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ABSTRACT

Motivation: Assemblies of next-generation sequencing (NGS) data,
although accurate, still contain a substantial number of errors that
need to be corrected after the assembly process. We develop
SEQuel, a tool that corrects errors (i.e. insertions, deletions and
substitution errors) in the assembled contigs. Fundamental to the
algorithm behind SEQuel is the positional de Bruijn graph, a graph
structure that models k-mers within reads while incorporating the
approximate positions of reads into the model.
Results: SEQuel reduced the number of small insertions and
deletions in the assemblies of standard multi-cell Escherichia coli
data by almost half, and corrected between 30% and 94% of
the substitution errors. Further, we show SEQuel is imperative to
improving single-cell assembly, which is inherently more challenging
due to higher error rates and non-uniform coverage; over half of the
small indels, and substitution errors in the single-cell assemblies
were corrected. We apply SEQuel to the recently assembled
Deltaproteobacterium SAR324 genome, which is the first bacterial
genome with a comprehensive single-cell genome assembly, and
make over 800 changes (insertions, deletions and substitutions) to
refine this assembly.
Availability: SEQuel can be used as a post-processing step in
combination with any NGS assembler and is freely available at
http://bix.ucsd.edu/SEQuel/.
Contact: ppevzner@cs.ucsd.edu

1 INTRODUCTION
The advent of next-generation sequencing (NGS) technologies,
along with the development of new assembly algorithms has enabled
the production of genome assemblies for a multitude of organisms
at ever-decreasing costs (Huang et al., 2009; Li et al., 2010; Li
et al., 2010). Robust assembly methods are imperative to the success
of large de novo sequencing initiatives, such as the Genome 10K
project that aims to sequence the genomes of 10 000 vertebrate
species (Genome 10K Community of Scientists, 2009) and the iK5
project where the objective is to sequence the genomes of 5 000
arthropods (Robinson et al., 2011). NGS technologies produce short
sequence reads [approximately 100–150 base pairs (bp) for Illumina
technology] at increasingly high throughput, permitting assembly
methods suited to these technologies to exploit the redundancy in
the data in order to produce high-quality contigs (Bankevich et al.,
2008; Wheeler et al., 2008). Although these platforms have much
higher throughput than Sanger sequencing platforms, assessment of
short-read assemblies have shown them to be less accurate than the
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finished genomes assembled using the previous technologies (Alkan,
et al., 2011). Earlier assembly algorithms developed for Sanger
sequencing follow an ‘overlap - layout - consensus’paradigm, where
consensus refers to fixing errors in the contigs (Ewing and Green,
1998; Ewing et al., 1998). Since this paradigm faces difficulties
in short-read assembly, most NGS assemblers employ a de Bruijn
graph approach that effectively deals with large amounts of data.
However, most NGS assemblers neglect the consensus step, i.e. there
exists no post-processing of the contigs in Velvet (Zerbino et al.,
2008) and many other popular assemblers. Relying on high and
uniform coverage, NGS assembly algorithms push the burden of
producing high-quality assemblies onto the construction of the de
Bruijn graph. We argue that NGS assemblers can benefit from the
use of a consensus step, particularly in the case of single-cell data
that suffers from high error rates and non-uniform coverage (Chitsaz
et al., 2011).

In the spirit of the consensus step, we propose an additional step
to the NGS assembly process: refinement. We develop SEQuel, a
tool that refines an initial assembly of short-read data by using
approximate positions of reads in contigs. SEQuel takes as input
an assembled contig, the paired-end reads that align to that contig
and the approximate positions where they aligned, and returns a
refined contig. We refer to the process implemented by SEQuel as
positional reassembly.

In Eulerian assembly (Idury and Waterman, 1995; Pevzner et al.,
2001), a de Bruijn graph is constructed with a vertex v for every
(k −1)-mer present in a set of reads, and an edge (v,v′) for every
observed k-mer in the reads with (k −1)-mer prefix v and (k −1)-mer
suffix v′. A contig corresponds to a non-branching path through this
graph. See Compeau et al. (2011) for a more thorough explanation
of de Bruijn graphs and their use in assembly. Euler-SR (Pevzner
et al., 2008), Velvet (Zerbino et al., 2008), SOAPdenovo (Li et al.,
2010), ABySS (Simpson et al., 2009) and ALLPATHS (Butler
et al., 2008) all use this paradigm for assembly. Most existing NGS
assemblers follow the same general outline: break the (possibly error
corrected) reads into k-mers, construct the de Bruijn graph on the
set of resulting k-mers, simplify the de Bruijn graph, resolve repeats
by using mate–pair information and construct contigs. Although
the implementation of these steps varies widely between different
assemblers, existing NGS assemblers return contigs recovered from
the de Bruijn graph with little refinement.

