted sum is positive and bounded by
2¢+€2. this implies that the true EL(w) lies in the following interval:

EL(w) € [ELe (W), ELe (W) +2€ —€2],

and so € can be chosen so that the approximation is as accurate as
required.

We now wish to minimize the expected loss, that is, we wish to
solve argmin EL(w)e¢.

w

Since the sum of the weights is constant, this problem can be
numerically solved by optimizing over only d — 1 parameters. Since
d is small, this can be done using ‘out of the box’ optimization
algorithms or even using an exhaustive grid search.

We denote PSUC the probability of correctly classifying an
individual. When the loss function counts how many individuals
were correctly classified, we have PS"¢ = —EL. When suitable, we
use this more intuitive notation.

4.2 Controlling for classification errors across
individuals

An immediate concern that arises when dealing with the idea of
weighted designs is the lack of symmetry between the different
individuals participating in the design. Hypothetically, it is possible
that, due to the weighting scheme, the probability of identifying
that an individual is a carrier varies greatly across individuals.
It is, therefore desirable to be able to construct an NWD in a
manner which provides equal probability of misclassification across
individuals, or at least some control over the minimal probability of
such misclassifications.

More formally, denote p;(w) the probability that the i-th individual
is classified as non-carrier when she is a carrier. We wish to solve:

argmin max p;(w),
w L

when the decoding is done using xpz4 p. We call these designs ‘fair’
NWDs.

We designed a heuristic to quickly find a nearly optimal set
of weights w.r.t. this criterion. The key observation behind this
heuristic is that when the i-th individual is a carrier, most cases
of misclassifying her as non-carrier are caused when either the
(i—1)-th or the (i+ 1)-th individuals are misclassified as carriers,
when the indexing is by increasing order of weights.

It follows that the weights should be designed such that that the
probability for confusion of the i-th individual with the i — 1-th and
the i+ 1-th individual is constant across individuals. Thus, given w
and wy, we choose w3 such that the probability of confusing the fact
that individual 2 is a carrier with individuals 1 or 3 is equal to the
probability of confusing the fact that 1 is a carrier with 2 being a
carrier or with O carriers. wp and w3 in turn determine wy and so
forth. All that is left is to minimize over w{ and wy. We omit further
details from this text due to lack of space.

5 IMPROVING EXISTING DESIGNS

While the simplicity of NWDs is very appealing, they do not scale
as well as other designs as the number of individuals increases.
Designs that are based on overlapping pools, such as the CRTD or
STD, scale as O(4/n) and thus provide a much more efficient way
of pooling when the sequenced cohorts are in the order of thousands
or more. Intuitively, these designs achieve good performance by
intersecting information regarding each individual across pools. It
is therefore interesting to see if one can improve these designs
by adding weighting without changing the underlying conceptual
framework of the design.
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One appealing idea is to take such combinatorial designs, and
instead of applying the same weight to the individuals within each
pool, use two weights or more. However, the construction of optimal
designs even in much simpler compressed-sensing setups is an open
question. The consensus in these cases is to use randomization, since
random matrices fulfill the restricted isometry property required for
by the compressed sensing theory mﬁﬂ ). We follow
the same line of thought: given a combinatorial design we apply
weighting to each pool separately and randomly, while limiting the
number of weights to a small number in order to facilitate fast
computation and optimization.

Given a combinatorial design, we first select m—the number of
weights to be used—and then assign one of m weights to each of the
individuals in a pool. Unfortunately, the testing and optimizing of
such designs is a computationally intensive task. To alleviate these
issues, we study the simple case of m =2, that is, we use two weights
w1, wn in each pool and assign each weight randomly to half of the
individuals in each pool. To maintain a simple design, we use the
same weights across pools. It is then possible to use simulations
to estimate PSY€ for the ratio wy /wy and thus identify the optimal
design in this family of designs. We also briefly discuss the case
of m=3.

