
Copyedited by: BS MANUSCRIPT CATEGORY:

[11:29 31/5/2012 Bioinformatics-bts212.tex] Page: i49 i49–i58

BIOINFORMATICS Vol. 28 ISMB 2012, pages i49–i58
doi:10.1093/bioinformatics/bts212

A single source k-shortest paths algorithm to infer regulatory
pathways in a gene network
Yu-Keng Shih and Srinivasan Parthasarathy∗
Department of Computer Science and Engineering, the Ohio State University, Columbus, OH, USA

ABSTRACT

Motivation: Inferring the underlying regulatory pathways within a
gene interaction network is a fundamental problem in Systems
Biology to help understand the complex interactions and the
regulation and flow of information within a system-of-interest. Given
a weighted gene network and a gene in this network, the goal of an
inference algorithm is to identify the potential regulatory pathways
passing through this gene.
Results: In a departure from previous approaches that largely
rely on the random walk model, we propose a novel single-
source k-shortest paths based algorithm to address this inference
problem. An important element of our approach is to explicitly
account for and enhance the diversity of paths discovered by our
algorithm. The intuition here is that diversity in paths can help enrich
different functions and thereby better position one to understand the
underlying system-of-interest. Results on the yeast gene network
demonstrate the utility of the proposed approach over extant state-
of-the-art inference algorithms. Beyond utility, our algorithm achieves
a significant speedup over these baselines.
Availability: All data and codes are freely available upon request.
Contact: srini@cse.ohio-state.edu
Supplementary information: Supplementary data are available at
Bioinformatics online.

1 INTRODUCTION
With advances in high-throughput experimental technologies, we
are now witnessing a revolutionary change in our ability to measure
and store various forms of interaction data (e.g. protein–protein,
protein–DNA/RNA, protein–metabolites and genetic interactions)
for different organisms. The central objective in Systems Biology
is to fuse and analyze the diverse molecular, cellular, tissue-level
and higher level data sources to deduce how sub systems and whole
organisms work from these network of interactions.

A node in such a network is usually a gene or its corresponding
protein, and an edge in a gene network represents a protein–
protein interaction (PPI) or a transcription factor (TF)–DNAbinding.
A major challenge here is to identify the underlying regulatory
pathways, each of which is a chain of interacting genes within a
network. A regulatory pathway begins with a causal gene and ends
at a target gene, and each gene in a pathway can either activate or
deactivate some functions of its neighboring genes. The uncovering
of potential pathways across genes helps biologists understand the
cellular functions of each gene and protein. As noted earlier, a range
of experimental methods such as two-hybrid analysis have been
developed to uncover a large amount of interactions between genes

∗
To whom correspondence should be addressed.

and proteins, and gene knock-out experiments and some studies
(Bader et al., 2004; Mering et al., 2002) have also computed the
confidence level associated with an interaction. On the basis of
discovery that genes with high centrality in a gene network usually
have higher essentiality, lethality and pleiotropy (Hahn and Kern,
2005; Jeong et al., 2001), several research works (Bebek and Yang,
2007; Froehlich et al., 2007; Scott et al., 2006; Suthram et al., 2008;
Tu et al., 2006; Vaske et al., 2009) have focused on inferring the
regulatory pathways on a number of organisms such as fly, yeast and
human.

Given a weighted directed gene network and a specific gene, we
seek to develop efficient algorithms for the following sub problems:
(i) UnknownCausal: if the given gene is a target gene, infer possible
causal genes and their pathways; (ii) UnknownTarget: if the given
gene is a causal gene, infer possible target genes and their pathways.
Since, given a target gene, some biological experiments such as
expression quantitative trait loci (eQTL) analysis can locate an
approximate location of a causal gene and thus can provide candidate
causal genes, another sub problem is (iii) CandidateCausal:
given a causal gene, infer the most likely causal gene among the
candidates.

Recently, approaches based on the random walk model have been
suggested as a means to address this problem. A random walk
typically starts from the given gene, walks through several nodes,
and terminates according to some pre-defined parameters, such as
walk length and edge weights. Generally, the number of visits to
a node across multiple walks from a given gene gives a measure
of influence or importance, which in turn provides a measure of
how likely that node is involved in a pathway containing the given
gene. Tu et al. (2006) first proposed this model to address this
inference problem with an additional requirement, rooted in domain
knowledge, that the random walk could visit any node at most
once. Suthram et al. (2008) and Missiuro et al. (2009) proposed
the electrical circuit model as an analogy of gene networks, in
which each edge is a resistor and its conductance is proportional
to the edge’s weight. This circuit model can be solved according to
Kirchhoff’s and Ohm’s laws, and the amount of current flowing
through each node can be interpreted as the possibility of this
node being involved in a pathway. It has been shown that this
circuit model can be interpreted as the random walk model (Doyle
and Snell, 1984), but it cannot directly apply on directed edges.
The information flow model (Stojmirović and Yu, 2009) used a
similar approach to topic sensitive PageRank (Haveliwala, 2003),
whereas the electrical circuit model (Suthram et al., 2008) and
PageRank-based method (Voevodski et al., 2009) can be seen as
the special cases of the information model. As we discuss later,
these approaches have some important limitations that we seek to
overcome.

Specifically, in a clear departure from past work, here we discuss
a novel approach to solving this inference problem by adapting the
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k shortest paths algorithm to directly point out potential pathways.
In this article, we only discuss simple paths, in which a node is
not allowed to appear more than one time. Intuitively, this agrees
with the prevailing belief among domain scientists that a regulatory
pathway is unlikely to repeatedly pass a node. The classic k shortest
paths simple paths algorithm is due to (Yen, 1971). It executes O(n)
times Dijkstra algorithm to generate candidate paths for each of the
k shortest paths, so its time complexity is O(kn(m+nlogn)), where
n is the number of nodes and m is the number of edges. Recently,
Hershberger et al. (2007) classified the candidate paths into different
classes and adopted a replacement-edge strategy for each class,
and Gao et al. (2010) used the transformed graph with side cost
to improve the efficiency of Yen’s algorithm, but both of them have
the same worst-case time complexity and space complexity as Yen’s
algorithm. All the algorithms discussed earlier address the single-
pair problem, which is to find the k shortest paths between a pair
of nodes in a weighted graph. However, in our inference problem,
we need to calculate the k shortest paths from the given node to
each other node to approximate the potentiality of each gene being
involved in a pathway. For this reason, we introduce a single-source
k shortest paths algorithm.

