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ABSTRACT

Motivation: While phylogenetic analyses of datasets containing
1000–5000 sequences are challenging for existing methods, the
estimation of substantially larger phylogenies poses a problem of
much greater complexity and scale.
Methods: We present DACTAL, a method for phylogeny estimation
that produces trees from unaligned sequence datasets without ever
needing to estimate an alignment on the entire dataset. DACTAL
combines iteration with a novel divide-and-conquer approach, so
that each iteration begins with a tree produced in the prior iteration,
decomposes the taxon set into overlapping subsets, estimates trees
on each subset, and then combines the smaller trees into a tree
on the full taxon set using a new supertree method. We prove
that DACTAL is guaranteed to produce the true tree under certain
conditions. We compare DACTAL to SATé and maximum likelihood
trees on estimated alignments using simulated and real datasets with
1000–27 643 taxa.
Results: Our studies show that on average DACTAL yields more
accurate trees than the two-phase methods we studied on very large
datasets that are difficult to align, and has approximately the same
accuracy on the easier datasets. The comparison to SATé shows
that both have the same accuracy, but that DACTAL achieves this
accuracy in a fraction of the time. Furthermore, DACTAL can analyze
larger datasets than SATé, including a dataset with almost 28 000
sequences.
Availability: DACTAL source code and results of dataset analyses
are available at www.cs.utexas.edu/users/phylo/software/dactal.
Contact: tandy@cs.utexas.edu

1 INTRODUCTION
Phylogeny estimation methods are used to estimate the true tree
from sequences that have evolved down the tree. This estimation
is typically performed using two phases: first, a multiple sequence
alignment (MSA) is estimated, and then a statistical estimation
method [such as maximum likelihood (ML)] is applied to the
alignment. Such ‘two-phase’ approaches produce highly accurate
trees when the datasets are small enough (under a few hundred
sequences) and have evolved without too many insertions and
deletions (called ‘indels’) (Liu et al., 2009). Several methods for
coestimation of trees and alignments based on statistical models
of evolution that include indels as well as substitutions have been
developed, including Fleissner et al., 2005; Lunter et al., 2003;
Novák et al., 2008; and Redelings and Suchard, 2005. Of these
methods, BAli-Phy (Redelings and Suchard, 2005) is the only one
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that, to our knowledge, has been able to analyze datasets with 100
sequences, but even these analyses can take a week or more. SATé
is a new coestimation method, but (unlike the methods discussed
earlier) estimates these alignments and trees without reference to
a parametric model that includes indels as well as substitutions.
Simulations show that SATé produces more accurate trees than two-
phase methods on large hard-to-align datasets (Liu et al., 2009), and
does so fairly quickly. Because SATé uses RAxML (Stamatakis,
2006), a popular ML heuristic, to produce phylogenies, it is
computationally intensive for large datasets; furthermore, SATé’s
realignment technique can have very large memory requirements
on some datasets with >25 000 sequences (Liu et al., 2010). Thus,
none of the current methods is able to produce highly accurate
phylogenetic estimation on very large sequence datasets, when they
are difficult to align. As large phylogenetic studies are increasingly
common (Cannone et al., 2002; Smith et al., 2009) (and more will
likely arise as a result of next-generation sequencing technologies),
this represents a substantial limitation.

An alternative approach to two-phase methods are ‘alignment-
free’ methods that estimate trees without performing any MSA
at all. Although some of the promising methods have not yet
been implemented (e.g. Daskalakis and Roch, 2010), the best of
the currently available alignment-free methods, while exhibiting
surprising and desirable properties (such as improved accuracy in
the presence of among-site rate variation), do not yet produce trees
of the same accuracy as two-phase methods that first align and then
estimate the tree (Hohl and Ragan, 2007).

Here, we present DACTAL (‘Divide-And-Conquer Trees
(ALmost) without alignments’), a method that is designed to
estimate trees, but not a MSA, on large datasets. DACTAL combines
iteration with a divide-and-conquer dataset decomposition approach
to produce a tree without ever needing to estimate an alignment on
the full dataset (Fig. 1). The dataset decomposition technique used
in DACTAL is inspired by theoretical results related to supertree
estimation methods and observations from extensive experience
with phylogenetic analyses of large datasets; the iterative technique,
however, is purely empirically motivated. Our study compares
DACTAL to several existing methods, including several leading
two-phase methods and SATé, on simulated and biological datasets
with 1000 to almost 28 000 sequences. We show that:

• DACTAL produced more accurate trees than ML analyses of
the alignment methods we studied, when analyzing very large
difficult-to-align datasets, and matches accuracy on datasets
that are easy to align;

• DACTAL matched the accuracy of SATé but was much faster
(about one-tenth the time for each iteration on the largest
datasets); and
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Fig. 1. DACTAL algorithmic design. DACTAL can begin with an initial tree
(bottom triangle), or through a technique that divides the unaligned sequence
dataset into overlapping subsets. Each subsequent DACTAL iteration uses
a novel decomposition strategy called PRD to divide the dataset into small,
overlapping subsets, estimates trees on each subset, and merges the small
trees into a tree on the entire dataset.