6 RESULTS

We start by analyzing NWDs. As discussed earlier, we use a
conservative error rate of « = 1% and an average coverage of 1000x
(i.e. ¥=1000). While this coverage is high for whole genome
sequencing projects, it is very reasonable when targeting a small
number of genes or several known mutation loci as is the case in
prenatal screening. We start by limiting the discussion to carrier
screens, that is, the probability of observing a mutant homozygous
individual is 0. As discussed earlier, this is the case when screening
for lethal recessive mutants but also when sequencing mitochondrial
DNA, sex chromosomes in males, or monoploid organisms. We relax
this assumption in Section 6.1.

We computed the optimal NWDs and their corresponding values
of PSU€ for d €{2,3,4,5,6} using 6 =4% to simulate the case of
Tay—Sachs carrier screening in the Jewish Ashkenazi population
(@,M). The performance of these designs as a function of 6—
the actual carrier prevalence in the population—is given in Figure[Il
Our simulations show that for low compression levels (d =2, 3) there
is hardly any loss of PSY€ even for more common mutations. The
baseline for comparison is defined as the PSY€ obtained by assigning
the wild-type genotype to all the individuals, that is, 1 —6.

We then used numerical optimization to find the optimal NWD
for various prevalence values. Figure P] compares the performance
of the optimal NWD for each value of 6, the optimal NWD for
0 =4% and the ‘fair’ NWD for 6 =4% as described in Section 4.2.
While the optimal NWD does outperform the other designs when
0 #4%, as expected, the differences between its performance and
the performance of the Tay—Sachs optimal design are small. The
“fair’ design does not perform as well, but this is expected, given
that it was not optimized with respect to PS4€,

As means of comparison to the combinatorial designs, we chose to
focus on CRTD and STD and a cohort size of n=1000 individuals.
For the CRTD, we used windows of {31,32,33,35,37}, yielding a
compression rate of ~6, while for the STD we used P =37 and five
windows, yielding a compression rate of ~5.4.
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Fig. 1. Performance of Tay—Sachs optimal NWDs for various values of d
and r=1000.
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Fig. 2. Performance of Tay—Sachs optimal NWD, a design that controls for
classification errors and a pointwise optimal NWD. All designs are withd =5
and r=1000.

The performance of these designs was estimated by running
100 simulations for each prevalence value and calculating the
empirical PS¢, The decoding was done by belief-propagation using
20 iterations with a high damping factor (y =0.95) to alleviate
oscillation issues, and by using xpap instead of x* since finding
the latter is intractable for such cohort sizes. The performance of
these designs is compared to Tay—Sachs NWDs with d =5,6 in
Figure[3 The combinatorial designs, which rely on the principles of
compressed sensing, display a near perfect reconstruction rate when
the prevalence of carriers is small and therefore the signal is indeed
sparse. However, as the prevalence increases, the performance of
the combinatorial designs quickly deteriorates, and for prevalence
higher than 3% the signal is too dense to reconstruct, and the
performance of the designs is roughly equivalent to simply assigning
the wild-type allele to the entire group. The NWDs do not display
this characteristic ‘phase-transition’ but rather show a slow decline
in performance, with much better performance than combinatorial
designs once for prevalences above 2.5-3%.

To study the performance of hybrid designs, we focused on hybrid
designs with only two different weights, which allows us to quantify
their performance as a function of one parameter—the ratio of the
weights wy /wp. We used a grid of 20 values of w /w, and estimated
the performance of the hybrid designs for a prevalence of 3% using
100 simulations each time. The optimal weight ratio in both designs
was wi/wp=0.2, and using wi/wy =1, that is, resorting to the
combinatorial designs, displayed very poor performance, as can be
seen in Figure @

We then studied the performance of hybrid CRTD and STD using
the optimal 0.2 ratio, as well as 0.3 and 0.5, and compared their
performance to the corresponding combinatorial designs. To do so,
we ran 100 simulations for each of the ratios, for each of the designs,
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and for prevalence ranging from 0.1% to 4% using step size of
0.1%. The results for CRTD and STD are displayed in Figures
and [@ respectively, and show a clear improvement in performance
when weighting is used.