Our algorithm is also based on Dijkstra algorithm, moreover
adopting a data structure called pseudo tree to reduce the space
storing all single-source k shortest paths. We show that an exact
algorithm to solve this problem has high complexity and therefore
we propose a heuristic approximation algorithm that appears to work
well in practice—the single-source k-shortest paths algorithm. We
note that the k-shortest paths may often have high overlap (low
diversity, since may share a large number of edges) and one of our
objectives is to explicitly identify diverse shortest paths. The domain
intuition here is that, diverse paths between two genes might help one
uncover non-redundant transduction pathways which are of interest
to domain scientists. To accommodate this additional requirement,
we propose a variant of our basic approach—a single-source k
diverse shortest paths algorithm.

Following best practices in silico validation procedures outlined
by previous research on this problem (Beyer et al., 2006;
Suthram et al., 2008; Tu et al., 2006), we demonstrate the
efficacy and efficiency of the proposed approaches to inferring
regulatory pathways on the Yeast gene network. Specifically, on
the CandidateCausal sub-problem, our shortest paths algorithm
achieves significantly higher accuracy than extant state-of-the-
art approaches (Stojmirović and Yu, 2009; Tu et al., 2006), and
on the UnknownCausal and UnknownTarget sub problems,
the importance values assigned by our shortest path variant that
explicitly accounts for diversity in paths, not only achieves higher
enrichment but also enriches different functions. In terms of
scalability, when compared with the exact single-pair k-shortest
paths algorithm (Yen, 1971), as well as some recent variants
(Malviya et al., 2011), on the yeast gene network, our method
achieves up to two orders of magnitude speedup. We should also note
that while our approach relies on a simple heuristic approximation
procedure, we empirically observe no difference in quality when
compared with the exact algorithm.

2 PROBLEM DEFINITION
Let G= (V ,E) denote a gene network, which is a weighted directed
graph, where V is the set of nodes (genes or proteins), E is the

set of directed edges (interactions) and n=|V |,m=|E|. Each edge
e∈E denoted by (ga,gb), ga,gb∈V , represents the direction of
interaction from ga to gb. If an interaction is undirected, e.g. a PPI,
the corresponding edge is bidirectional. w(e)∈[0,1] is the weight
of an edge e, and the weight represents the confidence level of the
interaction. We introduce how to generate the weight in Section 5.1.

Given a weighted graph as a gene network and a gene in
this network, we seek to solve the following three sub problems:
(i) UnknownCausal: infer possible causal genes if the given gene
is a target gene; (ii) UnknownTarget: infer possible target genes if
the given gene is a causal gene; and (iii) CandidateCausal: infer
the true causal gene in a given set of candidate causal genes, if the
given gene is a target gene. The target gene and the causal gene are
denoted by gt and gc, respectively, and the set of candidate gene is
denoted by C, where gc∈C and C⊂V .

The goal for CandidateCausal is to correctly select the true
causal gene from C. An algorithm for solving UnknownCausal and
UnknownTarget is to give an importance value to each node except
the given node, where higher importance value indicates a higher
chance that a gene is involved in a pathway containing the given
gene, and the goal is to assign the potential causal genes or potential
target genes and the nodes in the pathways higher importance values
than other genes. The importance value of a gene ga is denoted by
Imp(ga).

3 REVIEW OF THE RANDOM WALK MODEL
We begin by reviewing the information flow model introduced by
Stojmirović and Yu (2011), since other algorithms based on the
random walk model can be thought of as specific instantiations of the
information flow model. The information flow model first constructs
a n×n transition matrix P by normalizing the adjacent matrix A of
the graph G, where Aij=w((gi,gj)) and Pij=αAij/

∑
k Aik . α∈ (0,1)

is called ‘damping factor’. When a random walk reaches a node gi,
the walk would terminate at gi with probability 1−α and go to
another node gj with probability Pij in the next step. A random walk
starts from a source node and once the walk reaches a sink node, the
walk immediately terminates. The walk simulates the information
flow in gene networks: the flow starts from the causal gene (source
node), follows the pathway and finally reaches the target gene (sink
node).

The random walk model has two serious problems. The first
problem is that the normalization of edge weights is lossy.
Figure 1(a) shows an example. Given the source node S, it is apparent
that Imp(A)> Imp(C)= Imp(D) in the right graph, but in the left
graph, it is not clear whether C and D is more likely to be involved in
the pathway starting at the source node than A. However, both graphs

(a) (b)

Fig. 1. Two problems of the random walk model. (a) Normalization of edge
weights is lossy. (b) The walks repeatedly go through the bidirectional edge
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generate the same transition matrix, as shown in the middle graph, so
the transition matrix cannot fairly reflect the original weights. One
approach to solving this problem is to use different damping factors
for different nodes. If the sum of the weights of all outgoing edges
for a node is higher, α should be increased to decrease the chance
a walk terminates at this node, but there is no intuitive approach to
tuning it. Another approach is using the electrical circuit model, but
it is difficult to set the voltage to fairly reflect the information flow.

