
Copyedited by: MANUSCRIPT CATEGORY:

[19:58 28/5/2012 Bioinformatics-bts223.tex] Page: i97 i97–i105

BIOINFORMATICS Vol. 28 ISMB 2012, pages i97–i105
doi:10.1093/bioinformatics/bts223

Minimum message length inference of secondary structure from
protein coordinate data
Arun S. Konagurthu1,∗, Arthur M. Lesk2 and Lloyd Allison1,∗
1Clayton School of Information Technology, Monash University, Clayton VIC 3800, Australia and 2Department of
Biochemistry and Molecular Biology and The Huck Institute for Genomics, Proteomics and Bioinformatics, The
Pennsylvania State University, University Park, PA 16802, USA

ABSTRACT

Motivation: Secondary structure underpins the folding pattern
and architecture of most proteins. Accurate assignment of the
secondary structure elements is therefore an important problem.
Although many approximate solutions of the secondary structure
assignment problem exist, the statement of the problem has resisted
a consistent and mathematically rigorous definition. A variety of
comparative studies have highlighted major disagreements in the
way the available methods define and assign secondary structure
to coordinate data.
Results: We report a new method to infer secondary structure based
on the Bayesian method of minimum message length inference. It
treats assignments of secondary structure as hypotheses that explain
the given coordinate data. The method seeks to maximize the joint
probability of a hypothesis and the data. There is a natural null
hypothesis and any assignment that cannot better it is unacceptable.
We developed a program SST based on this approach and compared
it with popular programs, such as DSSP and STRIDE among others.
Our evaluation suggests that SST gives reliable assignments even on
low-resolution structures.
Availability: http://www.csse.monash.edu.au/∼karun/sst
Contact: arun.konagurthu@monash.edu (or lloyd.allison@monash.edu)

1 INTRODUCTION
Periodic hydrogen-bonding patterns in globular proteins give rise
to elements of secondary structure—helices and sheets. The α-helix
and β-sheets were among the first structural motifs predicted from
first principles of stereochemistry by Pauling and Corey (1951).
We now know these specific motifs are almost ubiquitous across
the corpus of known structures. Eventually, other repetitive motifs
were also identified, and the alphabet of secondary structures was
expanded to include 310-helix, π -helix, β-turn, γ -turn, �-turn and
β-bulges, among other minor elements. In what follows, we use the
term secondary structure to include both the classical helices and
sheets, and other common substructural elements.

Accurate assignment of secondary structure of proteins from
coordinate data is an important and a challenging problem (Andersen
and Rost, 2009). Secondary structure underpins the architectural
organization in proteins. It simplifies the complex atom-level
description of proteins and is therefore the key to generation of
schematic diagrams of their three dimensional (3D) folding patterns
(Lesk and Hardman, 1982; Richardson, 1981). They are central in
training methods geared for predicting secondary structure from
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amino acid sequence (Andersen and Rost, 2009). They form a
linchpin to efficient methods for structural comparison and analysis
(Kamat and Lesk, 2007; Konagurthu et al., 2008).

Over the last 30 years, many programs were developed to address
the problem of assigning secondary structure to protein coordinate
data. A broad classification can be made of the assignment strategies:
(i) methods that use distance and angle profiles of local fragments;
(ii) methods that detect hydrogen bonds between backbone atoms;
(iii) methods that use 3D geometry of local fragments; and (iv)
methods that approximate the backbone trace with a set of straight
lines.

The following reviews some of the major earlier contributions
to the literature of this problem. Levitt and Greer (1977) were
the first to generate an automatic method for secondary structure
assignment, based on distance and dihedral angle profiles of Cα

atoms over a sliding window of four residues. P-SEA (Labesse
et al., 1997) is another method in this category which assigns
secondary structural states using a short Cα distance mask and
two Cα dihedral angle criteria. PROSS (Srinivasan and Rose,
1999) proposes an assignment based solely on backbone dihedral
angles. Xtlsstr (King and Johnson, 1999) calculates backbone
dihedral angles and distances and assigns secondary structural types
that would be consistent with interactions of amide-amide groups
observed from circular dichroism of a protein in ultraviolet range
(Andersen and Rost, 2009). More recently, PALSSE (Majumdar
et al., 2005) was designed to delineate protein structure into helices
and strands, mainly using distance and torsion angle constraints
to identify core elements which are later extended to longer
segments. KAKSI (Martin et al., 2005) is based on Cα distances
and backbone dihedral angles and designed primarily to show
concordance with the manual assignments found in the protein data
bank (PDB).

The most popular method in this space is ‘Dictionary of Secondary
Structure of Proteins’ (DSSP) developed by Kabsch and Sander
(1983). DSSP is based on detecting hydrogen bonds between
nitrogen and carbonyl groups along the protein polypeptide chain
using a Coulomb approximation of the hydrogen-bond energy
function (Andersen and Rost, 2009). Many now consider this
method a standard for secondary structural assignment (Martin
et al., 2005). Since DSSP was published, several methods have
been designed that rely on computing the hydrogen-bond energy
between backbone atoms. STRIDE (Frishman and Argos, 1995)
is among the successful variants of DSSP which uses a modified
hydrogen-bond energy function as well as backbone dihedral angles
to compute its assignment. SECSTR (Fodje andAl-Karadaghi, 2002)
is another variant which improves the detection and assignment of π -
helices which both DSSP and STRIDE have difficulty characterizing
(Martin et al., 2005).
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There are other methods which assign secondary structure using
3D features in a protein structure. Richards and Kundrot (1988)
describe a method, DEFINE-S, to assign secondary structure
using local geometry of ideal secondary structures. The P-CURVE
(Sklenar et al., 1989) algorithm uses an helicoidal axis approach
derived from a series of peptide planes to assign secondary structure.
The VoTAP (Dupuis et al., 2004) algorithm relies on Voronoi
tessellation of a residue contact map and then matching the contact
map profiles to a consensus assignment of secondary structures by
methods like DSSP and STRIDE.