If every position in the genome was uniformly covered by error-
free reads, and the genome had few repeats, this would result in
a simple de Bruijn graph. However, sequencing errors and repeats
lead to highly complex graphs and force assemblers to rely on graph
simplification. It is during this simplification process that errors
in the assembly are introduced. Substitution errors and indels in
the reads create undirected cycles called bulges and short tandem
repeats lead to directed cycles called whirls (Pevzner et al., 2004).
There exist numerous methods for removing bulges and whirls
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Fig. 1. An example of a bulge on eight vertices in a de Bruijn graph (k =4)
resulting from a sequencing error. During the process of bulge removal,
the correct path (top: CCT-CTA-TAG-AGG-GGA) may be discarded, thus
creating a substitution error in the final contig. This may occur if, for example,
coverage is taken as a consideration, since the bottom path (CCT-CTT-TTG-
TGG-GGA), erroneous in this case, may have higher coverage due to k-mers
originating from other parts of the genome

but unfortunately, these methods potentially introduce errors in the
contigs. Figure 1 illustrates a scenario where a bulge in the de Bruijn
graph is caused due to a sequencing error.

Error correction of the reads prior to assembly can greatly simplify
the assembly process by implicitly eliminating bulges from the
de Bruijn graph (Kelley et al., 2010; Medvedev et al., 2011;
Pevzner et al., 2008, 2001). It is now established as a common
pre-processing step before assembly, and used by several NGS
assemblers, including Euler-SR (Pevzner et al., 2008), ABySS
(Simpson et al., 2009) and ALLPATHS (Butler et al., 2008).
Although error correction eliminates the majority of errors in reads,
in ∼1% of the cases it introduces, rather than corrects, errors
(Pevzner et al., 2008). This leads to the following trade-off in
fragment assembly: either error correction of reads is performed,
which may lead to errors in the contigs, or error correction is
not performed and the complex de Bruijn graph has to undergo
aggressive simplification that may lead to errors in the contigs.
It is clear, however, that in both cases subtle and complex errors
will arise.

The accuracy of different assemblers varies widely. For example,
our tests of Velvet produced contigs with 1–2 errors per 100 kb
(for k-mer size 55), while SOAPdenovo produced contigs with
20–30 errors per 100 kb. Even the accuracy of Velvet deteriorates
greatly when used in default mode with k-mer size 31. However,
SOAPdenovo has some advantages over Velvet (e.g. the ability
to handle larger genomes). Therefore, it is beneficial to design
a refinement program that can be used in combination with
any assembler. Decoupling the contig refinement problem from
the assembly process removes the burden of re-implementing a
positional reassembly process for each assembler.

We show that NGS assemblies suffer from indels and substitution
errors that are somewhat masked by common metrics for assessing
assembly quality. Many of these errors can be corrected using
SEQuel. We give an analysis of the types of complex errors that
occur in NGS assembly, and that can be fixed by SEQuel, offering
some insight into why positional reassembly is a necessity for
obtaining accurate assemblies.

We give a computational problem formulation for correcting
errors in contigs, and present an algorithm for reassembly based
on a graph structure referred to as the positional de Bruijn graph.
We demonstrate the ability of SEQuel to improve the accuracy

of assemblies generated from three assemblers: Euler-SR (Pevzner
et al., 2008), Velvet (Zerbino et al., 2008) and Velvet-SC (Chitsaz
et al., 2011). Euler-SR performs error correction on the sequence
reads prior to assembly (Pevzner et al., 2008), whereas Velvet does
not perform error correction (Zerbino et al., 2008). Velvet-SC is a
specialized assembler tailored to handle the dramatic fluctuations in
coverage that are characteristic to single-cell data (Chitsaz et al.,
2011). Single-cell amplified DNA has been shown to suffer from
amplification bias and low template quality (Chitsaz et al., 2011;
Raghunathan et al., 2005; Rodrigue et al., 2009), resulting in
sequence data with highly non-uniform coverage by error-prone
reads (Raghunathan et al., 2005). Thus, assembly of such data
is inherently more challenging and error-prone. Our experiments
demonstrate that SEQuel is able to substantially reduce the number
of errors in single-cell, and standard (multi-cell) assembly. Although
we demonstrate the use of SEQuel with Euler-SR, Velvet and
Velvet-SC, its use is not limited to these assemblers.