The second problem is that a walk can repeatedly go through
the same bidirectional edge. As shown in Figure 1(b), in which
every edge has the same weight, the right graph is similar to the
left graph but the edge (B,D) is bidirectional. Given the sink node
K , it is intuitive that Imp(A)= Imp(C) in both graphs. However,
the random walk model assigns Imp(A) a higher value than Imp(C)
in the right graph since walks starting from C might go back to
C before termination. This problem can be solved by forcing the
random walks to visit only unvisited nodes, but this in turn leads to
other problems [e.g. restrictive walks and scalability (Suthram et al.,
2008)]. Another possible solution for this problem is to predict the
direction of each bidirectional edge before random walks start, but
both directions are sometimes used by different regulatory pathways.
In this work, we seek to leverage the the single-source k-shortest
simple paths algorithm to address these issues.

4 SINGLE-SOURCE K-SHORTEST PATHS

4.1 Preliminaries and key intuition
The random walks simulate the information flow in gene networks.
The walks visit genes connected by higher weighted edges more
frequently than genes connected by lower weighted edges, and
distant genes from the given gene tend to be assigned lower
importance values, agreeing with domain intuition. To capture
similar intuitions when using the shortest path variants, we first
convert the weight of an edge into a distance as follows: d(e)=
−log(w(e))+c (We add a constant c, typically set to 1, because
each edge should have a minimum distance, similar to a Laplacian
correction.), where d(∗) denotes the distance of an edge or a path.
Then, the importance value of a gene ga is defined as Imp(ga)=∑k

i=1
1

d(Pi)
, where P1,P2,...,Pk are k-shortest paths from the given

gene to ga, With this transformation, it is obvious that genes having
shorter distances to the given gene of interest will be assigned greater
importance values. We also note that the electrical circuit model
has an equivalent representation w.r.t. the k-shortest paths algorithm
(it takes all paths into accounts) as pointed out by a recent study
(Missiuro et al., 2009).

A regulatory pathway, which is from a causal gene to a target gene,
might involve in multiple paths instead of a single path (Suthram
et al., 2008; Tu et al., 2006), so the k-shortest paths is able to directly
point out these potential regulatory pathways. A regulatory pathway
might not pass a gene more than once, so we only discuss simple
paths, in which a loop is not allowed. Most importantly, since the
k-shortest paths algorithm does not normalize edge weights and
it can be directly applied on directed edges, it does not have the
problems of the random walk model.

The inference problem is now a single-source k-shortest paths
problem, in which the starting node is the given causal gene when
solving UnknownTarget or the given target gene when solving
UnknownCausal and CandidateCausal. Since the original

direction of edges regulates information from the causal gene to
the target gene, the direction of all edges should be reversed first
when solving UnknownCausal and CandidateCausal. To find
paths from the target gene to the causal gene. Additionally, in
CandidateCausal, we select the candidate causal gene with the
highest importance value as our predicted causal gene. To the best of
our knowledge, the state-of-the-art k-shortest paths algorithms only
address the single-pair problem and their worst-case time complexity
on a directed graph is O(kn(m+nlogn)) (Gao et al., 2010). Thus,
it is time consuming to run a single-pair algorithm n−1 times to
solve the single-source problem, and thus a single-source algorithm
should be applied to this inference problem.

4.2 Single-source k-shortest paths algorithm
To store all k-shortest paths, we adopt a data structure called pseudo
tree. The previous definition (Gao et al., 2010) of a pseudo tree is
for single-pair problem, so it only stores k-shortest paths from the
starting node to the destination node. We expand this definition to
store all k-shortest paths from the starting node to each other node.

Definition 1: Given all top k-shortest paths from the starting node
to each other node, a pseudo tree stores all paths in a tree structure.
If k=1, the pseudo tree is equivalent to the shortest path tree; as
k >1, all 2nd to k-th shortest paths are iteratively merged into the
pseudo tree by sharing the longest common prefix path.

Definition 2: A tree-path is a path from the root to another node
in a pseudo tree.

An example is given in Figure 2, where all top three shortest paths
from S are represented by the pseudo tree. Note that because every
top k-shortest path should be a simple path, no nodes repeatedly
appear in a tree path. Let A⇒B denotes a path from a node A to
another node B through more than one edges, and A→B denotes the
path from A to B through exact one edge (A,B). P1+P2 denotes a
path formed by concatenating P1–P2. Most of prefix paths of a top
k-shortest paths are also top k-shortest paths; however, some prefix
paths are not. For example, the path S→A→C→D in Figure 2 is
a prefix path of the third shortest path from S to E, S→A→C→
D→E, but it is not a top three shortest path from S to D.

Definition 3: Path nodes and dummy nodes. A tree-path to a path
node is a top-k shortest path from the root to this path node, while
a tree-path to a dummy node is not.

Therefore, in the above example, we call the node D in the tree-
path S→A→C→D→E a dummy node and all other nodes except
S path nodes. We will show that a complete pseudo tree might
contain a huge number of dummy nodes, so we develop a heuristic

Fig. 2. A graph and its corresponding pseudo tree. k=3. The node with a
dash circle is a dummy node
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algorithm to construct a pseudo tree with only path nodes. First, we
discuss what topological conditions can generate dummy nodes.

Theorem 1: If a top k-shortest path from the root S to a node A
contains a dummy node B, let the sub-path from the dummy node
to A be PBA, then for each top k-shortest path from S to B, denoted
by PSB, either PSB contains a node in PBA besides B or there exists
a top k-shortest path from S to A using PSB as a prefix path.

Proof. Let a top k-shortest path from S to A containing a dummy
node B be P and the subpath of P before and after the dummy node
be P1 and P2, respectively (P=P1+P2). We prove it by showing
that if there exists a top k-shortest path from S to B, denoted by
P′1, where P′1 does not contain any node in P2 except B and no top
k-shortest path from S to A uses P′1 as a prefix path, then such P
does not exist.