In the last category are indirect methods, such as STICK (Taylor,
2001) and PMML (Konagurthu et al., 2011) which work by
approximating the Cα spatial trace using a set of lines. These
methods seek the best approximation of the protein backbone using
piecewise lines. Only as a post-process to this approximation, each
line segment is indirectly attributed a secondary structural type based
on criteria such as the average rise and pitch of the Cα atoms within
the segment. These approaches solve a related yet different problem,
namely ‘the best line approximation of the protein chain’.

Consistent with this large number of proposed methods,
assignment of secondary structure has been recognized to be an
‘inexact process’ (Cuff and Barton, 1999). Previous comparative
studies have highlighted the difficulties of existing programs to
assign secondary structure consistently (Andersen and Rost, 2009;
Colloc’h et al., 1993; Cuff and Barton, 1999; Martin et al., 2005;
Zhang et al., 2008). These disagreements can be major as shown by
Colloc’h et al. (1993) where the percentage of agreement between
DSSP, DEFINE-S and P-CURVE was only 63% on a residue basis.
It has been observed that most disagreements arise in the terminal
regions of the assigned secondary structural elements. Reflecting on
this problem Robson and Garnier (1986) comment [as quoted by
Martin et al. (2005)]: ‘In looking at a model of a protein, it is often
easy to recognize helix and to a lesser extent sheet strands, but it
is not easy to say whether the residues at the ends of these features
be included in them or not. In addition, there are many distortions
within such structures so that it is difficult to assess whether this
represents merely a distortion, or a break in the structure. In fact,
the problem is essentially that helices and sheets in globular proteins
lack the regularity and clear definition found in the Pauling and
Corey models.’

Given the complexity of the details of individual protein
structures, it is not surprising that the secondary structure assignment
problem has resisted a mathematically rigorous definition. The effect
can be seen in the use of a variety of definitions by the existing tools,
although all of them are reasonable. In this study, we describe an
approach, SST, to the secondary structure assignment problem using
minimum message length (MML) inference (Wallace and Boulton,
1968). Linking statistical inference with data compression, the goal
is to communicate losslessly the coordinates of a protein using a
two-part message. The first part transmits the secondary structure
assignment as a hypothesis about the coordinates. The second-part
transmits the details of coordinates not explained by the hypothesis.
This gives rise to statistically robust objective function to optimize:
find the best hypothesis on the coordinate data that minimizes the
total two-part message length.
SST assigns secondary structure segments of the following types:

α, 310 and π -helix (including left-handed versions of all these
helices when they occur), sharp turns, β-strands and others (coil).
SST in a post-processing step merges consecutive structures where

Fig. 1. SST assigned secondary structure to coordinates of a 1.6Å crystal
structure, Ornithine decarboxylase from mouse.

appropriate, and groups all strands of a sheet, identifies β-bulges, to
convert the results to a molecular biologist’s conventional secondary
structure description, and produces a PyMol script to visualize the
secondary structural assignments. (Fig. 1.)

2 OVERVIEW OF MML CRITERION
The MML criterion provides an information–theoretic objective for
problems of inference where the goal is to find the best explanation
(or theory, hypothesis, model) for a set of observed data (Wallace
and Boulton, 1968). MML relies on quantifying the amount of
information required to convey losslessly the observed data in
an explanation message. The best hypothesis is the one which
can convey the entire data set in the shortest possible explanation
message.

More formally, for some observed data D and a hypothesis H
that offers an explanation of the data D, Bayes’s theorem (Bayes
and Price, 1763) gives

P(H&D)=P(H )×P(D|H )=P(D)×P(H |D)

where P(H ) is the prior probability of hypothesis H , P(D) is the
prior probability of data D, P(H |D) is the posterior probability of
H given D, and P(D|H ) is the likelihood.

Using Shannon’s mathematical theory of communication
(Shannon, 1948), the amount of information for an explanation of
the data D with the hypothesis H is given by

I (H&D)= I (H )+I (D|H )= I (D)+I (H |D)

where I (x)=−log2(P(x)) gives the optimal code length to convey
some event x whose probability is P(x).

This immediately gives an objective means to compare competing
hypotheses. For hypotheses H1 and H2 on the same data D, we have

I (H1|D)−I (H2|D)= I (H1)+I (D|H1)−I (H2)−I (D|H2)

It follows that the best hypothesis H∗ over all competing hypotheses
is the one where the expression I (H∗)+I (D|H∗) is minimized.

A concrete realization of the MML framework comes
from describing it as a communication process between an
imaginary transmitter (Alice) and receiver (Bob) connected over
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a Shannon channel. Alice’s objective is to send the observed data D
using an explanation message in a form such that Bob can receive
and decode the data D precisely as Alice sees it. Alice and Bob
agree on a codebook containing the general rules of communication
composed solely of common knowledge about typical, hypothetical
data. Anything that is not a part of the codebook must be strictly
transmitted as a part of the message. If Alice can find the best
hypothesis H∗ on the data, Bob will receive a decodable explanation
message most economically: The best inference about the data is the
hypothesis that minimizes the total message length.

Alice sends the explanation message of D in two parts. In the first
part, she transmits the best hypothesis, H∗, she could find on the
data D taking I (H∗) bits. In the second, she transmits the details of
the observed data D not explained by H∗, taking I (D|H∗) bits (i.e.
the deviations from H∗). Notice that MML inference gives a natural
trade-off between hypothesis complexity (I (H∗)), and its goodness
of fit to the data (I (D|H∗)).