For example, one can look at the minimal prevalence of carriers
in the population such that PS¢ <0.999. The combinatorial STD
crosses this threshold for prevalence of 1.5%, while for the hybrid
designs with weight ratios 0.2, 0.3 and 0.5, this happens for
prevalence of 1.9, 2.3 and 1.5%, respectively. Similarly, one can
look at the minimal prevalence such that the design underperforms
the baseline, which happens for prevalence of 2.4% for the
combinatorial STD and for prevalence of 3.4, 3.2 and 2.8% for
the hybrid STDs with weight ratios 0.2,0.3 and 0.5, respectively.
Results are qualitatively similar for CRTD.

Encouraged by the significant improvement in the performance of
the combinatorial designs due to the introduction of two weights, we
studied the impact of adding a third weight. We used a grid-search

Fig. 7. Performance of STD with one, two and three weights, as well as a
robust version of the three weights design with larger minimal weight.

to find the optimal weight ratios for STD with three weights for
a population with 3% carriers, which was approximately w/wy =
0.35 and wi /w3 =0.05, and estimated the performance of this design
in the same manner as before. The results (Fig. [[) show that the
additional weight improves the performance of the design even
further.

It might seem counterintuitive at first that assigning such small
weights to some of the individuals improves the overall performance
of hybrid designs. The key to understanding this is that the decoding
process crosses information between overlapping pools. Individuals
with small weights in certain pools will have high weights in
other pools, and in these pools there would be less uncertainty
regarding the identity of the carrier. While each pool provides less
information regarding the individuals with low weights, it provides
much more information regarding the individuals with high weights,
narrowing down the list of possible carriers by a factor of the
number of weights. For example, with one carrier in a pool of
30, combinatorial designs would only allow us to infer that one
individual out of the 30 in the pool is a carrier, while a hybrid
design with three weights would narrow the list down to 10 possible
carriers if the carrier is not assigned a small weight. So pools where
an individual has a small weight provide less information regarding
this individual while pools where the individual has a larger weight
provide more information, and due to the design of overlapping
pools this information can be used for better decoding.

The fact that this tradeoff is beneficial might seem less surprising
when one thinks about the convexity property of the mutual
information. Mutual information is a concept from information
theory that captures the reduction in uncertainty regarding the true
value of one random variable X when we observe the value of a

different variable Y, and is denoted I(X;Y) , @). In our
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case, X is the identity of the carriers and Y is the observable outcome
(i.e. counts of wild-type and mutant reads). It is well known that
given the distribution of X (which is known in our case), I(X;Y) is
convex in P(Y|X) m, ). Since adding weights increases
the dispersion of the values of Y, it is reasonable to expect that
1(X;Y) will increase. While this is of course not a formal proof, we
find it provides a good intuition to understanding why weighting is
beneficial.

Despite these explanations, using small weights might still be
problematic, either due to the higher sensitivity of such weights to
measurement errors or for other reasons (such as the overdispersed
nature of the coverage observed in many experiments). It might,
therefore prove valuable to study the performance of suboptimal
designs which assign larger weights. To study the effect of changing
the weights to a suboptimal set we doubled the ratio for the smallest
weight to the largest weight so that wi /w3 =0.1, and estimated the
performance of this more robust design. The results, shown in Figure
[ show only a slight degradation of performance compared to the
optimal design, suggesting that designs can benefit from additional
weights even when those weights are substantial.

6.1 Sequencing common variants

In the previous section, we discussed the performance of NWDs,
combinatorial designs and hybrid designs under the assumption
of no homozygous mutants. This is a reasonable assumption for
carrier screens, and a good approximation for very rare variants.
While combinatorial and hybrid designs are useful only when the
underlying mutations are rare, our simulations suggest that NWDs
identify carriers with very few mistakes even when the prevalence
of the mutation is high. NWDs can, therefore be used to sequence
common variants, for which we expect to see homozygosity of both
alleles. Hence, NWDs may be used to reduce the cost of whole-
exome and even whole-genome sequencing projects. Such projects
usually involve much lower coverage than previously discussed,

typically in the range of 30-150 [e.g. see [Stransky er afl (2011))

or the offer by 23andMe for whole exome sequencing with 80x
coverage for $999 3andMe websitd, 2012)].