Since P′1 does not contain any node in P2 except B, we can build
a new path from S to A: P′1+P2; additionally, P′1 is a top k-shortest
path from S to B and P1 is not, so d(P)>d(P′1+P2). Since no top
k-shortest path from S to A uses P′1 as a prefix path, P′1+P2 is
not a top k-shortest path from S to A. Therefore, P cannot be a top
k-shortest path from S to A either, so such P does not exist. �

For example, for the dummy node D in S→A→C→D→E in
Figure 2, two top three shortest paths from S to D, S→B→D and
S→B→E→D, contain B, and the other one, S→A→D, is a prefix
path of the 2nd shortest path from S to B.

Theorem 2: Given a graph G, the pseudo tree for the k-shortest
paths contains at most O(n2k) nodes.

Proof. According to Definitions 1 and 3, a pseudo tree should
contain exactly (n−1)k path nodes in order to indicate k-shortest
paths from the starting node to each other node. Note that the pseudo
tree must contain the shortest path tree with the root S, and all n−1
path nodes in the shortest path tree do not require any dummy nodes.
However, each of other (n−1)(k−1) path nodes might requires at
most n−2 dummy nodes, so the upper bound of the number of
dummy nodes is (n−1)(n−2)(k−1), and the total number of nodes
is O(n2k). �

Figure 3 shows an example with O(n2k) dummy nodes. There
are four types of nodes besides the starting node in this example,
Ai, Bi, Ci and Pij , and the number of nodes of each type is q, q,
k, (q−1)(k−1), respectively, q∈O(n) (recall that k is a very small
number). We construct all edges in the following procedure: (i) for

(a) (b)

Fig. 3. An example with O(n2k) dummy nodes. (a) The graph. Each bold
arrow represents k−1 paths. (b) The pseudo tree. The red box contains total
(k−1)q dummy nodes in the paths from S to Aq−1

2≤ i≤q, Ai has one outgoing edge (Ai,Ai−1) and one incoming edge
(Bq,Ai); (ii) for 1≤ i≤q−1, Bi has one outgoing edge (Bi,Bi+1);
(iii) every Ci has two edges (A1,Ci) and (Ci,B1); (iv) every Pij has
one incoming edge (Ai,Pij) and one outgoing edge (Pij,B1); (v) The
source node S has one outgoing edge to Aq. The distances of all edges
can be ignored except that d(Ai,Pij)+d(Pij,B1)=10i,2≤ i≤q,1≤
j≤k−1. The (top-1) shortest path from S to Ai is S→Aq⇒Ai,
and k shortest paths from S to Bi are S→Aq→Aq−1⇒A1→Cj→
B1⇒Bi,1≤ j≤k. Since all k shortest paths from S to Bq contain all
A nodes, we cannot form the 2nd to k-th shortest paths from S to
Ai by using any of them as a prefix path. Thereby, the 2nd to k-th
shortest paths from S to Ai are S→Aq⇒Ai+1→Pi+1,j→B1⇒
Bq→Ai, 1≤ j≤k. All B nodes in these paths are dummy nodes,
so each Ai,1≤ i≤q−1, requires (k−1)q dummy nodes. The total
number of dummy nodes in this pseudo tree is therefore at least
q(q−1)(k−1)∈O(n2k).

Since the number of dummy nodes in some cases is extremely
large, an exact algorithm to construct the complete pseudo tree
would be too time-consuming. As shown in Section 5.4, dummy
nodes are actually very rare in real networks, so we adopt a heuristic
algorithm that builds a pseudo tree T consisting of only path nodes.
Our algorithm to build the pseudo tree is similar to the Dijkstra’s
algorithm: we add a node to the tree each time. Let Nx denote a
node in graph G and N ′x denote one of the corresponding path nodes
to a node Nx ∈G. Note that a pseudo tree can have at most k path
nodes corresponding to a single node in the graph. Starting from the
root S, we iteratively expand the pseudo tree by adding a new path
node N ′b and an edge (N ′a,N ′b) to the pseudo tree, where N ′a∈T and
(Na,Nb)∈E; thereby, a new tree-path S⇒N ′a→N ′b is formed. We
require that: (i) the tree-path S⇒N ′a does not contain N ′b, since the
new tree-path should be a simple path; (ii) T has at most k−1 N ′b;
and (iii) the new tree-path should have the smallest distance among
all new possible paths through an expandable edge, i.e.

N ′b=argmin
N ′x

d(S⇒N ′a→N ′x) :N ′a∈T ,(Na,Nx)∈E.

Thereby, the new tree-path S⇒N ′a→N ′b is a top-k shortest paths
from S to Nb containing only path nodes.

The pseudo code is shown in Algorithm 1. The min priority queue
pq stores entries with the format <N ′x,(Nx,Ny), dis>, where N ′x is
a path node in T , (Nx,Ny) is an expandable edge, and dis is equal
to d(S⇒N ′x)+d((Nx,Ny)). pq always pops out an entry with the
minimal dis among all entries. count(Nx) is the total number of
nodes N ′x in T plus the number of entries containing an edge to Nx
in the priority queue. At the initial phase (lines 1–4), the starting
node S becomes the root in T and all edges from S are inserted
into pq. We then iteratively pick up an entry from pq and add the
corresponding edge to T (lines 5–7). Each time we add a new edge
(N ′a,N ′b) to T , we find all possible expandable paths S⇒N ′b→N ′c,
which have less distances than the current k-th shortest path from S
to Nc (line 8). We then insert these paths into pq (line 11) or update
the entry (line 13) depending on whether count(Nc) is already equal
to k. The whole procedure is finished when there are no entries
in pq.

We can further constrain the length of a tree-path (the height of the
pseudo tree) to be less than a constant h. Since a regulatory pathway
usually involves in a limit number of genes, h should be set to the
maximum number of genes in a regulatory pathway. Once the new
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Algorithm 1 k-shortest paths algorithm

Input: A weighted graph G= (V ,E), the starting node S, and k.
Output: A pseudo tree T representing all top k-shortest paths containing

only path nodes, and arrays of distances Arr, where Arr(Ni)[j] storing
the distance of the (j+1)-th shortest path from S to Ni.