For a comprehensive resource on MML see Wallace (2005).

3 THE DESIGN OF THE COMMUNICATION
FRAMEWORK

Protein coordinates for a single-polypeptide chain are represented as
an ordered set of 3D points of the form P ={p1,··· ,pn}, where any
pi corresponds to the ith Cα coordinate along N- to C-terminus of
the protein chain. Each pi defines a 3D real-valued vector (px

i ,p
y
i ,p

z
i )

in Angstrom (Å) units, where each component of the vector comes
specified (in the PDB) to three positions after the decimal place.
Therefore, in this work, we treat the accuracy of measurement of
the data as ε=0.001 Å (independent of the actual accuracy of the
experimental structure determination). The transmitter (Alice) has
to send a message to the receiver (Bob) who will then be able to
reconstruct the original data from the encoded explanation message
exactly. For coordinate data from the PDB, Bob will reconstruct each
coordinate of each atom to the original precision of three digits after
the decimal point.

3.1 Null model description of a protein coordinate data
MML gives a natural hypothesis test: The null-model corresponds
to transmitting the data raw. If any hypothesis H on the data
takes longer than the null model, then clearly H is unacceptable.
However, the statement of the raw null model message (without any
hypothesis) has to be economical; it must not be willfully inefficient.

The construction of an efficient null model for protein coordinates
relies on the observation that the distance between successive Cα

atoms in a protein chain is highly constrained at about 3.8Å with
only small deviations from this value. The method starts with the
transmission of the first Cα coordinate p1 in any choice of encoding
that both transmitter and receiver agree on. (Stating p1 simply adds
a constant overhead to the message length, whether transmitted via
a null model message or an explanation using a hypothesis. A simple
way to do away with this overhead is for Alice to translate P such
that p1 becomes the origin. p1 then need not be transmitted explicitly
in the message and can be treated implicitly a part of the codebook.)
Alice then computes the observed distance r between the successive
Cα coordinates p1 and p2. This distance r can be communicated
efficiently using an encoding over a normal distribution N (μ,σ )
with a certain fixed mean (μ) and a small standard deviation

(σ ) around it. Based on the prior knowledge of Cα–Cα distances
between successive atoms, these values are set to μ=3.8Å and
σ =0.4Å and are considered to be part of the codebook.

The probability density of a random variable x over a normal
distribution with mean μ and a standard deviation σ is given by:

N (x;μ,σ )= 1√
(2π )σ

e
− (x−μ)2

2σ 2

Therefore, the probability of stating any distance r to an accuracy
of ε (given ε�σ ) using the above normal distribution is P(r)=
ε×N (x=r;μ,σ ). This implies

P(r)= ε√
(2π )σ

e
− (r−μ)2

2σ 2

The optimal code length to transmit r is given by −log2(P(r)) bits:

I (r)= log2

(√
(2π )σ

ε

)
+ (r−μ)2

2σ 2
log2e bits. (1)

Note that Bob will not be able to recover p2 simply from the
transmitted information of p1 and the distance r between p1 to p2.
p2 can lie anywhere on the surface of a sphere of radius r centered
on p1. The precise location of p2 stated to ε can be transmitted by
first dividing the surface area of this sphere into cells each of area
ε2. This results in 4πr2/ε2 such cells distributed uniformly on the
surface. These cells can be numbered using a convention that Alice
and Bob both agree upon (as a part of the codebook). On the basis
of this discretization of the sphere’s surface area, Alice transmits
the cell number c in which the observed p2 falls within. Assuming
uniform probabilities, the probability that the point p2 falls in a cell
number c is given by P(c)=ε2/4πr2. Following from this, the code
length to state the cell number is:

I (c)=−log2

(
ε2

4πr2

)
= log2(4πr2)−2log2ε bits. (2)

Bob now has all the information to reconstruct p2 to the precision
of ε using the information he has received.

With p2 known at Bob’s end, Alice can proceed to encode in the
same fashion p3 with respect to p2, then p4 with respect to p3 and
so on until all the points in P are transmitted.

Let ri (∀1≤ i<n) denote the observed distance between any two
successive Cα coordinates pi and pi+1. Let ci (∀1≤ i<n) denote
the cell number on the surface of the sphere of radius ri centered
on the point pi in which the point pi+1 falls. The message length to
transmit the entire Cα coordinate data in P is therefore

Inull(p1,··· ,pn)=O(1)+
n−1∑
i=1

(
I (ri)+I (ci)

)
bits. (3)

where O(1) denotes the constant number of bits to state p1 (0 bits if
Alice translates the coordinates such that p1 lies on the origin).

3.2 Models to describe segments of proteins
The secondary structure elements are used as a hypothesis to
explain the coordinates. Here, we consider eight models to describe
any contiguous stretch of Cαatoms (of arbitrary length) along
the protein chain: (i) a right-handed α-helix; (ii) a left-handed
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α-helix; (iii) a right-handed 310-helix; (iv) a left-handed 310-helix;
(v) a right-handed π -helix; (vi) a left-handed π -helix; (vii) an
extended β-strand; and (8) coil.

The Helical (1–6) and strand (7) models follow ideal Pauling–
Corey geometry (Pauling and Corey, 1951) and are of arbitrary
length. We term these seven collectively ideal models. (Pauling–
Corey models are common knowledge and taken to be in the
codebook.)

The coil model (8) is treated simply as a model that describes a
segment of a protein raw, using the null model approach described
above in Section 3.1.

3.3 Describing a protein segment using an Ideal model
Assume that at some stage of the transmission Bob has received
Cα coordinates up to an intermediate point pi , that is he has
received coordinates (p1,p2,··· ,pi) (i<n). Alice now will transmit
a contiguous segment of coordinates pi to pj (1≤ i< j≤n) using one
of the ideal (helical or strand) models. If it is a good model, then
the coordinates can be transmitted cheaply. (The discussion of the
optimal choice is given in Section 4.)

