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Summary
In medical studies of time to event data, non-proportional hazards and dependent censoring are
very common issues when estimating the treatment effect. A traditional method for dealing with
time-dependent treatment effects is to model the time-dependence parametrically. Limitations of
this approach include the difficulty to verify the correctness of the specified functional form and
the fact that, in the presence of a treatment effect that varies over time, investigators are usually
interested in the cumulative as opposed to instantaneous treatment effect. In many applications,
censoring time is not independent of event time. Therefore, we propose methods for estimating the
cumulative treatment effect in the presence of non-proportional hazards and dependent censoring.
Three measures are proposed, including the ratio of cumulative hazards, relative risk and
difference in restricted mean lifetime. For each measure, we propose a double-inverse-weighted
estimator, constructed by first using inverse probability of treatment weighting (IPTW) to balance
the treatment-specific covariate distributions, then using inverse probability of censoring
weighting (IPCW) to overcome the dependent censoring. The proposed estimators are shown to be
consistent and asymptotically normal. We study their finite-sample properties through simulation.
The proposed methods are used to compare kidney wait list mortality by race.
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1. Introduction
In clinical and epidemiologic studies of survival data, it is very common that the treatment
effect is not constant over time. In the presence of non-proportional hazards, the Cox (1972)
model is often modified such that the treatment effect is assumed to vary as a specified
function of time. However, the functional form chosen may not be correct. Moreover,
researchers are usually more interested in the cumulative treatment effect in settings where
the treatment effect is time-dependent. Without specifying the functional form of the
treatment effect, one can compare survival or cumulative hazard curves using the Nelson-
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Aalen (Nelson, 1972; Aalen, 1978) estimator or Kaplan-Meier (Kaplan and Meier, 1958)
estimator. These estimators may lead to biased results when confounders for treatment exist,
as is often the case in observational studies. When censoring time depends on factors
predictive of the event, the event and censoring time are correlated through these factors. If
these prognostic factors are time-dependent and if they are not only risk factors for the event
but also affected by treatment, standard methods of covariate adjustment may produce
biased treatment effects. If adjustment is made for baseline values instead of time-dependent
factors, standard regression methods are still invalid since the event and censoring times will
be dependent through their mutual correlation with the time-dependent factors.

The investigation which motivated our proposed research involves comparing wait-list
survival for patients with end-stage renal disease. The effect of race (Caucasian vs African
American) on survival is of interest and may vary over time. There exist time-constant
covariates (e.g., age, renal diagnosis) for which adjustment is necessary. Moreover, a
patient's hospitalization history is a predictor of wait-list mortality and also affects
transplantation probability, since patients with more hospitalizations are less likely to
receive a kidney transplant. Although a patient's death may be observed following kidney
transplantation, receipt of a transplant does censor wait-list mortality. Therefore, the
mortality and censoring will be correlated unless the model adjusts for hospitalization
history. However, one would generally not want to adjust for hospitalization history (e.g.,
through a time-dependent Cox model), since the race effect obtained through such an
approach does not have a good interpretation and may be much closer to the null than the
marginal race effect of interest. It is therefore necessary to handle dependent censoring in
this analysis. Note that, alternatively, one could obtain marginal effects through time-
dependent approaches via the G-computation algorithm (Robins, 1986, 1987).

Current methods usually focus on the survival or cumulative hazard function when
estimating cumulative treatment effects in the presence of censored data. However, mean
lifetime is often the most relevant quantity, particularly since clinicians often describe a
patient's prognosis in terms of how long the patient is expected to live. Zucker (1998) and
Chen and Tsiatis (2001) compared restricted mean lifetime between two treatment groups
using Cox proportional hazard models. The survival function for each group was estimated
by averaging over all subjects in the sample. These methods require that proportionality hold
for each of the adjustment covariates.

Without specifying the functional form for the effects of adjustment covariates, inverse
probability of treatment weighting (IPTW) can be applied to balance the distribution of
adjustment covariates across treatment groups. Hernan, Brumback and Robins (2000, 2001)
and Robins, Hernan and Brumback (2000) used marginal structural models to estimate the
causal effect of a time-dependent exposure. Inverse weighting was applied to adjust for
time-dependent confounders that are affected by previous treatment. In the context of
survival analysis, the authors assumed that hazards were proportional across treatments.
With respect to the related nonparametric methods, Xie and Liu (2005) developed an
adjusted Kaplan-Meier curve using inverse weighting to handle potential confounders,
assuming that the event time and censoring time are independent.

Inverse probability of censoring weighting (IPCW), proposed by Robins and Rotnitzky
(1992) and Robins (1993), has been utilized in many applications to overcome dependent
censoring. A Cox proportional hazard model is assumed for the event time, while an inverse
probability of censoring weight is applied to the Cox model score equation. The weight can
be thought of as the inverse of the probability of remaining uncensored, which can be
estimated non- or semi-parametrically. Robins and Finkelstein (2000) described the use of
IPCW to handle dependent censoring induced by considering patients who switch therapy as
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censored, not unlike the data set which motivated our current work. The IPCW method has
been applied in various other settings (Matsuyama and Yamaguchi, 2008; Yoshida,
Matsuyama and Ohashi, 2007).