We generalized the equations in Sections 3 and 4 to account for
the possibility of observing a homozygous mutant by treating the
vector x as a vector in {0, 1,2}" instead of in {0, 1}"*, so the number of
possible allocations is no longer 2" but rather 3", and modified the
loss function L accordingly. We further assumed Hardy-Weinberg
equilibrium which determines the prior distribution of x as a function
of the MAF. We then computed PSY€ using the modified formulae.

Figure [§] shows the performance of NWDs with d =2 for re
{30,80,150} as a function of the MAF, where the weights are
optimized for MAF of 5%. Our results suggest that, with realistic
coverage, NWDs with d =2 can be used to reduce the cost of whole-
exome sequencing projects. The additional error rates due to the
use of such NWDs are only 5.9, 3.1 and 1.3% (for »r=30, 80 and
150, respectively) with the maximal MAF (which are the hardest to
call correctly). For lower MAFs, the error rates reduce dramatically,
for example for MAF=0.1 the error rates are 1.5, 0.6 and 0.25%,
respectively.

To investigate the option of using NWDs for even lower coverage
rates, such as those encountered in whole-genome sequencing
projects, we calculated PSYC for NWD with d=2 and re
{10,20,30}. Since such low coverage implies that the decoding is
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Fig. 8. Using NWDs with d =2 with typical whole-exome sequencing
coverage values.
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Fig. 9. Using NWDs with d =2 with typical whole-genome sequencing
coverage values.

more sensitive to genotyping errors, we used the more realistic value
of «=0.1%. Figure [ displays the performance of these designs.
Even with the minimal coverage rate of 10x, such NWDs introduce
<8% errors for the maximal MAF, and <2.5% for variants with
MAF=0.1.

6.2 Cost reduction due to pooling

Detailed modeling of the costs of a HTS project is out of the scope of
this article. However, we find it instrumental to discuss a simplified
analysis. The two major costs of a sequencing project are the capture
of the genomic region of interest and the sequencing itself. Pooling
designs reduce the number of capture reactions required but increase
the sequencing depth required, so their cost-effectiveness depends on
the actual costs. The current price of running a single Illumina HiSeq
lane, which produces roughly 5 x 107 paired-end reads of length 100
each (i.e. a total of 1010 bases) is roughly $2200 m,

). Costs of capturing a part of a human genome vary depending
on the technology and the size of the region of interest, but generally
range from $300 to $1300, including reagents and labor (private
communication with salespeople from Agilent, Beckman Coulter
Genomics, Halo Genomics and the Beijing Genomic Institute). We
neglect the cost of other elements such as barcoding, as these are
typically negligible compared to the costs above.

Since pooling strategies benefit from reducing the number of
captures required, we take a conservative approach and evaluate the
costs using the lower bound of $300 per capture reaction. Consider
now a sequencing experiment where we target a region of size
1Mb, and sequence 1000 individuals with coverage 30x. We can
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theoretically sequence 333 individuals per lane (even though this is
somewhat unrealistic) and, therefore, using a standard non-pooled
approach the project would require 1000 captures and 3 lanes, or
1000 x 30043 x 2200=$306 600. A hybrid approach using a STD
with 185 pools and 1000x coverage as in the analysis above, would
require only 185 captures, but each lane can accommodate only
10 pools, so we would need 18.5 lanes, resulting in an overall
cost of 185 x 300+ 18.5 x2200=$96 200, less than one third of the
costs.

The price one pays for this reduction in cost is losing the ability to
reliably call common variants (with MAF > 4% when using a design
with three weights as described earlier), but in many applications this
is acceptable, for example when focusing on rare variants.