The number of points to be transmitted in this segment is j−i since
the start point of the segment pi is already known at the receiver’s
end. The remaining points pi+1,··· ,pj are transmitted as follows:

3.3.1 Transmitting the end point of the segment The end point of
the segment (pj) is transmitted using the sphere approach similar to
the one described in Section 3.1. Instead of the distance between
successive Cα coordinates, Alice transmits the distance dij between
the start (pi) and end (pj) points. This is encoded using a normal
distribution where the mean (μ) is taken as the distance (d∗)
between the start and end points from the ideal model containing
j− i+1 points. The standard deviation σ of the end point is set to
min

(
(j− i)×0.2Å,3Å

)
based on the length of the segment being

transmitted and this rule is taken to be a part of the codebook.
On the basis of Equation 1, the code length to state dij to the

accuracy of ε is given by

I (dij)= log2

(√
(2π )σ

ε

)
+ (dij −d∗)2

2σ 2
log2e bits. (4)

On the basis of equation 2, given the start point of the segment pi
and distance dij of the end point pj , the end point can lie anywhere
on a sphere with radius dij . pj can therefore be stated by specifying
the cell number cij on the surface of this sphere in

I (cij)= log2(4πd2
ij )−2log2ε bits. (5)

3.3.2 Encoding the interior points With the start and end points
already known, there are j−i−1 interior points of the segment,
pi+1,··· ,pj−1, yet to be transmitted. These points can be transmitted
cheaply if the chosen ideal model agrees with the observed points
in the segment. Alice uses the following procedure to transmit the
interior points given a chosen ideal model. (Details of how the
optimal choice is made appear in Section 4.)

Consider an ideal model containing l = j−i+1 points, denoted
formally as Q={q1,q1,··· ,ql}. The coordinates in Q are
orthogonally transformed to Q′ ={q′

1,q′
2,··· ,q′

l} such that:

(1) q′
1 is same as the start point pi of the segment;

(2) the direction cosines of the vector connecting the start and end
points of the ideal model q′

l −q′
1 and the direction cosines of

the vector connecting the start and end points of the observed
segment pj −pi are the same; and

(3) the sum of the squared error of the (l−2) interior points of
the segment with the corresponding interior points of the ideal

model is minimized. That is,
∑

1≤k≤l−2

∣∣∣pi+k −q′
1+k

∣∣∣2 is

minimized, where |.| denotes the Euclidean vector norm.

Such a spatial transformation is related to the more general
superposition problem that minimizes the sum of the squared
distance between two corresponding vector sets (Kearsley, 1989).
However, the transformation is further constrained such that the first
points of the two sets are the same (Constraint 1) and the rotational
axis for the ideal model is the vector between the start (pi) and end
(pj) points of the segment (Constraint 2). The first two constraints
can be achieved using elementary translation and rotation of the
ideal coordinates.

Once Q is transformed such that the first two constraints are
realized, the best rotation θ∗ of Q about the pj −pi axis has
to be found so that Constraint 3 is realized. With an approach
similar to the generalized superposition problem between two vector
sets (Kearsley, 1989), this minimization problem can be solved
analytically as an eigenvalue decomposition of a 2×2 square
symmetric matrix in quaternion parameters of the corresponding
points. (The detailed proof of the analytical method is too long for
the main text and hence is provided as Supplementary Material.)

Once the transformation of Q to Q′ is achieved as described
above, Alice can transmit the interior points of the segment,
pi+1,··· ,pj−1 by:

(1) transmitting the best rotation about the pj −pi axis of the
ideal model. (Note, Bob has already received the start and
end points, pi and pj .);

(2) transmitting the interior points pi+1 ···pj−1 as spatial
deviations from their corresponding transformed interior
points of the ideal model. (Bob already knows pi and the
coordinates of Q of the ideal model from the codebook.
After he receives the end point of the segment pj (using
the sphere approach described above), the ideal coordinates
can be transformed such that Constraints 1 and 2 of the
transformation discussed above are realized. After Bob
receives the rotation θ∗, the ideal coordinates are rotated
by that angle around the axis pj −pi whose information he
already has. Once Alice sends the spatial deviations of interior
points pi+1,··· ,pj−1 with respect to the transformed ideal
coordinates, Bob can reconstruct the observed interior points
of the segment.)

3.3.3 Transmitting the rotation Rotation θ∗ is transmitted using
a uniform distribution over a circle whose radius rθ∗ is the farthest
distance of an interior point of the ideal model from the axis of
rotation. Note that rθ∗ need not be transmitted because it is a property
of the coordinates of the ideal model which the receiver already
knows as a part of the codebook.

The rotation is transmitted by dividing the circumference of a
circle of radius rθ∗ into arc segments of length ε and stating the
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segment number in which the rotated coordinate with the farthest
radius to the axis falls. Thus, the code length of stating θ∗ is

I (θ∗)=−log2

(
ε

2πrθ∗

)
= log2(2πrθ∗ )−log2ε bits. (6)

3.3.4 Transmitting the interior points as spatial deviations Let
any error vector of an interior point of the segment with
respect to the corresponding transformed interior point of the

ideal model, ek ≡
(

pi+k −q′
1+k

)
,1≤k ≤ l−2 have the vector

components (
xk ,
yk ,
zk ).
Each 
x, 
y and 
z of an interior point is transmitted using a

normal distribution with a μ of 0 and a standard deviation σ set to the
sample standard deviation computed from these error components.

