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ABSTRACT

Summary: We present an updated version of the TFold software for
pinpointing differentially expressed proteins in shotgun proteomics
experiments. Given an FDR bound, the updated approach uses a
theoretical FDR estimator to maximize the number of identifications
that satisfy both a fold-change cutoff that varies with the t-test
P-value as a power law and a stringency criterion that aims to detect
lowly abundant proteins. The new version has yielded significant
improvements in sensitivity over the previous one.
Availability: Freely available for academic use at http://pcarvalho.
com/patternlab.
Contact: paulo@pcarvalho.com
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1 INTRODUCTION
One of the goals of shotgun proteomics is to perform large-scale
comparisons of complex protein mixtures (e.g. biological fluids
or whole-cell lysates). It comprises protein digestion followed
by peptide chromatographic separation online with tandem mass
spectrometry (MS2) for protein identification and quantitation.
There are several strategies for protein quantitation; examples are
metabolic labeling (Gouw et al., 2010), chemical derivatization
(Thompson et al., 2003) and label-free (Bondarenko et al., 2002).

We previously described PatternLab for Proteomics (Carvalho
et al., 2010), a computational environment for analyzing shotgun
proteomics data. The modules available in PatternLab serve various
purposes, ranging from preparing decoy databases, to selecting and
sharing reliable protein identifications (Carvalho et al., 2012), to
performing gene ontology analyses (Carvalho et al., 2009), and
many more. One of its most popular modules is the TFold test for
pinpointing differentially expressed proteins quantitated by any of
the above strategies. Briefly, in the previous version a PatternLab
file containing protein quantitation data from different biological
conditions would first be filtered according to specified t-test
P-value and fold-change cutoffs. Then the user would interactively
experiment with different fold-change cutoffs, each leading to a
different list of proteins through the BH FDR estimator (Benjamini
and Hochberg, 1995) for the same user-specified q-value, henceforth
referred to as α. This process would ultimately lead to a fold-change
cutoff that maximized the number of proteins in the list.

Even though this simple strategy has been effective in a number
of occasions, imposing a fixed fold-change cutoff could discard
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proteins with very low P-values but not satisfying the fold-change
cutoff. This seems unreasonable because, in the proteomics scenario,
the magnitude of a protein’s fold change need not correlate with its
biological importance. In fact, molecular abundance is only one of
the various factors controlling protein activity, not necessarily the
most important one (Weiss et al., 2010). Here, we describe how we
reformulated the TFold test to better address these limitations and
increase sensitivity.

We also tackle another common problem in proteomics, namely
that of dealing with lowly abundant proteins (e.g. those having low
spectral counts), which usually turn out to be over-represented in
complex mixtures. These proteins are more prone to getting around
the barriers imposed by common statistical filters (e.g. the t-test)
because they tend to artificially acquire low P-values. To exemplify,
assume the following sets of spectral counts for a given protein
in two biological conditions: {1, 1, 1} and {5, 6, 5}. Notably, in
this extreme example, there is a considerable fold change while
the P-value is artificially low due to the lack of variation. In our
experience, it is much more likely that this protein is a false-positive
than another having significantly higher spectral counts but with
a higher P-value as well. Our updated TFold approach introduces
a method to quickly highlight (and separate) proteins such as the
one here exemplified. For these proteins, additional experimentation
is recommended before ascertaining their status as differentially
expressed.

2 VARIABLE FOLD-CHANGE CUTOFF
The centerpiece of our fold-change reformulation is to allow the
fold-change cutoff for a protein to be given as a function of
its t-test P-value. In order to address the issues raised above,
a larger than 1 fold-change cutoff must decrease as the P-value
decreases; likewise, a smaller than 1 fold-change cutoff must
increase as the P-value decreases. We postulate a power-law
functional form for some exponent z>0, thence the fold-change
cutoff is proportional to pz in the former case and to p−z in the latter,
where p is the P-value in question. We resolve the proportionality
constant by imposing a fold-change cutoff of 1 when p is the
lowest P-value for the proteins in the data set, here denoted by
pmin. A protein of P-value p is then rejected (i.e. declared not
differentially expressed) if its fold change lies between (pmin/p)z

and (p/pmin)z.
Thus, in the revised version of the TFold test, one core operation is

to filter the proteins according to the P-value-dependent fold-change
cutoffs that result from a fixed value of the exponent z. Building
on this operation, our software automatically maximizes the list of
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identified proteins by varying the value of z given α (decreasing the
value of z tightens the fold-change interval for protein rejection).
Thus, z works as a fold-change stringency parameter (F-stringency).