2 THE CONTIG REFINEMENT PROBLEM
We formalize the contig refinement problem and present an
algorithm for positional reassembly that relies on the positional
de Bruijn graph. A similar graph was previously proposed by
Hannenhalli et al. (1996) for Sequencing By Hybridization. Contrary
to the de Bruijn graph where edges correspond to k-mers, the edges
of the positional de Bruijn graph correspond to k-mers and their
inferred positions on the contigs.

Fragment assembly in the de Bruijn graph framework is often
abstracted as a problem of finding a shortest string that explains
the set of all k-mers from the reads, i.e. the Shortest Common
Superstring Problem. We formulate the contig refinement problem in
a similar manner; that is, as finding a string that explains all occuring
positional k-mers. While both abstractions are limited in that they do
not adequately address the assembly of repeat regions, they prove to
be conceptually useful. The input to the contig refinement problem
is the set of k-mers used to assemble a contig, and for each k-mer
a position (or positions) where it is presumably contained in the
contig, i.e. a multiset of pairs (sk ,p), where sk is a k-mer and p
is the approximate position. We refer to these k-mer and position
pairs (sk ,p) as positional k-mers. Given a parameter �, we call a
positional k-mer (sk ,p) valid with respect to a string S if sk appears
in S at a position that is within � of p.

The contig refinement problem: given a multiset of positional
k-mers and a parameter �, find a shortest string S that maximizes
the total number of valid positional k-mers.

Due to indels in the contigs (relative to the genome), we expect
the positions of k-mers in the assembled contig to differ from
their positions in the correct contig. Therefore, since our goal
is to assemble the correct contig, we assume the positions are
an approximation to the position in the correct contig. Next, we
demonstrate how positional information may be incorporated into
the de Bruijn graph and used to refine contigs by positional
reassembly.

3 ALGORITHM AND METHODS
Fundamental to the algorithm behind SEQuel is the positional de
Bruijn graph. The input to SEQuel is a multiset of positional k-
mers, and a set of contigs; the output is a set of refined contigs.
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While the description of the method below is for a single contig, in
practice it is applied to all contigs of an assembly.

3.1 Recruitment of reads to contigs
We refer to a read-pair as permissively aligned to a contig if either
one or both of the reads in the read-pair uniquely align to a single
contig in the assembly. If only one read aligns, the approximate
position of the unaligned read is deduced using the expected insert
size. After assembly, we extract the set of reads that permissively
align to the contig and their approximate positions, which is then
used in the construction of the positional de Bruijn graph. This
is performed using BWA (version 0.5.9) in paired-end mode with
default parameters (Li et al., 2009), allowing detection of alignments
with small indels as well as read-pairs where only one read is aligned.
Although some assemblers (e.g. Velvet) output the assignment of
reads to contigs, we obtain better refinement results using BWA.
We note that using only the set of permissively aligned reads will
lead to reduced coverage in certain regions, however, we see only
a modest decline in average coverage and very few regions where
coverage was significantly reduced (for bacterial genomes). Thus,
the accuracy of SEQuel is improved at the expense of correcting
fewer errors in these regions.

3.2 Construction of the positional de Bruijn graph
From the set of reads that permissively aligned to the contig, we
construct the set of positional k-mers. If a read r =[r1 ...rn] of
length n is aligned to a contig at position i, we extract n−k +1
positional k-mers from r:

([r1 ...rk ],i),
([r2 ...rk+1], i+1

)
, ...,([rn−k+1 ...rn], i+n−k

)
. We emphasize that different reads may

give rise to the same k-mer with different inferred positions.
Consequently, we cluster by position all positional k-mers that
have the same k-mer sequence, and use the cluster centers
when constructing the positional de Bruijn graph. This is a one-
dimensional clustering problem, where single-linkage clustering
performs well.

We refer to the multiplicity of a positional k-mer (sk ,p) as
the number of occurrences where sk clustered at position p. For
example, if the k-mer ACTA aligned to positions (42,43,43,44),
and the corresponding positional k-mers all cluster to (ACTA,43),
then the multiplicity of this positional k-mer equals 4. SEQuel
removes clusters of low multiplicity since they are likely to
represent erroneous k-mers. Lastly, the positional de Bruijn graph
is constructed from the positional k-mers, as described below.