Wallace (2005) gives the MML estimate of code length to transmit
a set of independent data (
x1,
y1,
z1), (
x2,
y2,
z2), ···
(
xl−2,
yl−2,
zl−1) using a normal distribution as:

I (
x’s,
y’s,
z’s)=1

2
(M −1)log2σ 2 + M −1

2
(7)

+ M

2
log2

(
2π

ε2

)
+ 1

2
log2

(
2N 2

)
+log2

(
Rσ

)+1+log2κ1 bits.

where M =3×(l−2) is the total number of components of the error
vectors ek being transmitted, Rσ gives the prior knowledge of the
limits to log2σ and κ1 ≈1/12 denotes the constant corresponding to
quantizing lattices proposed by Conway and Sloane (1984). In this
study, we assume that σ is bounded by 3Å because this is consistent
with the limits of utility of root-mean-squared-deviation (RMSD) in
superposition as a measure to estimate protein structural similarity.

Therefore, combining code lengths from equations 4–7, the code
length required to transmit coordinates of a segment of a protein
using any ideal model is give by

Iideal(pi,··· ,pj)=I (dij)+I (cij)+I (θ∗) (8)

+I (
x’s,
y’s,
z’s) bits.

3.4 Describing a protein segment using the coil model
When transmitting a segment of a protein pi,··· ,pj as a coil, the
coordinates are stated raw in that range using a null model (Section
3.1). Therefore, the code length of stating a segment pi,···pj as a
coil is

Icoil(pi,··· ,pj)=
j−1∑
k=i

(
I (rk )+I (ck )

)
bits. (9)

where I (rk ) and I (ck ) are code lengths given in equations 1 and 2.

3.5 Describing the protein as a collection of segments
Having laid the foundations of encoding segments of a protein using
one of the ideal models or the coil model (Sections 3.3 and 3.4),
this section deals with describing the entire protein coordinates as a
collection of segments of a model type.

The main idea here is to find the best decomposition of points P
of a protein into segments where each segment is described using
exactly one of eight potential models. Note that the decomposition,
with the associated model descriptors, gives a secondary structural
hypothesis of a protein.

Formally, a segmentation of P ={p1,··· ,pn} gives an ordered
subset of points P ′ ={p′

1 ≡pi1
,p′

2 ≡pi2
,··· ,p′

m ≡pim
} where 1= i1 <

i2 < ···< im =n. Each successive pair of points in P ′,
〈
p′

1,p′
2

〉
,〈

p′
2,p′

3

〉
, ···

〈
p′

m−1,p′
m

〉
, defines the start and end points of a segment.

(Notice that P ′ gives m−1 segments of P, where end point of one
segment is same as the start point of the next.) Associated with each

segment
〈
p′

k ,p′
k+1

〉
of length lk = ik+1 −ik +1 is a model type tk ,

1≤k ≤m−1. A secondary structural assignment of P is given by the
segmentation {p′

1,··· ,p′
m} and its corresponding model assignment

{t1,··· ,tm−1}.
We note that for n points in P , there are 2n−2 =((n−2

0
)+(n−2

1
)+···+(n−2

n−2
))

possible segmentations – the first and

last points of P ′ are the same as those in P . Since each segment of
any segmentation can be assigned to any of the eight possible model
types, the total possible secondary structural assignments is given

by the formula:
(

8×(n−2
0
)+82 ×(n−2

1
)+···+8n−1 ×(n−2

n−2
))

. For

an average protein, this gives a massive search space. (An efficient
dynamic programming method to find the best secondary structural
assignment is detailed in Section 4.)

Any given segmentation P ′ of P and its associated model types
acts as a secondary structural hypothesis of the given coordinate
data. Alice can describe and transmit the coordinates in P using this
hypothesis over a two-part message.

3.5.1 First part of the explanation message In the first part of the
message, Alice communicates the segmentation P ′ ={p′

1,··· ,p′
m}

and its corresponding model assignments {t1,··· ,tm−1} as the
hypothesis on the observed coordinate data in P . This part of the
message will be composed of the following:

(1) the number of segments (m−1) in P ′ and

(2) for each segment p′
k (1≤k ≤m−1), communicate

(a) the length of the segment lk = ik+1 −ik +1 and

(b) the model type tk to encode the points in that segment.

The number of segments (m−1) is an integer transmitted using
a log∗ distribution assuming a universal prior on the distribution of
numbers. Rissanen (1983) gives the code length of transmitting any
integer n>0 as

Ilog∗ (n)= log∗
2(n)+log2(2.865) (10)

where log∗
2(n)= log2n+log2 log2n+··· (over all +ve terms).

Next, the lengths of the segments are positive integers. Although
these integers can also be transmitted using a log∗ distribution,
it is rather inefficient because in practice the lengths of helices,
strands and coils are constrained. Therefore, in this work, we, encode
the lengths of the segments using a Poisson distribution with a
predefined mean of λ for each model type: (The parameters λ for
each of the eight types of models are treated to be a part of the
codebook. In this work we empirically set λ=4 for coil and λ=5
for strands. The lengths of helices are transmitted using a mixture
of two Poisson distributions with means 4 and 8.)

f (x;λ)= λxe−λ

x!
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The code length to state any integer n>0 using this distribution is:

Ipoisson(n) = −log2(f (x=n;λ)) (11)

= λlog2e−nlog2λ+ log2n! bits

Finally, each model type t (encoded as an integer 0≤ t ≤7) of
any segment is stated using a uniform distribution (uniform is
the simplest choice. Since some models as more probable than
others (e.g. α-helices and strands are significantly more probable
than other models), a more elaborate coding scheme can also be
considered taking into account the empirical distribution of various
models.) in

Iuniform(t)= log2(8)=3 bits. (12)

In summary, combining equations 10–12, the code length of
the first part of the message proposing the secondary structural
hypothesis on P is

Ifirst(P ′)= Ilog∗ (m−1)+
m−1∑
k=1

(
Ipoisson(lk )+Iuniform(tk )

)
(13)

3.5.2 Second part of the explanation message In the second part
of the message, Alice sends the actual details of the coordinates in
P economically given the hypothesis P ′.