1. For each node Ni∈V , assign an array Arr(Ni) that consists k values. All
values are initialized to∞.

2. count(Ni)←0 for each node Ni∈V
3. Put the root <S,0> in T .
4. For all edges e= (S,Nx)∈E, put <S,e,d(e)> in a priority-queue, pq,

and count(Nx)←1. //pq is a min priority queue.
5. while pq is not empty do
6. <N ′a,(Na,Nb),dis>← pop-min(pq)
7. concatenate < (Na,Nb),dis> to N ′a in T . //add a new path node N ′b

and an edge (N ′a,N ′b) to T .
8. for all e= (Nb,Nc)∈E: dis+d(e)<Arr(Nc)[k] and Nc is not in this

tree-path S⇒N ′a do
9. if count(Nc)<k then

10. count(Nc)← count(Nc) +1
11. put <N ′b,e,dis+d(e)> in pq
12. else
13. update the corresponding entry of Arr(NC )[k] in pq to <

N ′b,e,dis+d(e)>.
14. Arr(NC )[k]←dis+d(e) and sort Arr(Nc) //only need to move

Arr(NC )[k].

path node added in line 7 is in the hth level in the pseudo tree, the
following code (lines 8–14) would not be executed.

Theorem 3: The time complexity of Algorithm 1 is O(nk log(nk)+
mk(h+k)).

Proof. Count(Nx) in Algorithm 1 ensures that each node is
inserted into the priority queue at most k times. This guarantees
that the number of nodes in the final pseudo tree plus the number
of entries in the priority queue is always less than or equal to nk,
and the number of times of insertion is at most nk. Therefore, the
time complexity of insertion into the priority queue is O(nk log(nk)),
The time complexity of an update in the priority queue is O(1)
if the Fibonacci heap is adopted, and we need to update an entry
at most 2mk times since each edge might cause an update if one
of its incident vertices is poped out as Na in line 6. Moreover,
we need O(h) time to check whether Nc is not in the tree-path
S⇒N ′a (line 8) and O(k) time to update the sorted array (line
14). The maximal number of times we need to execute above two
operations is mk. Hence, the total time complexity of Algorithm 1
is O(nk log(nk)+mk(h+k)). �

Note that if we execute n−1 times Yen’s algorithm, the time
complexity is O(nhk(m+nlogn)), so our algorithms provides a
faster solution.

4.3 Diverse k-short paths
The k-shortest paths are usually very similar to each other because
replacing few edges in the shortest path can yield several short paths.
Thus, if we only take into account distance, we might overemphasize
on these similar paths. Studying the diverse path might identify
other more interesting regulatory pathways, so we introduce a
single-source diverse k-short paths algorithm.

We define the diversity of a path as the number of edges in this
path but not appearing in any already found paths divided by the

total number of edges in the path. Formally, if we already find κ <k
diverse paths P1,P2,...Pκ , the diversity of a new candidate path
Pnew is:

div(Pnew)= |{e|e∈Pnew,�Pi :e∈Pi,1≤ i≤κ}|
|{e|e∈Pnew}|

Note that 0≤div(P)≤1, and if there are no found paths, the diversity
is always 1. A path P is considered as a diverse path if and only if
div(P)≥λ, where λ is a user-specified threshold. The larger λ is,
the more diverse the found k paths are, but the total distance of the
found k diverse paths would be larger.

The most intuitive approach to find k diverse short paths is
executing Algorithm 1 to find k′>k-shortest paths from the starting
node to each other node, and for each node, we try to select k diverse
paths among the k′ shortest paths. However, if the diverse paths are
not enough, we need to repeat the procedure until k diverse paths
are found for every node. Since the time complexity of Algorithm 1
is not linear in k, and there is no intuitive way to set an appropriate
increasing amount of k, this procedure is time-consuming.

Instead, we adopt a strategy that we remove some but not all
edges appearing in the pseudo tree from the graph and then re-run
Algorithm 1 with the new graph until all k diverse paths are found for
every node. We tend to remove edges that appear in a large number
of k-shortest paths to yield diverse short paths while destroying the
topology of the original graph as little as possible. Moreover, the
removed edges should not be in the first few levels of the pseudo
tree since they are usually used as a prefix path for several short
paths. For these two reasons, we simply count the number of times
that an edge appears in the constructed pseudo tree and remove edges
which frequently appear in the pseudo tree. Since each edge must
appear at most k times in the pseudo tree, We set the probability
of an edge e being removed to count(e)/k if count(e)≥k/2, where
count(e) is the number of times that e appears in the pseudo tree;
otherwise, the probability is 0.

The procedure of our single-source k-shortest diverse paths
algorithm is described as follows: we first execute Algorithm 1, and
then for each node, we examine the diversities of k shortest paths
in the increasing order of their distances. If the diversity of a path
exceeds the threshold λ, the path is identified as a short diverse path.
If the diverse paths are not enough (<k) for some nodes, we remove
edges from the graph according to the probability described earlier.
Then, we repeat the procedure until k diverse paths are found for
every node or less than m/n edges are removed in the last iteration.
Eventually, the importance value of each node is calculated as in
Section 4.2.

5 EXPERIMENTS

5.1 Dataset preprocessing
We report results on the yeast gene network. The overview of the
generation procedure of our yeast gene network and gold standards
is shown in Figure 4, and follows best-practice in silico validation
outlined by prior research (Beyer et al., 2006; Suthram et al., 2008;
Tu et al., 2006). The gold standards were extracted from the knock-
out compendium elucidated by Rosetta (Hughes et al., 2000). The
deleted genes in the experiments were assumed to be causal genes
and the highly perturbed P-value <10−4, genes were seen as target
genes. The set of candidate causal genes for each gold standard,
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Fig. 4. Overview of our inference framework

generated by simulating eQTL region, is from (Tu et al., 2006).
Using this procedure, 1728 gold standards were eventually extracted.
Each gold standard consists of a causal gene, a target gene and 10
candidate causal genes, and when solving the three sub problems,
UnknownCausal, UnknownTarget and CandidateCausal, the
input is the target gene, the causal gene and the target gene with 10
candidate causal genes, respectively. The causal gene is also used to
evaluate the accuracy in CandidateCausal.