The positional de Bruijn graph Gk,� is defined for a multiset
of positional k-mers and parameter �, and is constructed in a
similar manner to the traditional de Bruijn graph using an A-
Bruijn graph framework from (Pevzner et al., 2004). Given a
k-mer sk , let prefix(sk ) be the first k −1 nucleotides of sk , and
suffix(sk ) be the last k −1 nucleotides of sk . Each positional k-
mer (sk ,p) in the input multiset corresponds to a directed edge in
the graph between two positional (k −1)-mers, (prefix(sk ),p) and
(suffix(sk ),p+1). After all edges are formed, the graph undergoes
a gluing operation. A pair of positional (k −1)-mers, (sk−1,p) and
(s′k−1,p′), are glued together into a single vertex if sk−1 =s′k−1 and

p∈[p′−�,p′+�]. Hence, two positional (k −1)-mers are glued
together if their sequences are the same and their positions are
within � from each other. Finally, each edge is weighted by the
multiplicity of the corresponding positional k-mer. In Figure 2, we

show an example of a positional de Bruijn graph and a de Bruijn
graph constructed from the same dataset.

3.3 Whirl removal in the positional de Bruijn graph
Due to the fact that the positional de Bruijn graph is built on a
substantially smaller dataset (i.e. only reads that permissively align
to a certain contig) and incorporates the approximate position of each
k-mer in the contig, it is significantly less complex than the standard
de Bruijn graph for the same contig and far less complex than the
de Bruijn graph of an entire assembly. The relative simplicity of the
graph is important since it decreases the ambiguities associated with
bulge and whirl removal. While whirls are a substantial problem in
the de Bruijn graph, the occurrence of whirls in the positional de
Bruijn graph is extremely rare; the number of whirls encountered
by SEQuel while refining the assemblies of Escherichia coli with
Euler-SR, Velvet and Velvet-SC was less than five for each assembly.
Nonetheless, the occurrence of whirls is possible. We follow the
whirl processing algorithm from Pevzner et al. (2004), since the
logic of whirl processing in the positional de Bruijn graph is similar
to that in the de Bruijn graph. Bulges are implicitly removed in the
next step of the SEQuel algorithm.

3.4 Refined contig construction
The final step of SEQuel is to refine the original contig using the
positional de Bruijn graph. We note that since only permissively
aligned reads were used to construct the positional de Bruijn
graph (rather than the complete set of reads) the graph may be
disconnected, leading to the construction of several contiguous
sequences. These smaller contiguous sequences may not cover the
original contig entirely. However, this does not pose a problem
because we are using these sequences to refine the original contig.
We find the heaviest path in each of the connected components and
construct the contiguous sequences corresponding to these paths.
As previously mentioned, the weight of each edge is equal to the
multiplicity of the corresponding positional k-mer and therefore,
the heaviest path ‘explains’ the largest number of positional k-mers.
We refer to the sequences constructed from the positional de Bruijn
graph as partial contigs and denote the set of partial contigs as
{c1,c2,...,cn}. The average weight of a partial contig is defined as
the mean edge weight of the corresponding path. The partial contigs
will be used to refine the original contig, denoted as C. Lastly, we
denote the refined contig that is ultimately output as Cr .

In order to describe how C is refined using {c1,c2,...,cn} we need
some additional notation. We denote u◦v as the concatenation of
strings u and v. Given a local alignment of strings u=[u1 ...un] and
v=[v1 ...vm], where (i,i′) and (j,j′) are the respective start and end
positions of the alignment on u and v, we denote u⊕v as u[1...

(i−1)]◦v[j ...j′]◦u[(i′+1)...n]. The refinement process starts by
setting Cr equal to C. Next, for each partial contig ci ∈{c1,c2,...,cn},
we let Cr be equal to Cr ⊕ci .