The procedure to transmit coordinate data of a segment of a
protein using the ideal and coil models has been discussed in
Sections 3.3 and 3.4.

Using the notations in Section 3.5, the hypothesis received in the

first part of the message is of the form
〈
p′

k ,p′
k+1

〉
, with each segment

of some length lk and type tk . The message length to transmit the
coordinates given the above segmentation is:

Isecond(P|P ′)=O(1)+
m−1∑
k=1

Imodel(p
′
k ,··· ,p′

k+1) bits (14)

where O(1) is the constant number of bits to state the
first Cα coordinate p1 (Section 3.1), Imodel(p

′
k ,··· ,p′

k+1)=
Iideal(p

′
k ,··· ,p′

k+1) if 0≤ tk ≤6 and Imodel = Icoil(p
′
k ,··· ,p′

k+1) if
tk =7.

The total message length of communicating P with P ′ comes
from combining equations 13 and 14

Itotal(P&P ′)= Ifirst(P ′)+Isecond(P|P ′) (15)

3.6 Problem Statement
From the earlier section, the problem of inferring the best secondary
structural assignment can now be stated formally as follows: given
P containing n points, find the secondary structural segmentation
P ′ and its corresponding model assignment such that the total
message length to transmit P losslessly, Itotal(P&P ′)= Ifirst(P ′)+
Isecond(P|P ′) is minimized.

4 INFERENCE OF SECONDARY STRUCTURE
This section describes the search method to find the best MML
secondary structural segmentation from given coordinate data.

4.1 Constructing the code length matrices
Equation 15 gives the total message length of communicating
coordinates in P using a segmentation P ′:

Itotal(P&P ′)= Ifirst(P ′)+Isecond(P|P ′)

= Ilog∗ (m−1)+
m−1∑
k=1

(
Ipoisson(lk )+Iuniform(tk )

+ Imodel(p
′
k ,··· ,p′

k+1)

)

For a given protein, any pair of points can potentially be the start
and end points of a segment. At the same time, a segment can be
described using any of the eight models considered here. Therefore,
the procedure to assign secondary structure to Cα coordinates
{p1,··· ,pn} in a given protein begins by constructing a set of eight
code length matrices, one for each model type t (0≤ t ≤7):

H t(i,j)= Ipoisson(j−i)+Iuniform(t)+Imodel(pi,··· ,pj) (16)

where any cell (i,j)1≤i<j≤n of the matrix for type t gives the code
length of stating the segment pi to pj using the model t.

4.2 Finding the best secondary structural assigning
The segmentation of P using various model types enforces a strict
ordering constraint, satisfying the requirements for a solution by
dynamic programming, even though the search space is huge as
discussed in Section 3.5. Let any D(i) store the optimal message
length of transmitting points p1,··· ,pi , for all 1≤ i≤n. With
the boundary condition of D(1)=0, the dynamic programming
recurrence to find the optimal assignment is given by

D(j) =
j−1
min
i=1

⎧⎨
⎩

min
t

H t(1,j)

D(i)+min
t

H t(i,j)
1< j≤n

The above recurrence is used to fill the array D iteratively from
1 to n. On completion, the best secondary structure assignment can
be derived by remembering the index i and type t from which the
optimal D(j) is computed.

5 POST-PROCESSING
In the post-processing step, the above-defined successive segments
of same type (helical or strand) from the MML inference are
examined for moderate curvature. Further, sharp turns are identified
and distinguished from coil assignments. Finally, β-sheets are
identified by grouping together the assigned strands.
Checking for moderate curvature in helix and strand : The MML
inference automatically gives the best (in the information–theoretic
sense) piecewise approximation of a curved helix or strand. In a
single pass through the secondary structural assignment generated
by our method, we check for such curvatures and merge successive
segments to form a larger segment.

Each helix (1≤ t ≤6) and strand (t =7) is represented by a vector.
For a helical segment, the vector is the axis of the helix. For the strand
segment, the vector is the least-square line fitting its Cα atoms. Two
successive segments (of the same model type) are joined to form a
single segment if the orientation angle of their vectors is within 30◦.
[For a detailed description of the finding the axes and orientation
angle, see Konagurthu et al. (2008)]
Identifying sharp turns: sharp turns often have geometries that are
conformationally similar to a turn of ideal helical models considered
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in this work. Any assignment of a helical segment of length less than
or equal to four residues that is preceded and succeeded by other
assigned segments is relabeled as a sharp turn.

However, α-helices often fray or tighten at their N- or C-terminal
ends giving a short stretch of π or 310 helical segment. In order not
to incorrectly assign these ends as sharp turns, the orientation of a
candidate segment is checked against the preceding and succeeding
segments and only assigned a sharp turn if the segment’s orientation
exceeds 45◦ relative to its neighbouring segments.
Grouping strands forming β-sheet: all strand segments are extracted
from a given assignment. A strand adjacency matrix is computed
where two strands are treated to be adjacent if and only if
they are in parallel (with orientation angle in the range ±45◦)
or anti-parallel (with orientation angle in the range [135◦ to
180◦] or [−135◦ to −180◦]) orientation and there exist Van der
Waals interactions between at least two pairs of atoms from the
segment.

Strands from a β-sheet are then identified and grouped using a
complete depth-first search on the strand adjacency matrix.