To construct a weighted gene network, the TF–DNA bindings and
PPIs were first combined into an unweighted network. TF–DNA
binding data is from Beyer et al. (2006), and only the bindings
whose likelihood scores are higher than 6.0 were used, resulting in
a total of 4842 TF–DNA bindings. PPI data is from BioGRID (Stark
et al., 2006), and only physical interactions found by low-throughput
experiments were used since these interactions have higher precision
(Paccanaro et al., 2005). Following this process, we constructed an
unweighted network with 4304 nodes and 18 413 edges. We then
used the Pearson correlation coefficient of the gene expression level
in Rosetta compendium to weight edges. The conditions of gene
expression we selected are based on Tu et al. (2006).

Since a gene which is likely to be involved in a regulatory pathway
involving the given gene tends to have higher expression correlation
with the given gene, edges (ga,gb) and (gb,ga) are both assigned to
a weight

max((Pearson(ga,gt)+Pearson(gb,gt))/2,ε)

in UnknownCausal and CandidateCausal, where gt is the target
gene, and in UnknownTarget, the causal gene gc replaces gt . Note
that we assigned different weights to an edge for different gold
standards and for different sub problems. We do not use two incident
genes’ expression correlation, since a ‘date hub’, which is a node
with high degree but the average gene expression correlation with
its neighbors is low (Han et al., 2004; Jin et al., 2007), is more
likely to be involved in a pathway than other node. The minimum
weight ε is applied since the expression levels of the genes in a
pathway do not all necessarily correlate with the given gene. We
set ε to 0.15, the maximal height of the pseudo tree h to 15 in
the following experiments. We found that k >10 does not generate
results with significantly different quality from k=10. Therefore, k
is varied from 1 to 10 in this article to examine the trade-off between
efficiency and quality of the result.

The experiments were performed on a machine with Intel core
i5 650 and 16GB of main memory. The information flow model
(Stojmirović and Yu, 2011) was implemented in MATLAB, and

Table 1. Accuracy and computation time of CandidateCausal

Algorithm Accuracy (%) P-value Time(s)

k=10 shortest paths (s.p.) 34.03 – 0.1
k=10,λ=0.5 diverse s.p. 34.08 0.2265 1.43
k=1 s.p. 30.38 1.09*e-6 0.01
IF model (α=0.55) 30.09 1.52*e-4 38.02
IF model (α=0.85) 29.11 4.76*e-6 38.42
Tu’s 22.34 2.46*e-23 0.1

The diverse short paths algorithm with different λ yields very close accuracy and thus
only λ=0.5 is shown here.

Tu’s algorithm (Tu et al., 2006), Yen’s algorithm (source code
is from http://code.google.com/p/k-shortest-paths/) (Yen, 1971),
Y-STATISTICAL (Malviya et al., 2011) and our algorithm were
all implemented in Java.

5.2 CANDIDATECAUSAL

The goal of CandidateCausal is to correctly pick the true causal
gene from the ten candidate causal genes. The accuracy is calculated
by dividing the number of gold standards in which the algorithm
correctly chooses the true causal gene by the total number of
gold standards. Table 1 shows the prediction accuracy, time to
compute, in CandidateCausal and the P-values of the paired
Binomial test, which examines the significance of the difference
between the prediction results of our k-shortest paths algorithm (top
line) and the other algorithms we evaluate. Y-STATISTICAL is too
slow to process all gold standards in feasible time, as shown in
Section 5.4, so we do not report it. The computation time is the
average on each gold standard. The values of the damping factor α

in the information model do not affect the accuracy significantly
in the suggested range (0.55–0.99): the accuracies range from
29–30%, so we just show two results with α=0.55 and α=0.85.
Note that since each gold standard has 10 candidates, a purely
random strategy would be expected to yield a predictive accuracy
of around 10%. Both our approach and the state of-the-art baseline
candidates perform much better but accuracy is limited because
the gold standards extracted from the knock out compendium are
noisy, and the gold standards themselves represent only the domain
knowledge available to biologists currently which is known to be
incomplete. In terms of results, our approach represents a significant
improvement over the previous state-of-the-art as measured by the
paired binomial test.

We find that for this problem the diverse paths algorithm evaluated
on different values of λ cannot significantly enhance the prediction
accuracy; nevertheless, we will show that the diverse paths can
improve the enrichment levels and enrich different biological
functions in Section 5.5. We should reiterate that in comparison
to the random-walk-based approaches, not only do we see a clear
benefit in terms of accuracy (and in some cases speed) but it is also
much easier to directly identify the potential regulatory pathways
by the k shortest paths algorithm.

5.3 UNKNOWNCAUSAL and UNKNOWNTARGET

For the next set of experiments, we used SaddleSum (Stojmirović
and Yu, 2010) to evaluate the enrichment levels of the GO terms
(Ashburner et al., 2000) for the results of UnknownCausal and
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Fig. 5. Evaluation using GOann: (a/b) The sorted e-values of the top GO term. (a) UnknownCausal using different k, (b) UnknownTarget using different k.
The information model uses α=0.99. (c) The sorted maximal differences of e-values in each gold standard in UnknownTarget between the shortest paths
and the diverse short paths using different λ. k=5

Fig. 6. Evaluation using GOall. (a) UnknownCausal using different k, (b) UnknownTarget using different k and (c) Maximal differences. The description
is the same as Figure 5

UnknownTarget of a gene set V . In the result, each gene gi∈V
is assigned an importance value Imp(gi). SaddleSum is a state-of-
the-art software to approximate the probability of randomly picking
|Vf | genes from V whose sum of the importance values exceeds∑

gi∈Vf
Imp(gi) for each function f , where Vf ⊆V denotes the set of

all genes annotated with the function f . For each function, a e-value
is reported by SaddleSum, which is the probability after applying
the Bonferroni correction to the function’s P-value. If the e-value
of a function f generated from SaddleSum is less, it is more likely
that the pathways involving the given gene regulates the property
of f . To exclude high-level GO terms, we only examine the GO
terms which less than 100 genes in the yeast gene network have.
The resulting set, denoted by GOall, contains 1764 GO terms. The
subset of GOall in which GO terms are annotated with the given
gene is denoted by GOann. Note that different gold standards have
different GOann. GOann is used to verify our result; on the other
hand, GOall is used to point out potential GO terms which might
associate with the given gene.