• DACTAL was able to analyze larger datasets than SATé can,
including one dataset with ∼28 000 rRNA sequences, for
which, SATé’s re-alignment technique had excessive memory
requirements.

2 DACTAL

2.1 Theoretical basis
Supertree estimation and the strict consensus merger: Supertree
estimation refers to the estimation of a tree on a set S of taxa
from trees on subsets of the taxa. However, computing accurate
supertrees is computationally challenging. For example, the subtree
compatibility problem, which asks whether a tree exists on which a
set of unrooted trees agree, is NP-complete (Bodlaender et al., 1992)
and so most optimization problems for supertree estimation are also
NP-hard (Jiang et al., 2001).

However, some special cases of the subtree compatibility problem
are solvable in polynomial time. Here, we present an algorithm
called the strict consensus merger (SCM) (originally presented in
Huson et al., 1999a but also used in Roshan et al., 2004 and Swenson
et al., 2011), and prove that the SCM method solves the subtree
compatibility problem when the input satisfies some constraints.
Later, we will show that the dataset decomposition technique used
in DACTAL is designed to produce inputs to SCM that are likely
to satisfy these constraints. The improvement in accuracy then
follows from empirical observations made from extensive studies
of phylogenetic analyses of large datasets.

The SCM technique takes as input a set of trees on subsets of the
full taxon set S, and merges these ‘source trees’ two at a time until
a tree on the full set of taxa is computed. Here, we describe how
SCM operates when all the input trees are binary (i.e. no nodes of
degree greater than three) and compatible, meaning that some tree
exists which induces a tree homeomorphic to each input tree when
restricted to the leaf set for that input tree.

The SCM of two trees first computes the set of taxa that the two
trees share; under the assumption that the two trees are compatible
with a tree on the full set of taxa, they will induce the same subtree
on that set of common taxa. This common subtree, which can easily
be computed in polynomial time, is called the ‘backbone tree’.

We now describe how we insert the remaining taxa into the
backbone tree t. First, we define the u-clades (unrooted clades) of
an unrooted tree t′ to be those sets X such that for some subset Y of
the leafset of t′, X |Y is a bipartition on the leafset of t′ (obtained by
deleting some edge in t′). Now, consider an edge e of the backbone
tree t, and the bipartition Ae|Be defined by e. Let A be the (unique)
minimal u-clade of t′ containing Ae, and B the (unique) minimal
u-clade of t′ containing Be. We will say that the source tree t′
contributes to the edge e in the backbone tree if, for some subset G
of the leafset of t′, A,B,A∪G and B∪G are all u-clades of t′.

Note that when this happens, then A|B∪G and A∪G|B are both
bipartitions in t′. Also, t′ will contain a path separating the subtrees
on A and B, with one or more subtrees hanging off that path whose
leafsets are subsets of G. If there is only one source tree contributing
to the edge e, then the subtrees it has on the taxa in G can be attached
to the edge e in a unique way: the edge e is subdivided (by adding
j additional nodes if there are j subtrees to add), and then attaching
each subtree in the correct order. However, if there is more than one
source tree contributing to the edge e, then there will not be a unique
binary supertree containing the source trees as induced subtrees; this
is called a ‘collision’.

In the presence of a collision, the SCM tree is produced by
subdividing the edge e once (thus producing a new node ve) and
then attaching all the subtrees that should be attached to e to ve. In
other words, the SCM tree will be incompletely resolved (i.e. will
have nodes of degree >3) in the presence of any collision, even if
the source trees are compatible. However, under some conditions
that relate the source trees to some tree T on the full set of taxa, no
collisions will occur, so that there will be a unique way to merge
the two trees together, and the SCM method will be guaranteed to
return T .