We propose methods for quantifying the cumulative effect of a treatment in the absence of
randomization and presence of dependent censoring. Three cumulative treatment effect
measures are developed: ratio of cumulative hazards, relative risk, and difference in
restricted mean lifetime. The proposed estimators are computed by double inverse
weighting, wherein inverse probability of treatment weighting is used to balance the
treatment-specific baseline adjustment covariate distributions and IPCW is concurrently
applied to handle the dependent censoring due to time-varying factors for which no
adjustment is made. After applying the double inverse weight to the observed data,
estimation of the cumulative treatment effects proceeds nonparametrically, negating the
need to specify functional forms for the effect of either the treatment or the adjustment
covariates.

The remainder of this article is organized as follows. We describe our proposed methods in
the next section. In Section 3, we derive asymptotic properties of our proposed estimators;
proofs of which are provided in the Web Appendix. We evaluate the performance of our
estimators in finite samples in Section 4. In Section 5, we apply the methods to kidney wait
list data obtained from a national organ failure registry. Discussion is provided in Section 6.

2. Proposed methods
Suppose that n subjects are included in the data set. Let Di be the event time and Ci be the
censoring time for subject i. Let Xi = min{Di, Ci} and δi = I(Di ≤ Ci) where I(A) is an
indicator function taking the value 1 when condition A holds and 0 otherwise. The observed
event and censoring counting processes are defined as

, respectively. The at risk indicator is denoted
by Yi(t) = I(Xi ≥t). Let j be the index for treatment group (j = 0, 1, …, J), with group j = 0
representing the reference category to which the remaining treatment groups are compared.
Let Gi denote the treatment group for subject i and set Gij = I(Gi = j). Correspondingly, we

set Yij(t) = Yi(t)Gij, . The observed data consist of n

independent and identically distributed vectors, , where Z̃i(t) = {Zi(s); s ∈
[0, t]} and Zi(t) is a p × 1 vector of covariates which will typically contain some time-
dependent elements. We let Zi(0) denote the covariate values at baseline. We

We assume that there are no unmeasured baseline (t = 0) predictors of both group
membership and death, conditional on Zi(0). We also assume that the death and censoring
processes are conditionally independent given group membership and Z̃i(t). More
specifically, with the death and censoring hazard functions for subject i defined as

respectively, we are assuming that

(1)
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(2)

Further, we assume that there are no unmeasured confounders for censoring,

(3)

i.e., that the cause-specific hazard for censoring does not further depend on the possibly
unobserved death time. In a standard survival analysis featuring time-dependent covariates,
a condition analogous to (1) would typically be assumed. We require condition (3) since our

proposed methods require modeling , as will be described shortly.

The plausibility of such no-unmeasured-confounders assumptions depends on the nature of
the data at hand. In settings where treatment is not randomized, the conditions will likely
never hold exactly. However, if the covariate Z̃i(t) is sufficiently rich (e.g., the important
risk factors have been collected), then the assumptions may hold approximately; at least to
the extent that meaningful inference can be achieved.

Note that we use the term ‘treatment’ here rather generically. In practice, Gi could represent
any baseline categorical factor of interest, including one which is not explicitly assigned. For
instance, in the example which motivated our work, the factor of interest is race. The fact
that race is not a factor which is randomized (or even assigned) introduces issues which we
discuss in Section 6. For now, note that our objective is to obtain valid associational (as
opposed to causal) inference.

In the case where Zi(t) not only affects the event time but also affects censoring, event and
censoring are dependent unless the effect of Zi(t) on the event is modeled explicitly.
However, one would usually prefer to adjust for Zi(0), instead of Zi(t) when Zi(t) is, at least
in part, a consequence of treatment. A frequently employed manner of describing the
treatment effect is to compare the average survival resulting from treatment j (as opposed to
the reference treatment) being assigned to the entire population. In the setting where
treatment j is assigned to all subjects, the average survival function is given by Sj(t) = E{S(t|
Gi = j, Zi(0))}. The expectation is with respect to the marginal distribution of Zi(0), such
that the same averaging is done across all J + 1 treatment groups.

To compare the cumulative effect of treatment j to the reference treatment, three measures
are proposed. The first proposed measure is the ratio of cumulative hazards,

(4)

where Λj(t) = −log{Sj(t)} is the cumulative hazard at time t. When treatment-specific
hazards are proportional, ϕj(t) is equal to the familiar hazard ratio. The second proposed
measure is the ratio of cumulative distribution functions,

(5)

where Fj(t) = 1 − Sj(t) is the average probability of death by time t, when treatment j is
assigned. The measure RRj(t) is a process version of relative risk, a quantity which is
frequently estimated in epidemiologic studies. The third proposed measure is the difference
in restricted mean lifetime,
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(6)

where  is the area under the survival curve (restricted mean lifetime) over
(0, t]. The Δj(t) measure equals the area between the survival curves that would result if
treatment j (versus treatment 0) was assigned to all subjects in the population.