The lowest e-value among GOann is used to evaluate the
function enrichment for each gold standard. These e-values of
top gold standards are sorted and shown in Figure 5(a) and
(b) for UnknownCausal and UnknownTarget, respectively. The
damping factor α in the information model is 0.99 here, because
it generates the lowest e-values among all suggested values, 0.55,

0.85 and 0.99 (Stojmirović and Yu, 2011). In UnknownCausal,
because the given target genes are usually annotated with less GO
terms, less gold standards have been found to be enriched than in
UnknownTarget. In both UnknownCausal and UnknownTarget,
an obvious trend is that the lowest e-values decrease when k
increases. In UnknownCausal, the e-values obtained by the shortest
path algorithm (k=1) are close to the information flow model
and Tu’s method, but when more paths are considered (k≥3),
k-shortest paths algorithm outperforms the information model and
Tu’s method. Similar results are observed in UnknownTarget.
When k is increased from 5 to 10, the improvement is less because
the 6th–10th paths are unimportant for regulatory pathways.

In Figure 6(a) and (b), GOall is used instead. Again larger k can
more significantly enrich GO terms. Two obvious differences are:
(i) The e-values are much smaller, especially in UnknownCausal,
and almost all gold standards can have an enriched GO term, because
more GO terms are considered. (ii) The improvement from k=5
to k=10 is apparent, possibly because potential GO terms are
considered and thus more potential paths are useful to identify these
pathways.

The results illustrate that due to weight normalization and other
problems stated in Section 3, the information flow model and Tu’s
method cannot achieve higher enrichment than our shortest paths
algorithm, although both methods consider all possible paths. These
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results are promising in that they agree with domain insights that a
causal gene may regulate the target gene across three to five paths
and that there is often an in-built redundancy within such pathways.

5.4 Diversity, importance value and efficiency
In this section, we report the comparison of diversity and efficiency.
Since Tu’s method and information flow model are not diverse path
algorithms, we compare our single-source k diverse paths algorithm
with a recently proposed heuristic approach—Y-STATISTICAL
(Malviya et al., 2011), which is a single-pair k diverse paths
algorithm. Y-STATISTICAL generates a path in each iteration and
removes an edge in the last found path with a probability parameter
Pr. The higher Pr is, the more diverse found k paths are. When
Pr in Y-STATISTICAL is 0, Y-STATISTICAL is the same as Yen’s
algorithm.

Let P1,P2,...Pk be the k paths found by our original approach
and |Pi| is the number of edges in Pi. We define k-paths diversity as
the ratio of distinct edges in k paths, i.e.

|P1∪P2∪ ...∪Pk |
|P1|+|P2|+···+|Pk | .

Figure 7(a) presents the average importance value and the average
k-paths diversity of the found paths from the starting nodes GGC1 to
each other node. Here, we only show the result on one starting node,
because as discussed later, Y-STATISTICAL (or Yen’s algorithm) is
too time consuming to generate all outputs for all starting nodes,
but we empirically found that the comparisons on other starting
nodes we have tested are very similar. Since for some nodes, the
number of found diverse paths is smaller than k, we cannot always
calculate the total distance of k paths (would go to infinity), and thus
the importance value is used instead. Note that a higher importance
value indicates that the found paths have lower distances and hence
is preferred. We varied Pr in Y-STATISTICAL and λ in our diverse
paths algorithm from 0 to 1 with intervals 0.1 in Figure 7.

As mentioned earlier, when the k paths are required to be more
diverse, the total distance of the k paths increases, and therefore the
importance value decreases. As can be seen in the leftmost point
in Figure 7(a), our heuristic k-shortest paths algorithm generates
the same average importance value and the same average diversity
as Yen’s algorithm. We further compared the k paths found by
our heuristic algorithm with the k-shortest paths found by Yen’s
algorithm for each node and found that all k paths are equivalent.
In other words, no dummy nodes exist in the pseudo tree of the
yeast gene network with the starting node GGC1, so our heuristic
algorithm can generate the same paths as the exact algorithm.

Fig. 7. The comparison between our algorithm and Y-STATISTICAL on
our yeast gene network. The starting node is GGC1. k=5. (a) The average
importance value vs. the average k-paths diversity and (b) Execution time
vs. the average k-paths diversity

If the k paths are requested to be more diverse, our diverse paths
algorithm can find shorter paths than Y-STATISTICAL when the
k-paths diversity is lower than 0.9. This is because Y-STATISTICAL
might remove several edges in the first few levels in the pseudo
tree while these edges are usually used to compose short diverse
paths. Our algorithm tends to preserve these paths so it can identify
shorter paths when the diversity required is relatively small. Note
that extremely large diversity values will lead to less meaningful
results from a utility standpoint.

Another advantage of our single-source algorithm is that it can
find all k-shortest paths from the starting node to every other node,
while it is very time consuming to execute n−1 times a single-pair
algorithm. As shown in Figure 7(b), when k=5, the execution time
(including loading the graph) of our heuristic single-source k shortest
paths algorithm in yeast gene network is less than 0.3 sec, whereas
Yen’s algorithm costs average about 800 sec. As Y-STATISTICAL
removes more edges, the execution time of Y-STATISTICAL is
decreased and as λ in our k diverse paths algorithm increases, our
algorithm needs more iterations to generate k paths for each node.
However, our k diverse paths algorithm is still at least 100x faster
than Y-STATISTICAL using any value of λ and Pr.