We begin with a definition of a ‘short quartet’. Let the pair
(T ,w) consist of a binary (fully resolved) tree T on n leaves and
with positive edge weights defined by w :E(T )→R

+. Let e be an
internal edge in T , and let A1,A2,A3 and A4 be the four subtrees
of T produced by deleting e and its endpoints. Let ai be a leaf
in Ai (i=1,2,3,4) that is closest to e with respect to the path
length (defined by the edge weights). Then {a1,a2,a3,a4} is a
short quartet around e. Letting e range over the internal edges
of T , we obtain the set of short quartets of (T ,w). Note that this
definition depends on the edge-weights, so that different edge weight
functions w will produce different short quartets. For all binary
trees T , it is possible to reconstruct T given the set of induced
four-leaf trees on the short quartets of T (Erdös et al., 1997). We
will use this fact to prove the following theorem about the SCM
method:

Theorem 1. Let t1,t2,...,tk be unrooted binary trees and let Si be
the leafset of ti . Let T be a tree on ∪iSi . Assume that Si =Ai ∪X ,
with Ai ∩Aj =∅ for all i 	= j, that ti =T |Si (the subtree of T induced
by taxon set Si), and that every short quartet of T is in some Si .
Then SCM applied to {t1,t2,...,tk } returns T , independent of the
order in which the trees are merged.

Proof. It suffices to show that at most one tree ti contributes
taxa to any edge in the backbone tree, as then the merger of any
two trees is uniquely determined. As every two trees agree with T ,
the backbone tree T0 on X is fully resolved. Let e be an edge in
T0, and let P be the maximal path in T of edges that define the
same bipartition on X as e. Now assume, by way of contradiction,
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that two or more source trees contribute taxa to e. Then, P has at
least one internal node, and so we can write P =v0,v1,...,vk−1,vk ,
with k ≥2. Thus, we can define rooted trees T1,T2,...,Tk−1 of T
to be those subtrees of T hanging off the path P, with Ti rooted at
vi . As two or more source trees contribute taxa to edge e, one of
two conditions must hold: (i) there must be a tree Ti that has taxa
from two or more source trees; or (ii) all trees Ti have taxa from
only one source tree and there are two adjacent trees Ti and Ti+1
that have taxa from different source trees. For case (i), as the short
quartets define a tree, it follows that there is a short quartet of T
containing taxa a∈Aj and b∈Ak , with j 	=k. As all short quartets of
T are in some Si , this implies that both a and b are in some common
source tree. However, as the sets Aj and Ak are disjoint, this is a
contradiction. For case (ii), let ei be the edge on the path P between
the roots of Ti and Ti+1, and let a,b,c,d be a short quartet around
ei , with a∈Ti and b∈Ti+1. Again we derive that a and b are in some
source tree together, and obtain a contradiction.

Tree error impacted by evolutionary diameter: Phylogeny
estimation is typically studied in the context of a Markov model of
sequence evolution; simulations of sequence evolution under these
models are used to understand the model conditions that impact
accuracy of phylogeny estimation methods, and theoretical results
establish conditions under which methods are guaranteed to be
accurate. One of the key questions is the sequence length that is
required for accuracy with high probability, expressed as a function
of the model tree parameters (number n of taxa and parameters
f and g, defined to be the minimum and maximum edge lengths,
respectively, where the length of an edge is the expected number
of substitutions of a random site on that edge). We now know
that some methods can recover the true tree with high probability
given sequence lengths that grow exponentially with the maximum
leaf-to-leaf distance (Atteson, 1999; Erdös et al., 1999a; Lacey
and Chang, 2006; St. John et al., 2001). As the maximum leaf-
to-leaf distance can be �(ng), this result implies that the sequence
length that suffices for accuracy with high probability can grow
exponentially in the number of leaves, even when the maximum
edge length is bounded. These theoretical results are complemented
by simulations of sequence evolution that show that error rates
of many phylogeny estimation methods (even ML) grow with the
maximum evolutionary distance (Liu et al., 2009; Moret et al., 2002;
Nakhleh et al., 2002; Wang et al., 2011).

Methods that can be shown to produce accurate trees with high
probability from sequences that grow polynomially rather than
exponentially in n (once f and g are fixed) are called absolute fast-
converging (AFC) (Warnow et al., 2001). The first AFC methods,
called the ‘short quartet methods’, used pairwise distances to guess
at the set of short quartets, computed trees on each such quartet,
and then combined the trees to produce a tree on the full set of
taxa (Erdös et al., 1999a, b). Subsequently, other AFC methods
were developed (Cryan et al., 1998; Csürős and Kao, 1999; Gronau
et al., 2008; Huson et al., 1999a; Nakhleh et al., 2001; Roch,
2010), including the DCM1 method, also known as the first disk
covering method (DCM) (Huson et al., 1999a; Warnow et al., 2001).
The DCMs, as a class, are dataset decomposition techniques that
construct trees on each subset and then combine the trees into a
tree on the full set of taxa using the SCM method. Some of these
DCMs are useful for large-scale optimization but do not provide any
statistical guarantees (Huson et al., 1999b; Roshan et al., 2004).