One possible concern is that the dispersion of depth of coverage
across the region of interest is higher than expected by the Poisson
model, and, therefore, many loci would have a lower than expected
coverage, for which hybrid pooling designs might be less effective.
To alleviate this issue, it is possible to use some of the savings in
costs to increase the expected coverage depth. For example, if we
increase the expected coverage so that each pool has coverage of
2000x, the additional cost is $40 700, and the overall cost is still
less than half of the original experiment.

Using an NWD with d =2 and coverage 30x for each pair would
only reduce the number of captures, resulting in a total cost of
500 x 30043 x 2200=$156 600. With this depth, our simulations
show that the added error would be <6% for common variants,
and ~1% for variants with MAF<10%. Again, the reduction in
costs can be used to increase the expected coverage, for example
to 150x, for which the overall cost would be $183 000, roughly
60% of the cost of the original project. This level of coverage
would reduce the error to ~1% for the most common variants, and
would definitely solve any coverage issues that might arise from
overdispersed coverage.

Finally, it is important to keep in mind that the cost of sequencing
is decreasing in a super exponential rate (NHGRI websitd, [2012), so
coverage depth is becoming less and less of an issue. This implies
that the reduction in cost when using pooling designs would only
grow in the future, and that the cost increasing coverage to solve
overdispersion problems is likely to become neglible.

7 CONCLUSION AND FUTURE WORK

The idea of using elaborate pooling designs to reduce the costs
of genetic screens and rare variant genotyping is appealing and
useful. However, the mathematical framework induced by the
nature of the problem is unique both in the group testing literature
and the compressed-sensing literature. The sequencing community
is, therefore required to derive such methodologies from scratch.
[Exlich er all (2009) and [Shental er gl ©2010) take advantage of
the fact that the sequencing results are not binary and describe
combinatorial designs that utilize this fact to allow for accurate
recovery of rare variant carriers, which are sparse enough in the
sample, and, therefore, fulfill the sparsity assumption underlying
the basic mathematics of compressed sensing.

Weighted pooling designs take advantage of another feature of
the DNA pooling scenario—the ability to pool together different
amounts of DNA from different individuals. We described how
weighting can be used in two ways. First, we studied non-
overlapping weighted designs where the individuals are divided

to disjoint groups of d individuals and each group is sequenced
individually. By pooling different amount of DNA from each
individual, we are able to identify which of the individuals are
carriers in each such pool. These designs have another major
advantage—they are very easy to implement in the lab. While this
consideration is usually out of the scope of compressed sensing
or group testing works, we find it important to keep in mind
that the applicability and simplicity of a method might determine
whether it is actually adopted by the community or not. Second,
we described how weighting can be incorporated into the existing
overlapping designs, and demonstrated, using simulations, that such
hybrid designs are superior to their non-weighted combinatorial
counterparts.

Hybrid designs and NWDs display very different performance
profiles. Hybrid designs have a nearly perfect reconstruction rate
for rare mutations, but as the prevalence of carriers increases
they undergo a ‘phase-transition” which is typical to compressed-
sensing approaches and are no longer able to identify carriers [see
for example IE]quLLﬁiQ_aL&U (IZDDJ)]. Non-overlapping weighted
designs show a continuous decline in performance without such
abrupt phase-transitions. Hence, the choice of design type should
depend on the application considered. In the case that the priority
is to correctly classify the individuals as carriers or non-carriers,
as is the case when running prenatal screens for known rare
recessive genetic disorders, it is preferable to use hybrid designs
with overlapping pools. Since in this case the screens are carried
over a large population and done again and again, it is also more
reasonable to invest the one time effort of establishing a laboratory
pipeline for such tests.

If, however, the priority is to identify variants of a large range
of minor allele frequencies with as few mistakes as possible, but
with no reason to prefer correct genotyping of very rare variants
to correct genotyping of more common ones, non-overlapping
weighted designs might be preferable, as they outperform the
compressed sensing approaches when the variants in question are
not very rare. In fact, our simulations suggest that using d =2 with
realistic coverage can cut the cost of exome-capture of whole-exome
sequencing projects by nearly half, and still introduce <1.3% errors
to the genotype calling.