3 HANDLING LOWLY ABUNDANT PROTEINS
Another core operation is to filter and highlight proteins that would
be considered differentially expressed according to α and the
fold-change cutoff function but still have a high chance of being
false positives. This occurs mainly in the case of lowly abundant
proteins, as their quantitation values are often compromised. Briefly,
we begin by assuming that the quantitation value of a randomly
chosen quantitated protein, regardless of biological condition, is
exponentially distributed with parameter λ which implies that both
mean and standard deviation are given by 1/λ. As is well-known,
the maximum-likelihood estimates of 1/λ is the sample mean of
all proteins’ quantitation values (to which a protein contributes
as many times as there are biological conditions in which it
appears).

This given, a new parameter, called λ-stringency (L-stringency),
is introduced to pinpoint each problematic protein. This is done
by specifying a fraction of 1/λ below which the sample mean of
that protein in a certain biological condition is too low for it to
qualify as differentially expressed in that condition. We exemplify
the use of L-stringency as follows. Suppose that the sets {2, 2, 2} and
{7, 8, 7} of spectral counts were acquired for a certain protein in two
biological conditions and that 1/λ=2. Choosing an L-stringency
of 0.4 disqualifies the protein as differentially expressed in the
second biological condition relative to the first, since (7+8+7)/3
<0.4×20. We recommend this L-stringency of 0.4, but it should be
evaluated by the user on a case-by-case basis.

4 RESULTS
The effectiveness of our updated algorithm is exemplified on the
data set provided by Fischer et al. (2011) comparing A172 cancer
cells to those (A172R) resistant to Perillyl Alcohol (POH), a
naturally occurring chemotherapeutic agent that induces apoptosis.
The authors provide a list of protein identifications quantitated by
spectral counting and satisfying a 1% FDR for their identifications
according to DTASelect (Cociorva et al., 2006). In the original
analysis, the authors converged to a fixed fold-change cutoff of 2.5,
resulting in 57 differentially expressed proteins for a P-value cutoff
of 0.01 and α=0.01. The new algorithm converged to z=0.14,
pinpointing 77 differentially expressed proteins for the same α, plus
six proteins satisfying the same criteria but reported in a separate list
as having been marked by the L-stringency filter, thus suggesting the
need for further experimentation. Figure 1 is a snapshot of Pattern
Lab’s graphical user interface during analysis.

An example of a protein that was only marked as differentially
expressed by the revised method is glyceraldehyde-3-phosphate
dehydrogenase (GAPDH; IPI00219018.7). Identifying this protein
is important because we hypothesize that it could be related to the
initiation of apoptosis when the cell’s medium contains POH. The
sets of spectral counts for this protein were {117, 71, 141} for
the wild-type and {271, 255, 240} for the resistant cell culture,

but further discussions on any of the corresponding biological
interpretations are beyond the scope of this manuscript.

Fig. 1. Panel A shows the TFold graphical user interface and the results
of our updated analysis relative to Fischer et al. (2011). Each protein is
mapped as a dot on the plot according to its –log2(P-value) (x-axis) and
log2(fold change) (y-axis). Red dots are proteins that satisfy neither the fold-
change cutoff nor the FDR cutoff α. Green dots are those that satisfy the
fold-change cutoff but not α. Orange dots are those that satisfy both the fold-
change cutoff and α but are lowly abundant proteins and thus require further
experimentation to certify their differential expression. Blue dots, finally,
are proteins that satisfy all statistical filters. Note that the bounds separating
green dots from red do not correspond to a single fold-change cutoff (a
‘horizontal’ line) as in the previous approach. Instead, separation is achieved
through several cutoffs along a ‘conical’ region (due to the logarithms), one
cutoff for each P-value, with vertex at P-value =pmin and Fold change =
1. However, as a consequence of the BH FDR estimator, we have a single
P-value cutoff (a vertical line) separating blue and orange dots from green
and red in both approaches. Panel B is automatically displayed once the
Optimize button is pressed. Given α, it plots the distribution of blue dots as
a function of the F-stringency parameter z
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5 FINAL CONSIDERATIONS
Computational approaches for pinpointing differentially expressed
proteins can, at best, provide a list of putative biomarkers that could
ultimately aid in the understanding of pathology or be specific to
a biological condition. Further validation is to be carried out in
different cohorts.

The application of the F-stringency parameter prior to using the
BH FDR estimator eliminates hypotheses (i.e. putative differentially
expressed proteins) that are most likely false positives. Applying the
L-stringency parameter also prior to using the BH FDR estimator
has the potential of further eliminating the likely false positives
related to some of the lowly abundant proteins. The final, reduced
list to be evaluated by the BH FDR estimator maximizes the TFold
test sensitivity, as the BH FDR estimator penalizes the number of
hypotheses tested by including it in the denominator of its equation.

To summarize, we have described an algorithm for maximizing
the number of differentially expressed protein candidates. It
optimizes a fold-change cutoff that varies with the proteins’P-values
as a power law and provides a means for highlighting (and
separating) lowly abundant proteins prior to filtering by the BH
FDR estimator. This algorithm resulted in a significant increase in
sensitivity when compared to its previous version.
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