Key to the empirical and theoretical performance of DCM
methods is that the dataset decompositions produce datasets with
smaller evolutionary diameters, and so that each short quartet is
in some subset. The first of these two properties improves the
chances that trees on the subsets will be highly accurate, whereas
the second property makes it possible to combine the subset trees
into a tree on the full taxon set without loss of accuracy. However,
these theoretical guarantees depend on the supertree method used
for combining trees on the subsets and not all supertree methods
have sufficiently strong theoretical properties.

From an empirical standpoint, DCM-boosting has been shown to
improve the topological accuracy of several distance-based methods
(Huson et al., 1999a; Moret et al., 2002; Nakhleh et al., 2001, 2002;
St. John et al., 2001). However, the impact of DCM-boosting on
better distance-based methods, or on heuristics for ML or maximum
parsimony, has not been studied. More generally, from an empirical
standpoint, because the second step of DCM-boosting (supertree
estimation, such as SCM) reduces accuracy, DCM-boosting will
only yield empirical benefits to the extent that the phylogeny
estimation method improves in accuracy on the taxon subsets
compared with its accuracy on the original full set of taxa more than
the supertree estimation method reduces accuracy. Thus, although
we can improve the accuracy of the final tree using a more accurate
supertree estimation method than SCM, DCM-boosting will still fail
to yield improvements (and could lead to less accurate trees) unless
the phylogeny estimation method is substantially more accurate on
the smaller subsets than it is on the full dataset. Therefore, DCM-
boosting may not be beneficial when used with methods like ML on
datasets that are already aligned, or for which alignment estimation
is fairly easy.

However, for sequence datasets that are challenging to align well,
DCM-boosting could lead to improved tree estimations. This led
us to the design of DACTAL. As empirical results suggest that
trees and alignments are more accurately estimated when datasets
have small diameter and are densely sampled, decompositions
that produce datasets with these properties are likely to yield
more accurate trees for each subset. As before, we need to have
sufficient overlap between subsets to improve the chances that all
short quartets will be in some subtree. Finally, to improve the
topological accuracy, we use the SuperFine (Swenson et al., 2011)
supertree method rather than SCM to merge the trees together.
SuperFine begins by computing the SCM and then refines the
resultant unresolved tree in a computationally efficient manner. In
practice, SuperFine has much greater accuracy than SCM (Swenson
et al., 2011).

2.2 DACTAL design
DACTAL uses an iterative procedure, in which each iteration
produces a decomposition of the taxa into four sets of the form
Si =Ai ∪X , with Ai ∩Aj =∅ for i 	= j, recursively computes a tree
ti on each Si , and then combines the trees t1,t2,t3 and t4 using
the SuperFine (Swenson et al., 2011) method. Because SuperFine
begins by computing the SCM tree and then refines it if the SCM
tree is not fully resolved, the theoretical guarantees obtained for the
SCM method are also ensured when using SuperFine. Therefore, by
Theorem 1, if each ti is correctly computed and every short quartet
in the true tree is in some Si , then the SCM tree is the true tree, and
so DACTAL produces the true tree at the end of the iteration.
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Because of space limitations, we describe the most important
details of DACTAL’s design, and direct the interested reader to
Nelesen, 2009 (where DACTAL is called BLuTGEN) for additional
details. The first iteration begins with a tree estimated either through
the use of a fast two-phase method or with a novel BLAST-based
(Altschul et al., 1990) method for producing a tree, called ‘BLF’
(BLAST-based Fast). BLF uses BLAST to produce a collection
of subsets of sequences, with one such subset computed for each
sequence in the dataset. Each subset contains a targeted number
of sequences that BLAST selects as highly similar to the seed
sequence, and the subsets are ‘padded’ to ensure that they have
sufficient overlap with at least one other subset. The user provides
two parameters: B, the target size for each subset, and C, the target
overlap each subset should have with at least one other subset.
Nelesen, 2009 provides more details about BLF, and about related
BLAST-based decompositions we evaluated.

Each subsequent DACTAL iteration begins with the tree
computed in the previous iteration, and has the following structure.
Step 1: Divide the sequence dataset into overlapping subsets using
a padded-Recursive-DCM3 decomposition (PRD), with parameters
s (the subset size) and p (the overlap size). Step 2: Compute
trees on each subset; here, we use RAxML version 7.2.6 in its
default setting under GTRCAT, applied to alignments produced
using MAFFT version 6.240 in its L-INS-i setting (mafft-localpair-
maxiterate 1000). Step 3: Compute a supertree on the subset trees,
using SuperFine.