The order in that partial contigs are used to refine Cr is important
because the alignments of several partial contigs to Cr may overlap.
In positions where such an overlap occurs, any changes from
previously used partial contigs will be overwritten by the last.
When coverage is uniform we process the partial contigs in order
of increasing length, however, when it is highly non-uniform we
process them in order of increasing average weight. In both cases,
ties are broken arbitrarily and alignments below a certain length
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Fig. 2. An example illustrating the positional de Bruijn graph (k =4,�=1) and de Bruijn graph on a set of aligned reads, with their corresponding sets of
k-mers and positional k-mers. There exists a single sequencing error in the reads (shown in red). In the de Bruijn graph, the (k −1)-mer GCC appears as a
single vertex, whereas, the positional de Bruijn graph separates the occurrence of GCC into two vertices. This additional information incorporated into the
graph further constraints the gluing process and reduces complexity. Further, the positional k-mers (GCCT, 111) and (GCCT,975) have multiplicity 1 and 4,
respectively, but the k-mer GCCT has multiplicity 5. This increases the weight of the incorrect path, and thus the likelihood of an error in the contig produced
by the de Bruijn graph. Lastly, we note that in this example no vertex gluing operations occur but in more complex instances, vertex gluing will occur when
equal k-mers align at adjacent positions

are not considered. Thus, SEQuel has two user-defined modes
corresponding to the described scenarios: standard and single-cell
mode.

3.5 Software implementation
SEQuel is implemented in Java 6.0, and can optionally be run as a
multi-threaded application. All tests were performed on a PC with
32 cores (64-bit, 2.27 GHz) and 512 GB of RAM running Linux.
Although benchmarking was performed on this computer, SEQuel
can be run on a standard desktop; see Section 4.5.

4 RESULTS

4.1 Datasets
In order to evaluate the performance of SEQuel, we use three
different datasets described in Chitsaz et al. (2011). All datasets
consist of paired-end 100 bp reads from E.coli, generated by
Illumina, Inc. on the Genome Analyzer (GA) IIx platform. The

first dataset consists of approximately 27 million paired-end reads,
and was obtained from the NCBI Short Read Archive (accession
ERA000206, EMBL-EBI Sequence Read Archive). As a measure
of quality assurance, we aligned the reads to the E.coli genome
using BWA version 0.5.9 (Li et al., 2009) with default parameters.
We call a read mapped if BWA outputs an alignment for it and
unmapped otherwise. Analysis of the alignments revealed that 98%
of the reads mapped to the reference genome, representing an
average depth of approximately 600×; BLAST analysis against
known contaminants revealed that the unmapped reads are attributed
to minor contamination of the sample (Chitsaz et al., 2011).

The second dataset is a single-cell dataset consisting of
approximately 29 million paired-end reads. Again, we aligned
the reads to the E.coli reference genome and observed that 92%
of the reads mapped to the reference genome, representing an
average coverage of approximately 600×; unmapped reads have
been attributed to contamination of the data (Chitsaz et al., 2011;
Rodrigue et al., 2009). The coverage in this dataset is non-uniformly
distributed across the genome and fluctuates greatly.
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Fig. 3. Illustration of the change in the number of short (≤50 bp) indels (a) and substitution errors (b) relative to the reference genome before and after
the use of SEQuel. Standard reads were assembled using Euler-SR and Velvet. The assembly without SEQuel and with SEQuel is shown in blue and red,
respectively

Table 1. Refinement statistics of assemblies from the standard E.coli dataset

Refinement statistics Euler-SR Velvet (k =31) Velvet (k =55)

Matches added (lost) 754 (39) 17 010 (25) 45 (2)
Substitution errors removed

(created)
69 (18) 8490 (5) 44 (2)

Added matches may originate from two sources: correcting substitution errors or
correcting contig deletions. Lost matches may originate from the two sources: creating
substitution errors or correcting contig insertions.

Lastly, we used SEQuel to improve the genome assembly of an
uncultured Deltaproteobacterium SAR324. This assembly represents
a first draft of the genome of this marine bacterium (Chitsaz et al.,
2011). Sequence reads and assembly are both available for download
at http://bix.ucsd.edu/singlecell/ and a detailed description of the
assembly is given in (Chitsaz et al., 2011).

4.2 Performance on standard E.coli Data
We generated the assemblies with Euler-SR v2.0 and Velvet v1.1 in
paired-end mode with suggested parameters (i.e. k =55 for Euler-
SR and k =31 for Velvet). We generated an additional assembly
with Velvet using k =55.1 All assemblers accurately assembled the
majority of the E.coli genome, however, there was a range in terms
of the accuracy of the contigs. We limited our attention to contigs of
length ≥ 250 bp and ran SEQuel with default parameters of k =50
and �=15. Contigs were aligned to the E.coli reference genome
(NCBI Accession NC_000913.2) using BLAT (Kent, 2002) and both
mismatches and indels were counted and compared across contigs
before and after the use of SEQuel.