6 RESULTS
Implementation: a program (SST) implementing the method
described in the previous section has been developed in C++

programming language. The program accepts protein coordinates
in the Brookhaven PDB format and outputs the secondary structure
assignment both at a segment level (stating the start and end point
of each secondary structural segment) as well as at a residue level.
The program also generates a PyMol script, which allows users to
visualize the secondary stucture assignment. (Fig. 1).
Datasets and comparison methods: To study the performance of
SST, we consider a dataset of 1737 PDB structures. These structures
are the same as the dataset considered by Martin et al. (2005),
excluding the structures which have been deprecated or those
structures that failed running on any one of the considered methods.
(See below.) These structures are divided into four datasets: high-
resolution (HRes) dataset with 631 crystal structures solved to 1.7
Å or better; medium resolution (MRes) dataset with 582 crystal
structures with resolution between 1.7 and 3 Å resolution; low-
resolution (LRes) dataset with 306 structures with resolution >3
Å and finally, a dataset of 218 NMR structures.

In this work, we mainly compare SST with DSSP (Kabsch
and Sander, 1983) and STRIDE (Frishman and Argos, 1995)
exhaustively on the large structural dataset described earlier.
Although there are other programs for secondary structure
assignment, we had difficulty finding distributions that we could
download. For those we managed to download, we could not install
the programs due to unresolvable dependencies in their source code.
However, we use a web server 2Struct (Klose et al., 2010),
which allows manual submission of queries with a single point
of access to a variety of secondary structure assignment methods
beyond DSSP and STRIDE such as KAKSI (Martin et al., 2005),
PALSSE (Majumdar et al., 2005),STICK (Taylor, 2001),XtlSStr
(King and Johnson, 1999) and P-SEA (Labesse et al., 1997). To
facilitate comparisons with other methods, we randomly selected
30 low-resolution structures from the LRes dataset and manually
collected the secondary structure assignments from the server. The
list of structures used in this experiment can be download from http://
www.csse.monash.edu.au/∼karun/sst.

Table 1. Performance of SST compared with DSSP and STRIDE on four
datasets: HRes, MRes, LRes and NMR

HRes (% Agreement) MRes (% Agreement)

Helix Strand Total Helix Strand Total

SST versus DSSP 97.6 81.9 84.1 97.6 83.4 83.9
SST versus STRIDE 97.1 80.8 84.3 97.2 82.3 84.3
STRIDE versus DSSP 99.4 98.5 96.7 99.4 98.9 96.9

LRes (% Agreement) NMR (% Agreement)

Helix Strand Total Helix Strand Total

SST versus DSSP 97.7 84.3 82.7 98.4 53.8 51.5
SST versus STRIDE 97.2 82.3 83.8 94.4 78.9 83.9
STRIDE versus DSSP 99.3 98.3 96.0 99.6 64.6 68.7

Columns labelled ‘Helix’ and ‘Strand’ give the percentage agreement of residues
assigned as helix and strand, respectively, between the two methods. Column ‘Total’
gives the percentage agreement over three classes: helix, strand and others.

Comparison: we first assess the composition of the assigned regular
secondary structures (helices and strands) using DSSP, STRIDE
and SST over the four datasets described earlier. Overall DSSP
assigns 34.5% of residues to helices and 19.9% of residues to strands.
STRIDE assigns 37.3 and 27.4%, and SST assigns 40.4 and 25.3%
of residues to helices and strands, respectively. In general, DSSP
is conservative in assigning regular secondary structures resulting
in shorter elements compared with output from STRIDE and SST.
Examining the lengths of various secondary structural segments,
we observe that the average length of a helix and strand segment
assigned by SST is 12.1 and 6.1 residues, respectively. Unlike
SST, which states the residue start and end points of each segment,
computing the lengths of secondary structural elements from DSSP
and STRIDE’s output is problematic and error-prone (Majumdar
et al., 2005).

Table 1 shows the comparison between SST, DSSP and STRIDE
over high, medium, low resolution and NMR structures. To
undertake this comparison, the assignments of the three programs
are grouped into three classes: helix (of all types), strand and other.
DSSP and STRIDE use similar methods for assignment based on
detecting hydrogen bonds. Therefore, as one would expect, their
assignments are highly similar. SST largely agrees with DSSP
and STRIDE when assigning helices. Strands, however, show
some disagreement. Visually examining several instances, we find
that in many cases SST assigns longer strands than the other
two methods. Agreement between strand assignments on NMR
structures among the three methods is rather poor. Surprisingly, even
DSSP and STRIDE differ enormously in this class even though their
assignment methods are quite similar.

Table 2 extends the comparison of SST with other popular
methods for assignment on low-resolution structures. The table
shows the percentage agreement of secondary structural assignments
between the methods. Consistent with previous comparative studies
(Colloc’h et al., 1993; Martin et al., 2005), we see considerable
differences in the assignments. In the absence of a universally
acknowledged gold standard for assignment, it becomes very
difficult (if not impossible) to objectively validate one method to
be truly better than the other. The observed differences mainly
arise from the different criteria used by the methods. However,
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Table 2. Pairwise comparison between secondary structure assignment methods

DSSP (%) STRIDE (%) KAKSI (%) PALSSE (%) P-SEA (%) STICK (%) XtlSStr (%)

SST 77.4 75.3 74.3 80.7 53.9 69.0 74.9
DSSP 86.1 76.9 76.0 57.1 71.8 77.6
STRIDE 67.8 74.8 48.8 64.5 73.8
KAKSI 75.4 67.4 79.4 72.9
PALSSE 50.9 69.9 70.8
P-SEA 66.6 54.1
STICK 66.7

Each cell in the upper-triangular matrix gives the percentage agreement of the residue-level assignments between a pair of methods indicated in the
first row and column. The agreement is measured over all three classes: helix, strand and other.