Thus, to define the DACTAL iteration process, we only need
to describe the PRD decomposition. This dataset decomposition
technique is similar to the Recursive-DCM3 (Roshan et al., 2004)
decomposition, modified so that there is more overlap between the
subsets. A PRD decomposition takes as input a tree on the full set
of taxa, and finds an edge in the tree that splits the tree into two
subtrees containing roughly equal numbers of taxa. The removal of
this edge and its endpoints divides the tree into four subtrees, A,B,C
and D. For each of these four trees, the set of p/4 closest leaves
(using topological distance) to the edge e are selected, and put into a
set X ; thus, X has approximately p taxa. Then, the number of taxa
in each of A∪X , B∪X , C ∪X and D∪X is computed; if any of
these sets is larger than the target size s, then the decomposition is
repeated recursively on that set. When each subset is small enough,
the decomposition step stops, and the set of subsets is returned.
Thus, each subset will contain at most s taxa, and will overlap with
some other set by at least p. We used custom software to run the
PRD decomposition method to produce subproblems.

Comments: The DACTAL algorithm is designed to allow the user
to modify the different steps; thus, although we set certain steps
within DACTAL (e.g. how we estimate trees on the subsets, and
how we compute a supertree from the trees on each subset), even
these techniques can be replaced by other techniques. Overall, the
user can specify seven algorithmic parameters: the method for
calculating the starting tree, the number of taxa in each subset
of a decomposition, the size of the overlap between subsets, the
techniques for estimating alignments and trees on each of the small
subsets, the supertree method used to construct a tree on the entire
set of taxa and the stopping criterion.

We explored settings for these parameters, and selected default
settings that worked well across the datasets we explored. As
previously noted, we set the technique used to compute trees on each

subset to be RAxML on MAFFT (Katoh and Toh, 2008) alignments,
and we set the the supertree method used to combine the trees on the
subsets to be SuperFine. The remaining parameters (starting trees,
PRD decompositions, and number of parameters) are interesting,
and different settings have different advantages. In particular, the
starting tree and the parameter p within the PRD decomposition
impact the probability that every short quartet will be in some subset
of the decomposition (larger values for p and more accurate starting
trees increase this probability).

However, the starting tree does not need to be completely correct
for each short quartet to be in some subset. Instead, two properties
are needed. First, the starting tree should not distort evolutionary
distances too much (i.e. taxa placed very close together in the
starting tree should not be too distant in the true tree, and conversely
closely related taxa should not be very distant from each other
in the starting tree). Second, the padding parameter p should
be large enough that each short quartet (as defined by the true
tree) should be in the padded set. When the starting tree does
not distort evolutionary distances at all, the padded set should
contain all the short quartets (even for fairly small p); thus, small
values for p should suffice when the starting tree has only small
distortion.

Fortunately, in practice, trees estimated using good techniques
(ML analyses of reasonable alignments) do seem to have these
properties. The evidence for this assertion is that the Robinson–
Foulds (RF) distance, also called the bipartition distance, between
true trees and the estimated trees tends to be moderate. For example,
in Liu et al., 2009, the better two-phase methods had RF distances
to the true tree that were generally <30%, with the exceptions
to this being the very hardest model conditions. The RF distance
is very sensitive to taxon movements: so that if just one taxon
were to move halfway across the tree from its correct location, and
otherwise everything remained in place, then the RF distance would
be 50%. Thus, empirical evidence suggests that tree estimation
errors tend to be relatively local. This implies that starting trees
based on reasonable ML analyses of reasonable alignments are
likely to have these favorable properties. Therefore, for starting
trees that are approximately correct and for large enough p, the
subsets that are produced will have the desired properties: smaller
evolutionary diameters and all short quartets in some subset.

We studied several settings for these parameters, and determined
default settings that worked well across the entire range on the
datasets we explored. For the PRD decomposition, we set the subset
size to 250 and the overlap size p to 50. For the starting trees, we
picked two different two-phase methods: one for datasets with at
least 1000 sequences [FastTree (Price et al., 2010) on a MAFFT-
PartTree (Katoh and Toh, 2007) alignment], and one for the smaller
datasets [RAxML on the L-INS-i MAFFT (Katoh and Toh, 2008)
alignment]. To reduce the running time, we set the number of
iterations to 5 for the large datasets and 10 iterations for smaller
datasets.

3 PERFORMANCE STUDY
We used 180 1000-taxon simulated datasets studied in Liu et al.,
2009 and three biological datasets studied in Liu et al., 2010. For
each of these datasets, we used reference trees provided in the
studies, and the tree error and running time results provided in the
studies for SATé analyses and two-phase methods using RAxML.
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We also attempted to run BAli-Phy (Redelings and Suchard, 2005)
and ALIFRITZ (Fleissner et al., 2005), two leading methods that use
statistical techniques to estimate trees from unaligned sequences,
but these methods failed to finish running (even after many weeks)
on even 500-taxon datasets.