Both the Euler-SR and Velvet assemblies showed a decrease
in the number of substitution errors and indels relative to the
reference genome after the use of SEQuel. The Euler-SR assembly

1Velvet generates assemblies that are substantially more accurate using
k =55, however this is a more advanced parameterization since it requires
recompilation of the source code with a slight modification. Thus, typical
use of Velvet by non-expert users would be with k =31.

with SEQuel showed a significant decrease both in the number of
positions mismatching the reference genome and in the number of
indels. The number of indels of size ≤50 bp was reduced from 145
to 79, and the number of substitution errors was reduced from 155
to 104 with the use of SEQuel. Figure 3 and Table 1 illustrate these
changes to the assembly.

Similar results were obtained when applying SEQuel to the Velvet
(k =31) assembly (Fig. 3). The most significant change to this
assembly was the sharp decrease in the number of substitution
errors relative to the reference genome. Using SEQuel, the number
of substitution errors went from 8937 to 452, correcting 94%
of the total number of substitution errors in the assembly. The
number of short indels in this assembly went from 979 to 342.
The Velvet assembly with k =55 showed a substantially smaller
number of indels and substitution errors (e.g. 50 substitution errors
in the complete assembly), leaving less room for improvement.
Nevertheless, using SEQuel, the number of short indels in the Velvet
assembly with k =55 went from 3 to 2 and the number of substitution
errors went from 50 to 8.2

4.3 Performance on single-cell E.coli data
Assembly of single-cell data is inherently more challenging due
to the highly non-uniform coverage. Consequently, the contigs
obtained from assembly of single-cell data using standard assembly
tools are more error prone. In 2011, Chitsaz et al. (2011) developed
Velvet-SC, a specialized assembler tailored to handle the dramatic

2To illustrate that SEQuel can be used with any assembler, we further tested
it with SOAPdenovo (Li et al., 2010) and SPAdes (Bankevich et al., 2012), a
new NGS assembler (http://bioinf.spbau.ru/spades). On the multi-cell E.coli
data, the SOAPdenovo (SPAdes) assembly had 1230 (199) substitution
errors, and 27 (14) small indels totaling 590 (94) bp. SEQuel reduced the
number of substitution errors in SOAPdenovo (SPAdes) by 95% (26%), and
the total indel size by 80% (91%). The number of substitution errors in
the SOAPdenovo assembly was dramatically reduced, illustrating that the
application of SEQuel can improve this assembly so that it is nearly as
accurate as that of Velvet, which is currently the most accurate assembler.
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Fig. 4. Illustration of the change in the total number of short (≤50 bp) indels (a) and substitution errors (b) in assemblies before and after the use of SEQuel.
Paired-end reads from a single-cell sample were assembled using Euler-SR and Velvet-SC. The assembly without SEQuel and with SEQuel is shown in blue
and red, respectively

Table 2. Refinement statistics of assemblies from single-cell E.coli reads

Refinement statistics Euler-SR Velvet-SC

Matches added (lost) 3100 (200) 93 (18)
Substitution errors removed (created) 126 (14) 80 (1)

Added matches may originate from two sources: correcting substitution errors or
correcting contig deletions. Lost matches may originate from the two sources: creating
substitution errors or correcting contig insertions.

fluctuations in coverage that are characteristic to single-cell data. In
our single-cell experiments we used Velvet-SC and Euler-SR. We
performed the assemblies in paired-end mode with k =55. SEQuel
was used in single-cell mode with k =50 and �=15. Contigs
were aligned to the E.coli reference genome (NCBI Accession
NC_000913.2) using BLAT (Kent, 2002) and both mismatches and
indels were counted and compared across contigs before and after
the use of SEQuel. Again, we restrict interest to contigs with length
≥250 bp.

As expected, the quality of the Euler-SR assembly is substantially
lower than the quality of the Velvet-SC assembly since the former
is not equipped to deal with single-cell data. However, both the
Euler-SR and Velvet-SC assemblies have a dramatic decrease in the
number of substitution errors and the number of indels with the
application of SEQuel. In the Euler-SR assembly, the number of
indels of size ≤50 bp went from 908 to 379, and the number of
substitution errors went from 221 to 109 with the use of SEQuel.
Figure 4 illustrates these changes to the assembly. Table 2 gives the
total number of matches added and lost, and the total number of
substitution errors removed and created by SEQuel. Similar results
to Euler-SR were obtained with Velvet-SC. The most significant
change in the Velvet-SC assembly was the decrease in the number

of indels in the assembly: the number of indels went from 47
to 18, and the number of substitution errors went from 152 bp
to 73 bp.