Fig. 2. Residue-level secondary structure assignment of a 1.75 Å flavodoxin structure from Clostridium beijerinckii. SST residue-level assignment
and the segment boundaries are shown in addition to the assignments across multiple methods. For details of the secondary structure codes, see
http://www.csse.monash.edu.au/ karun/sst/codes.html

manually examining many cases where the methods differ, we find
that most disagreements appear at the ends of various (helical or
strand) segments. We will use a simple example to highlight the
most common type of differences. Figure 2 gives the overall residue-
level secondary structure assignment across different methods
for a flavodoxin structure from Clostridium beijerinckii (wwPDB
ID:5NLL). DSSP and STRIDE assignments are nearly identical to
each other. From the figure, small disagreements between methods
can be seen around the start and end points of various segments
demarcated by SSTs segment view (labelled SST(SEG)). A major
difference between DSSP and SST is the region Lys28...Asn34,
which SST assigns as a strand. DSSP starts the segment three
residues further at Asn31. Inspecting the structure, we find a
backbone hydrogen bond between Asp29 and Met1. This might
suggest the start of the strand at either Asp29 or one residue upstream
at Lys28 as identified by SST.Also, in the region Glu62...Ile73, only
SST correctly assigns a π -helical cap (Glu62...Phe66) leading into
a α-helix.

To evaluate the consistency of SSTs secondary structural
assignments on coordinates solved at different resolutions, we
randomly selected 15 protein structures for which both the
superseded low-resolution coordinates and the new high-resolution
coordinates were available. Table 3 gives the list of considered
structures along with the percentage agreement between SSTs
assignment at different resolutions. The results indicate that SST
produces consistent results on structures determined at different
resolutions. The <10% differences (Table 3, last column) in
agreement on the chosen structures may well represent genuine
structural differences rather than shortcomings of the algorithm.

Further, to illustrate the reliable segmentation produced by
SST on structures with long, curved helices and strands, we
chose two structures: Leucine zipper protein (wwPDB: 1NKP)
composed of very long helices and Sucrose-specific porin protein

Table 3. SST assignment sensitivity to changes in coordinate resolution.
Resolution numbers marked with ∗ are taken from the original papers

Structure name LRes PDB ID HRes PDB ID %Agree

Lysozyme 2LZH (6.0 Å) 2ZQ3 (1.6 Å) 95.3
Ferrochelatase 1LD3 (2.6 Å) 1DOZ (1.8 Å) 97.4
Glutamate Dehydrogenase 1AUP (2.5 Å) 1BGV (1.9 Å) 90.6
Pseudomonas Cytochrome 151C (2.0 Å) 351C (1.6 Å) 93.9
Bence-Jones Protein 1BJL (2.9 Å)∗ 3BJL (2.3 Å) 90.2
Concanavalin A 4CNA (2.9 Å)∗ 5CNA (2.0 Å) 91.8
Endochitinase 1BAA (2.8 Å) 2BAA (1.8 Å) 95.5
Ferredoxin Reductase 1FNR (2.6 Å) 1FND (1.7 Å) 95.9
Endonuclease III 1ABK (2.0 Å) 2ABK (1.6 Å) 97.6
Myohemerythrin 1MHR (2.9 Å)∗ 2MHR (1.3 Å) 92.4
Phosphofructokinase 5PFK (7.0 Å)∗ 6PFK (2.6 Å) 95.3
Serine Protease Inhibitor 1QLP (2.9 Å) 2PSI (2.0 Å) 95.4
Dimeric Hemoglobin 1SDH (2.4 Å)∗ 3SDH (1.4 Å) 98.4
Glutathione Reductase 1GRS (3.0 Å)∗ 3GRS (1.5 Å) 94.4
Calmodulin Fragment TR2C 1TRC (3.6 Å) 1FW4 (1.7 Å) 93.9

(wwPDB: 1A0S) composed of long, curved strands forming β-
barrels. Although SST initially breaks the curved segments into
smaller pieces, the post-processing step explained in Section 5
reconstitutes these pieces back correctly into fuller segments.
[Fig. 3 gives SSTs assignment on the porin protein (1A0S).
The figure shows that the curved strands of the β-barrels have
been reconstituted and grouped reasonably well in the post-
processing step.]

Finally, as a difficult case we consider the 10 Å resolution
protein coordinates of Elongation Factor Tu (GDB.Kirromycin)
from Escherichia coli (wwPDB: 1qzd) solved using Cryo-
Electron Microscopy. Its wwPDB file contains only Cα coordinate
information. DSSP, STRIDE and P-SEA fail to process such
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Fig. 3. Automatically generated PyMol image of SSTs secondary structural
assignment on sucrose-specific porin (ScrY) from Salmonella typhimurium
(wwPDB: 1A0S)

information as the coordinates of other atoms are needed to decipher
Hydrogen bonds. KAKSI and XtlSStr are able to process this
structure but assign all residues in the chain to coil. Of the considered
methods, only SST, PALSSE and STICK assigned any secondary
structure. For lack of space, the overall residue-level assignment
across these three methods are presented in Figure 1 of the
supplementary text. Examining the structure, PALSSE consistently
overestimates the regular secondary structural regions by a large
margin. STICK performs well, especially in identifying β-strands.
However, it miscalculates several secondary structural elements. In
comparison, SST produced the most reasonable segmentation of the
three methods on visual inspection of the structure.

7 CONCLUSION
Reliable secondary structure assignment is an important problem.
We have developed a novel information theoretic method to address
this problem using the Bayesian framework of MML inference.
Careful examination of the results over a large number of structures
suggests that our method gives consistent assignments even on low-
resolution data. We note that our method uses a dictionary of models
composed of ideal secondary structural elements. The details of the
models are explicit and open to scrutiny. It is likely that these models
can be improved. (‘Essentially, all models are wrong, but some are
useful.’—George Box.) However, modification to the models is an
improvement if, and only if, it yields extra compression.
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