The 1000-taxon simulated datasets were analyzed using SATé
and RAxML v. 7.0.4 on many alignment methods, including the
default and Quicktree versions of ClustalW (Thompson et al., 1994),
the L-INS-i and PartTree versions of MAFFT (Katoh and Toh,
2007, 2008), Muscle (Edgar, 2004), Opal (Wheeler and Kececioglu,
2007), and Prank+GT (Liu et al., 2009; Loytynoja and Goldman,
2005). These datasets evolved under GTR+Gamma+indel models,
with expected indel lengths that range from short (∼2 nt) to long
(∼9 nt). The simulated datasets range from relatively easy to align
to quite difficult and help us characterize the accuracy of DACTAL
trees under a wide range of model conditions. We set the reference
tree for each alignment to be the model tree that generated the
data (known to us because we performed the simulation), with all
zero-event branches contracted.

The biological datasets used in the study come from the
comparative RNA website (CRW) (Cannone et al., 2002):
16S.B.ALL (27 643 sequences), 16S.T (7350 sequences), and 16S.3
(6323 sequences), modified to remove all taxa with 50% or more
unsequenced letters. The CRW datasets were chosen for analysis
because they have highly reliable curated alignments based on
secondary and higher order structure; to our knowledge, there are no
larger biological datasets with alignments of comparable reliability.
For each biological dataset, Liu et al., 2010 provided a reference
tree, computed using RAxML v. 7.0.4, on the curated alignment,
retaining only branches with bootstrap support of 75% or greater
(Hillis and Bull, 1993).

We measured topological accuracy in terms of the missing branch
rate (also known as the false negative rate), which is the percentage
of branches in the reference tree that are missing from the estimated
tree. It is worth noting that for the simulated datasets, this is
extremely close to the Robinson–Foulds error, as the estimated
trees are fully resolved and the reference trees nearly so (only
zero-event branches are contracted). However, the reference trees
for the biological datasets are highly unresolved, which makes the
Robinson–Foulds rate inappropriate.

As noted, the RAxML analyses are computationally intensive,
and so we did not rerun the SATé or two-phase methods on the
simulated or biological datasets; however, all these analyses were
based on RAxML v. 7.0.4, whereas DACTAL uses RAxML v. 7.2.6
to estimate the trees on small subsets. The differences between the
two versions are not supposed to affect the accuracy (in terms of
ML score or tree error), but we performed a small comparison to
verify this. We compared these two versions of RAxML on four
alignments of the 16S.3 and 16S.T datasets; these analyses showed
that differences in the missing branch rates were at most half a
percent, with the newer version worse than the older version as
often as it was better. Thus, as expected, the differences in the two
versions does not impact the accuracy of the analysis.

4 RESULTS
DACTAL, SATé, and other methods on simulated data On simulated
datasets (for which we know the true tree), we can compute the
accuracy of all estimated trees precisely. Figure 2 shows results
comparing DACTAL to the default 24-h analysis using SATé and
to two-phase methods (RAxML analyses of leading alignment
methods) on the more difficult 1000-taxon model conditions.

Fig. 2. Comparisons of 10 iterations of DACTAL to SATé and RAxML trees estimated on different alignments on ‘moderate-to-difficult’ simulated 1000-taxon
datasets. We show missing branch rates (top) and runtimes in hours (bottom); n=20 for each model condition, and standard error bars are shown. DACTAL and
SATé runtimes include the time to compute RAxML(MAFFT) starting trees. Asterisks (*) denote model conditions for which DACTAL’s missing branch rate
is a statistically significant improvement over the next best method, according to Benjamini–Hochberg-corrected (Benjamini and Hochberg, 1995) pairwise
t-tests (n=40,α=0.05).
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Note that all methods give the same accuracy on the easy model
conditions but can be distinguished on the harder model conditions.
For these harder model conditions, DACTAL and SATé both
give substantially improved accuracy compared with RAxML on
estimated alignments, and DACTAL has a slight advantage over
SATé in terms of accuracy on the hardest datasets. DACTAL is
faster than SATé on these datasets.

DACTAL, SATé, and other methods on biological datasets The
advantage of DACTAL is most evident on the three biological
datasets we analyzed, which range from 6323 to 27 643 sequences.
First, many two-phase methods (first align, then compute a tree)
simply fail to run on very large datasets (Liu et al., 2010), largely
because of limitations in the alignment methods. However, SATé
also failed to produce its first realignment on the largest of these
biological datasets, 16S.B.ALL. In contrast, DACTAL completed
five iterations of the 16S.B.ALL dataset in under 400 h, so that each
iteration took slightly >3 days. Furthermore, DACTAL achieved a
missing branch rate of ∼11% on the 16S.B.ALL dataset, which
was better than the missing branch rates of the other methods
(Fig. 3). Thus, DACTAL can analyze datasets that SATé fails to
analyze.