4.4 Refinement of deltaproteobacterium SAR324
single-cell assembly

We ran SEQuel in single-cell mode with k =50 and �=15. SEQuel
made changes to 335 of the 602 contigs. Approximately 800 bp were
changed overall: 191 substitutions, 584 insertions and 42 deletions.
We can only report changes made to the assembly since there
exists no reference genome for the bacteria. However, based on the
results obtained with SEQuel on a single-cell E.coli assembly, we
extrapolate that the majority of these changes represent a (positive)
refinement to the assembly.

4.5 Practical considerations: memory and time
We evaluated the memory and time requirements of SEQuel. Since
SEQuel is a multi-threaded application, its wall-time depends on
the computing resources available to the user. For evaluation
purposes we used four threads, a setting that is suitable for most
current desktops. The memory requirements depend on a number
of factors, including contig length, coverage depth and the level
of parallelization. For the E.coli and Deltaproteobacterium SAR324
assemblies, SEQuel required a maximum of 6 GB and 1.5 h to
complete (see Table 3).

From a practical perspective, the time and memory requirements
of SEQuel do not significantly increase upon those of most NGS
assemblers, making it an easy and practical post-processing step.
Further, due to the fact that it is performed contig-wise rather than
genome-wise, our method should easily scale to larger genomes (i.e.
mammalian genomes).
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Table 3. Running time and memory usage of SEQuel on bacterial genomes

Genome Genome size Time Memory

Escherichia coli 4.6 Mb 55 min 6 GB
SAR324 4.9–6.4 Mb 87 min 6 GB

SAR324 has not been finished, thus the exact size of the genome remains unknown.

5 DISCUSSION

5.1 Comparison between SEQuel and variation
discovery tools

We compared SEQuel with a simpler method of error correction
provided by extensions of variation discovery tools. We aligned
the reads to the contigs using BWA, and then applied GATK base
quality score recalibration, variation discovery (i.e. SNP and indel
detection) and variant quality score recalibration (DePristo et al.,
2011; McKenna et al., 2010). We then incorporated these variants
into the original contigs. We performed this process on both the
single-cell and standard multi-cell E.coli assemblies considered
in this article. Although this method is conceptually simpler and
does not require the development of another tool, the performance
was poor in comparison to that of SEQuel. This method corrected
approximately one-third of the errors corrected by SEQuel,3 and
created 40–50% more errors than SEQuel.

5.2 Assessment of errors corrected by SEQuel
We ran several experiments to better characterize the errors that
SEQuel corrects. The assemblies produced by running Velvet (k =31
and k =55) on simulated, perfect reads generated from the reference
E.coli genome (200 × coverage) had only a negligible number of
errors (less than 10 for k =31 and less than 5 for k =55). Thus,
almost all errors in the assembly of the E.coli genome originate from
sequencing errors. These sequencing errors give rise to erroneous
k-mers that correspond to spurious edges in the de Bruijn graph.
Such spurious edges may cause whirls and bulges, which cannot
always be reconciled correctly by the assembler.

In this section, we show two examples of assembly errors that
are caused by erroneous k-mers, and are corrected by SEQuel.
Before going into these examples in detail, we give a general
description of how erroneous k-mers can lead to complexity in
the de Bruijn graph. Consider a read r sampled from a position i
of the genome. Assuming i does not lie within a repeated region,
k-mers from r should contribute only to contigs from the region
proximal to i. In practice, k-mers from erroneous reads originating
in one position may contribute to contigs from completely unrelated
regions of the genome. For example, an erroneous ‘read’AATACCC
sampled from the genomic region AATGCCC (single substitution,
from G to A) will contribute a k-mer (k =4, ATAC) to the contig
...GGATACTT...., rather than the correct contig ...AATGCCC. This
reallocation of k-mers may occur either within different regions of
the same contig (second example below), or across different contigs

3The largest number of corrections made was in the Velvet (k =31) assembly
of standard multi-cell data, and the number of corrections was 65% less than
that of SEQuel.

(first example below). Both the following examples are from the
Velvet (k =31) assembly of standard E.coli reads.