The possible applications of these approaches are numerous. First,
as we discussed earlier, the compressed-sensing approaches can be
used to facilitate cheap prenatal screens. In this scenario, hybrid
designs can be used to extend the range of mutations for which
carriers can be identified from mutations with MAF <2% (as in the
STD example) to MAF <4% (with three weights), and probably
even more with better designs.

Second, deep-sequencing is used more and more to identify rare
variants. Most methods for rare variants association tests involve a
step of grouping rare variants which are in the same genetic region
for each individual, and using these statistics for the association test
[see for example m )]. Such methods require the
ability to associate each rare variant with its carriers and, therefore,
cannot use simple case—control pooling approaches. Hybrid designs
can be used if very rare variants are of interest. In the case that a wider
range of MAFs are of interest, NWDs can be used. NWDs introduce
very little additional error when sequencing rare variants, and reduce
the overall cost while still allowing the recovery of common variants
with a reasonable level of noise. The savings in costs can be directed
towards increasing the sample size, which would compensate for the
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lost power of association due to the added noise, or to increase the
sequencing depth.

Finally, methods which use sequencing data for global or local
ancestry and identity-by-decsent (IBD) inference require genotypes
of individuals but are robust to a low level of noise, since such
inference typically accumulates data across large regions of the
genome. Such studies are likely to benefit from the cost reduction
of NWDs.

While we demonstrated that adding weighting to combinatorial
designs improves their performance, the hybrid designs we
presented are only a step toward even better designs. One can think
about using more than three weights in hybrid designs, or construct
an entirely new design by optimizing over the weights and their
assignment simultaneously, rather than taking an existing design
and applying weighting to it. However, even for much simpler
setups there are no known optimal designs in the compressed-
sensing literature. We believe our work is a first step in a road
that may eventually utilize more complex designs to a greater
benefit.

Another technology which is commonly used to reduce the costs
of whole-genome sequencing projects is barcoding. Until recently,
barcoding did not pose an alternative to overlapping pooling designs,
since the capture step could only be performed before barcodes were
applied to the samples, hence barcodes could not be used to reduce
the cost of the capture step. However, a method recently developed
by [Rohland and ReicH (2012) allows for target enrichment in a pool
of 192 barcoded samples. Since the emergence of such methods is
imminent, we find it important to note that pooling designs, and in
particular NWDs can be easily applied on top of any such method.
For example, one can easily pool 384 samples into 192 pools using
NWD with d =2, and then apply 192 barcodes and a single target
enrichment procedure. Therefore, the cost reduction obtained by
using NWDs would still be considerable.

Many open questions remain in the field of pooled sequencing
designs. First, the current modeling of the pooling and sequencing
procedure is not entirely realistic. The current framework does
not model pipetting measurement errors, and uses the Poisson
distribution to model the number of reads, while experimental
evidence seem to suggest that the number of reads follows a more
dispersed distribution , M). This problem can be
resolved by using some of the savings due to pooling to increase
the coverage, but could also be partially resolved by using larger
weights, which still improves the performance of combinatorial
designs as shown earlier. The decoding framework is also far from
perfect. The belief propagation algorithm used for decoding is only
an approximate heuristic, and tends to oscillate as the number
of carriers increases. Other message passing algorithms, such as
consensus propagation (lM_éz_anLand_Mgm;an_ad, |29_OQ), or special
purpose variants thereof, might increase the performance of both
hybrid and combinatorial designs.

Second, the usual pooled testing setup assumes that the sequenced
individuals are unrelated. In many cases this is not true, for example
when sequencing trios or larger pedigrees. An open question is
how to utilize these known relationships to facilitate even better
pooling. Finally, the current decoding framework does not take
advantage of the dependencies between close variants known as
linkage disequilibrium. These dependencies can be used to reduce
the decoding errors in both designs. For example, NWDs decode
rare variants with fewer errors than common variants. Since rare

variants are more abundant in the genome, their correct decoding
can be used to identify a haplotype, which in turn can be used to
correctly decode the more common variants. We plan to pursue these
directions in future work.
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