On datasets that both DACTAL and SATé can analyze, they
achieve approximately the same accuracy in each iteration, but
DACTAL is much faster: on the largest datasets, a single DACTAL
iteration takes about 10% of the time of a SATé iteration. Figure 4
shows this for the 16S.T. dataset with 7350 sequences (results on
the other datasets show the same trends).

We now compare DACTAL to two-phase methods. In Liu
et al., 2010, we evaluated several two-phase methods on these
datasets. Even when run on a dedicated machine with 256 GB,
all alignment methods except for MAFFT-PartTree and ClustalW-
quicktree failed to align one or more datasets. For example, only
ClustalW-Quicktree and MAFFT-PartTree managed to align the
largest dataset (16S.B.ALL), whereas Prank and Muscle failed to
complete on any of these datasets. The L-INS-i version of MAFFT
only succeeded in aligning one of the three datasets (producing
segmentation faults on the other two).

A comparison of five iterations of DACTAL to the best result
of any of these two-phase methods on each dataset shows that
DACTAL produced more accurate trees on the 16S.B.ALL and
16S.3 datasets (by ∼2% and 3%, respectively), and that DACTAL
was slightly less accurate (by 0.2%) than RAxML(MAFFT L-INS-i)
on the 16S.T dataset. In terms of running times, however, DACTAL
was much faster than the most accurate two-phase methods on each
dataset. For example, on the 16S.T dataset, producing the MAFFT
L-INS-i alignment took 615 h and RAxML on this alignment took
∼200 h, for a total of >800 h. By comparison, DACTAL completed
five iterations in 172 h. Thus, DACTAL took less than a fourth of
the time used by RAxML(MAFFT L-INS-i) on this dataset.

We now compare DACTAL to ML trees on the QuickTree and
PartTree alignments, as these were the only methods that were
able to align all three datasets; see Figure 3. Note that DACTAL
was more accurate than trees based on QuickTree or PartTree and
had less than half the average error. A comparison of running
times shows that DACTAL was slower than FastTree(QuickTree)
or FastTree(PartTree), but faster than RAxML(QuickTree) and
RAxML(PartTree).

Fig. 3. DACTAL (based on five iterations) compared with ML trees
computed on alignments of three large biological datasets with 6 323–27 643
sequences. We used FastTree (FT) and RAxML to estimate ML trees on
the PartTree (Part) and Quicktree (Quick) alignments. The starting tree for
DACTAL on each dataset is FT(Part).

Robustness to using BLF or estimated trees for initialization Of
particular importance is the robustness of DACTAL to how it
is initiated—with a starting tree or using BLF. We explored
DACTAL’s performance when it used the BLF decomposition to
initialize instead of a starting tree. In some cases, the initial trees
obtained using BLF were more accurate than the starting trees we
could produce, and in some cases they were less accurate. However,
in all cases, within two iterations of DACTAL (from both starting
conditions), accuracy levels were approximately the same; Figure 5
shows results for this comparison on one hard model condition.

We then examined the choice of starting tree, and observed
similar results: although the starting trees might differ substantially
in terms of accuracy, after a few DACTAL iterations, the accuracy
levels were the same. The main issue, therefore, is a matter of
running time and using very fast methods to estimate initial trees is
sufficient, provided one runs DACTAL for at least a few iterations.

DACTAL’s robustness to dataset decompositions We also examined
performance under different dataset decomposition strategies,
varying the size of the subsets produced by the PRD (padded
recursive decomposition) technique. This comparison showed that
increasing the subset size could lead to improved estimations of the
tree but at a running time cost. Furthermore, within a few iterations,
the analyses using different subset sizes had approximately the same
accuracy; Figure 6 gives results on the largest biological dataset,
and other analyses showed similar results.

5 DISCUSSION
DACTAL is designed for large datasets that are difficult to align.
DACTAL has not been tested on datasets with fewer than 1000
sequences, where we anticipate little advantage in using DACTAL;
indeed, it is likely that DACTAL will be less accurate than good
two-phase methods on small enough datasets. Furthermore, some
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Fig. 4. Comparisons of DACTAL and SATé iterations with two-phase
methods on 16S.T dataset with 7 350 sequences. The starting trees were
RAxML(Part) for SATé and FT(Part) for DACTAL. We show missing branch
rates (top) and cumulative runtimes in hours (bottom); n=1 for each reported
value. Iteration 0 is used to compute the starting tree for DACTAL and SATé.