5.5 Diversity and enriched functions
In this section, we show that using different λ, the importance
values generated by the k diverse paths algorithm can identify
different potential regulatory pathways with different functions.
Since more gold standards are enriched in UnknownTarget than in
UnknownCausal, we focused on UnknownTarget in this section.
Figure 5(c) reveals the maximal difference of the log e-value (The
e-value is set to 1 if the term is not significantly enriched (>0.01).)
among all GO terms in GOann in each gold standard between
the diverse k-shortest paths and the k-shortest paths algorithm
(dif = log(Evalueλ=0)−log(Evalueλ>0)). Supplementary Table 1
presents the number of gold standards which have at least one
significantly improved (dif ≥2) GO term in GOann. Although as
presented in Supplementary Figure 1, the diverse k short paths
algorithm cannot decrease the lowest e-value, the diverse k short
paths algorithm is able to enrich different GO terms with lower
e-values. When λ=0.25, the maximal difference of e-value and
the number of gold standards having an improved term are limited
simply because the k diverse short paths are very similar to k shortest
paths. However, if λ≥0.75, the diverse paths can enrich different
functions in a large number of gold standards as the maximal
difference is larger. Generally, λ=0.75 or 1.0 is able to identify a
large number of different potential enriched functions and pathways,
whereas λ≤0.25 produces similar paths to shortest paths and thus
is relatively useless. We also show the maximal difference of the log
e-value among all GO terms in GOall in Figure 6(c). The apparent
difference in GOall is that the maximal difference using λ=1.0
is smaller than using λ=0.75. This is possibly because as all GO
terms are considered, requiring completely diverse paths results in
less interesting pathways. Therefore, λ=0.75 is a better setting to
discover different functions which might annotate the given gene.

Table 2 shows some enriched GO terms whose e-values are
significantly different using different λ, given starting node is RTS1.
Examples with other starting nodes can be found in Supplementary
Table 2. Not surprisingly, the e-values obtained using λ=0 are
usually very closed to the e-values obtained using λ=0.25 since
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Table 2. Case study: the e-values of some enriched GO terms found by k=5 diverse short paths algorithm with different λ, given the starting node RTS1

GO number Function name λ=0 λ=0.25 λ=0.5 λ=0.75 λ=1.0 Reference

GO:0000075a Cell cycle checkpoint 4.55E-6 6.43E-6 1.75E-8 1.11E-11 5.27E-6 (Chan and Amon, 2009)
GO:0004721a Phosphoprotein phosphatase activity 1.29E-5 4.38E-4 – – – (Wei et al., 2001)
GO:0004722a Protein serine/threonine phosphatase activity 7.89E-7 1.56E-6 1.51E-5 – – (Wei et al., 2001)
GO:0005816 Spindle pole body – – 1.15E-4 1.53E-6 – –
GO:0007062a Sister chromatid cohesion – – 9.33E-3 – – (Riedel et al., 2006)
GO:0007346a regulation of mitotic cell cycle 3.89E-5 1.34E-5 1.01E-8 6.65E-13 4.44E-6 (Chan and Amon, 2009)
GO:0031929 TOR signaling cascade 2.67E-8 1.44E-8 1.44E-6 – 7.71E-3 –

aThese GO terms are in GOann, i.e. they annotate RTS1.
E-values larger than 0.01 are denoted by ‘–’, representing insignificance.

Fig. 8. The top 10 genes when λ=0 and their main pathways, given the
starting node RTS1. The weight of each edge is reported by its thickness.
Darker nodes have higher importance values when λ=1.0. k=5

the found paths are very similar. In contrast, when λ≥0.5, different
sets of enriched GO terms can be identified. For example, given the
starting node RTS1, protein serine/threonine phosphatase activity is
most significantly enriched using λ=0. On the other hand, using
λ=0.75 can most confidently identify the pathways regulating
regulation of mitotic cell cycle. As these GO terms have been found
to annotate RTS1 (Chan and Amon, 2009; Wei et al., 2001), the
result verifies that our algorithm is able to identify a number of
regulatory pathways. Some GO terms not in GOann are also shown
in Table 2 and Supplementary Table 2 to point out potential GO
terms which might be associated with the given gene. For example,
RTS1 might associate with spindle pole body and TOR signaling
cascade according to the e-values found by different λ.

Figure 8 visualizes the network consisting of the genes with the
highest importance values using the starting node RTS1 when λ=0.
The top 10 genes when λ=0 are PPH21 > RRD2 > SGO1 > TPD3
> TAP24 > PPH22 > SIT4 > RRD1 > TOR2 > CDC55. The top
10 ranked genes when λ=1.0 and their corresponding found paths
are shown in Supplementary Table 3. It can be found that when λ is
increased from 0 to 1.0, the order of several genes is significantly
changed. For example, CDC55 becomes the 5th, and ZDS2, which is
ranked 11th, becomes 7th. The change of importance values results
in the different enriched GO terms as discussed earlier.

6 CONCLUSIONS
We proposed a heuristic single-source k-shortest paths algorithm
and a single-source k diverse short paths algorithm to address
the pathway inference problem in gene networks. We pointed

out that an exact single-source k-shortest paths algorithm is
practically infeasible, so a heuristic algorithm is adopted. A series
of experiments was conducted to show that our algorithm can
identify pathways with higher potentiality than current methods
based on the random walk model, and requiring the paths to be
more diverse can further uncover other potential regulated functions.
Furthermore, our heuristic algorithm can achieve a huge speedup
than the previous single-pair shortest paths algorithm while the
found paths are equivalent in our yeast gene network.

In the future, we would like to study the structure of the pseudo
tree because a number of sub paths still repeatedly appear in the
tree, and thus it is possible to develop a compressed data structure.
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