First, we focus our attention to a single contig (contig 170157)
that illustrates how erroneous k-mers from reads that permissively
align to a single contig can be responsible for complexities that the
assembler cannot rectify. This contig has two insertions in alignment
to the E.coli genome, both of which were corrected by SEQuel.
We constructed the de Bruijn graph from only the set of reads that
permissively aligned to this contig. As shown in Figure 5, this graph
contains bulges and whirls in the exact locations corresponding to
the gaps in alignment. In contrast, the positional de Bruijn graph
on the same set of reads is significantly simpler (contains a single
long path); the positional information constraints graph construction
and eliminates many of the spurious edges. SEQuel corrected both
insertions in contig 170157.

Our second example illustrates how erroneous k-mers are
recruited from distant regions of the de Bruijn graph and form
spurious edges that eventually lead to assembly errors. We
constructed the de Bruijn graph from the set of reads used to
assemble contig 10362 and two other contigs from the same
assembly. The de Bruijn graph built from only the reads that
permissively aligned to contig 10362 is simple enough that it led to
an error-free contig, but the de Bruijn graph built from the larger set
of reads has whirls and bulges at the exact locations where deletions
in the alignment occur (Fig. 6). The deletions likely occurred due to
k-mers originating in erroneous reads associated with other contigs
that were recruited to an incorrect region (that of contig 10362) in the
de Bruijn graph. Since SEQuel builds the positional de Bruijn graph
on only the set of reads that permissively align to a single contig (and
not the complete set of reads), the complexity caused by erroneous
k-mers being recruited from other regions in the graph is eliminated.

The graphs shown in Figures 5 and 6 are only estimates of the
relevant regions in the de Bruijn graph constructed by the assembler;
the actual graph includes k-mers from the entire dataset (not just
k-mers that aligned to a single or several contigs). Both examples
reveal the complexity inherent to the de Bruijn graph even on a small
set of reads and provide insight into possible causes of assembly
errors. The positional de Bruijn graph constructed from the same
reads is substantially less complex. The recruitment of k-mers from
one contig to an unrelated contig (as shown in Fig. 6) presents a
severe problem to NGS assemblers, since the position of k-mers
cannot be ascertained prior to assembly. A post-processing step is
needed to define relative position and reconcile the complexity of the
original de Bruijn graph, thus the second example serves to illustrate
the necessity of a post-processing step to assembly.

6 CONCLUSIONS
To the best of our knowledge, a post-processing step for obtaining
more accurate NGS assemblies has not been previously considered.
While Donmez and Brudno (2011) state ‘The consensus sequence
for each contig is generated using a greedy multiple sequence
alignment’, no further detail is given, and the effects of this process
are not evaluated. Furthermore, it cannot be used in combination
with another assembler. Additionally, there is some similarity
between SEQuel and the approach implemented by the LOCAS
re-assembly tool (Klein et al., 2011), where positional information
is used to partition reads into groups that will be assembled together.
The novelty of our approach lies in the fact that we explicitly
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Fig. 5. The first illustration of the connection between assembly errors, and whirls and bulges in the de Bruijn graph. The alignment of a 1975 bp contig
from the assembly with Velvet and k =31 (contig number 170157), showing two insertions in the alignment, having respective lengths 1 bp and 15 bp. The
de Bruijn graph constructed from the set of permissively aligned reads to this contig contains bulges and whirls at regions corresponding to the insertions in
the contigs

Fig. 6. The second illustration of the connection between assembly errors, and whirls and bulges in the de Bruijn graph. The alignment of a 725 bp contig
from the assembly with Velvet and k =31 (contig number 10362) shows two deletions in the contig, having respective lengths 20 bp and 7 bp. The regions in
the de Bruijn graph corresponding to the deletions in alignment are complex and contain bulges and whirls that likely lead to assembly errors

incorporate the positions of k-mers into the graph theoretical
model.

While SEQuel significantly reduces the amount of assembly
errors, it does not address the notoriously difficult problem of repeat
separation in fragment assembly. Although significant efforts have
been made to resolve this problem in Sanger sequencing (Kececioglu
and Yu, 2001; Myers, 2001; Tammi et al., 2002; Zhi et al., 2007), it
remains poorly addressed in the context of NGS. The positional de
Bruijn graph offers an opportunity to revisit this problem in future
research.

Our results demonstrate that a substantial number of small indels
and substitution errors can be corrected in both single-cell and
standard (multi-cell) assemblies. In particular, our results on single-
cell assemblies further illustrate that high and uniform coverage is
not a requirement for SEQuel. Lastly, we show that the corrections

made by SEQuel can likely be accomplished only in post-processing
of assembly, since the positional information cannot be inferred prior
to assembly.
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