Fig. 5. Impact of starting tree on DACTAL iterations for 1000 taxon
simulated datasets from 1000S1. The accuracy of each starting tree [the
default RAxML(MAFFT) tree and the BLF tree] are shown together with
five iterations of DACTAL (PRD decompositions) from each starting tree.
Results in green (the left bar within each pair of bars) indicate DACTAL
results that start with RAxML(MAFFT) as the starting tree, and results in
blue (the right bar) indicate DACTAL results that start with the BLF tree.

large datasets (such as 16S.T) can be fairly accurately aligned
using the best alignment methods, and in these cases, DACTAL
may also not provide any improvement in topological accuracy
(although it may provide a running time advantage for large enough
datasets). Thus, DACTAL does not provide advantages for all types
of datasets but only for some. However, for those datasets that are
large and difficult to align, this performance study demonstrates that
DACTAL can provide substantially improved tree estimations and
can do so quite quickly.

DACTAL’s performance is the result of three algorithmic design
techniques that work synergistically. First, because DACTAL’s

Fig. 6. Comparisons of DACTAL iterations using different decomposition
sizes on the 16S.B.ALL dataset. DACTAL is run in default mode except
for changes in the PRD parameters [maximum subproblem size (‘max’) and
the padding size (‘padding’)]. Panels from top to bottom are missing branch
rates and runtime (hr); n=1 for each reported value. DACTAL’s iteration 0
is used to compute the starting tree. Runtimes are cumulative.

decomposition strategy produces subsets with at most 250
sequences, it is possible to run MAFFT in more accurate ways
to align each subset than may be possible on the full taxon
set. Second, the divide-and-conquer approach used in DACTAL
produces small densely sampled subsets containing sequences that
tend to be very similar; these features increase the accuracy of
estimated alignments, so that ML trees computed on these subset
alignments tend to be more accurate than ML trees computed on
alignments estimated on the full dataset. Finally, the SuperFine
method produces trees on the full dataset that retain much of the
accuracy of the smaller trees (Swenson et al., 2011). A single
iteration of DACTAL, therefore, typically produces a tree with
greater accuracy than the starting tree, unless the starting tree is
itself highly accurate. The next few iterations will often yield further
improvements, as the estimated alignments continue to improve in
accuracy.

6 FUTURE WORK
This study evaluated DACTAL on datasets ranging from 1000
sequences to almost 28 000 sequences. In this range of dataset
sizes, DACTAL yielded improved accuracy compared with the two-
phase methods we tested on most of the difficult-to-align datasets,
and matched (or came very close to matching) the accuracy on
the easy to align datasets. However, because we did not examine
larger datasets, we do not know whether DACTAL’s approach will
continue to provide advantages over two-phase methods as the
number of sequences increases; future work will seek to evaluate
this possibility.

The results shown here are for a hybrid method in which we
combine DACTAL’s iterative divide-and-conquer strategy with a
highly accurate two-phase method, RAxML on MAFFT alignments.
However, DACTAL can be paired with any phylogeny estimation
method and any kind of phylogenetic data (gene order data,
morphology, distances, etc.) and can also be used with multi-
marker data. DACTAL’s modular approach also allows us to replace
each step (alignment, tree estimation, supertree estimation and even
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the dataset decomposition) with new approaches. Thus, DACTAL
is a very general algorithmic ‘booster’ for phylogeny estimation
methods.

DACTAL also has potential advantages for datasets in which
model parameters typically held fixed across the tree (such as the
GTR matrix) are expected to vary (for example, due to changes
in the GC content across the tree). That is, as DACTAL computes
trees on each small subset using RAxML, this allows each RAxML
analysis to compute a separate GTR matrix for each subset of taxa.
Thus, DACTAL analyses may be more robust to model violations
than methods that do not have this flexibility.

Despite its good empirical performance, DACTAL provides no
statistical guarantees, and it is likely that statistical methods based
on models of evolution that treat indels as events, rather than as
missing data, would produce more accurate trees (Warnow, 2012).
Unfortunately, the statistical methods that properly handle ‘long’
indels are not sufficiently fast on even moderately large datasets.
Given the interest in statistical coestimation methods, however, we
predict that improved methods with greater scalability are likely to
be developed in the coming years.

Finally, we note that some projects are planning to estimate much
larger phylogenies than those studied in this article. For example,
the iPlant Collaborative will attempt to estimate a species tree on
500 000 plant species. Given the difficulty in estimating highly
accurate MSAs for very large datasets, and in likelihood-based
analyses of very large alignments, divide-and-conquer approaches
(such as DACTAL) might be particularly helpful in ultra-large
phylogeny estimation problems.
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