Let  where 01×(j−1)(p+1) is a 1 by (j−1)(p+1) matrix
with elements 0, for j = 1, …, J. We assume that treatment assignment follows a generalized
logits model,

where pij(β0) = Pr{Gi = j|Zi(0)}. The model could be extended to include interaction terms.
The maximum likelihood estimator of β0, denoted by β̂, is the root of UG(β) = 0, where

(7)

Since it is preferred to adjust for Zi(0) instead of Zi(t), the event and censoring processes are
dependent through their mutual association with {Zi(t): t > 0}. We apply an inverse
probability of censoring weight to handle the dependent censoring. We assume that Ci
follows a Cox model with hazard function

(8)

where  contains terms representing Gi and Zi(t). The inverse censoring weight at time t

is denoted by . The quantity  is

estimated by , where

and  for d = 0, 1, 2 with a⊗0 = 1, a⊗1 = a and

a⊗2 = aaT for a vector a. The quantity  is the Breslow-Aalen estimator for . The
parameter θ0 is estimated through partial likelihood (Cox, 1975) by θ̂, the solution of the
score equation, UC(θ) = 0, where
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(9)

Note that if the treatment-specific censoring hazards are not proportional, a treatment-
stratified version of model (8) could be applied.

The measure ϕj(t) is estimated by

where

with . The relative risk measure, RRj(t), is estimated by

where F ̂j(t, β, θ) = 1 − Ŝj(t, β, θ) and Ŝj(t, β, θ) = exp{−Λ̂j(t, β, θ). The estimator for the
difference in restricted mean lifetime, Δj(t), is given by

where .

The measures ϕj(t) and RRj(t) are considered on a time interval [tL, tU], while Δj(t) is
considered in a time interval [0, tU], where tL is chosen to avoid division by 0 and tU is
chosen to avoid the well recognized instability in the tail of the observation time
distribution.

The IPTW weight, , is used for balancing the covariate distribution among the

treatment groups. After applying  to our estimators, J + 1 pseudo-populations are
created with treatment-specific Zi(0) distribution equal to that of the entire population. For

example, for the restricted mean lifetime , the expectation is
with respect to the marginal distribution of Zi(0), such that same averaging is done across all
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J + 1 treatment groups. The IPCW weight, , is applied to handle the dependent
censoring. After applying the proposed double inverse weighting, each of the proposed
measures converges to the value which would apply to a population in which treatment was
randomized and no censoring occurred.

3. Asymptotic properties
We summarize the asymptotic properties of the proposed estimators in the following
theorems. The set of assumed regularity conditions is listed in the Appendix, while proofs of
the theorems are provided in the Web Appendix.

THEOREM 1. Under conditions (a) to (f) listed in the Appendix, Λ̂j(t) = Λ̂j(t;β̂θ̂) converges
almost surely and uniformly to Λj(t) for t ∈ [0, tU], and n1/2{Λ̂j(t) − Λj(t)] converges
asymptotically to a zero-mean Gaussian process with covariance function σj(s, t) =
E{Φij(s)Φij(t)}, where

where  are the influence functions for the Cox and
logistic models, respectively (for which explicit expressions given in the Appendix);

, and with hj(t), dij(t), gj(t) and
fj(t) defined in the Appendix.

The consistency of Λ̂j(t) is proved through the consistency of β̂ and θ̂, the continuous
mapping theorem, and the Uniform Strong Law of Large Numbers (USLLN). The proof of
asymptotic normality involves decomposing n1/2{Λ̂j(t, β̂, θ̂) − Λj(t)} into α̂j1(t) + α̂j2(t) +
α̂j3(t) + α̂j4(t), where

The quantity n1/2{Λ̂j(t, β̂, θ̂) − Λj(t)} can then be written as, asymptotically, a sum of
independent and identically distributed mean 0 variates. The Multivariate Central Limit
Theorem can then be used to demonstrate asymptotic normality, while convergence to a
Gaussian process follows from various results from the theory of empirical processes
(Pollard, 1990; Bilias, Gu and Ying, 1997). A proof of Theorem 1 is provided in the Web
Appendix.

THEOREM 2. Under conditions (a) to (f), ϕ̂j(t) = ϕ̂(t; β̂, θ̂) converges almost surely to ϕj(t)
for t ∈ [tL, tU], and n1/2{ϕ̂j(t) − ϕj(t)} converges asymptotically to a zero-mean Gaussian

process with covariance function , where
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with Φij(t) as given in Theorem 1.

The proof of Theorem 2 (provided in the Web Appendix) involves combining Theorem 1
and the Functional Delta Method. The covariance function can be consistently estimated by
replacing all limiting values with their empirical counterparts.

THEOREM 3. Under the assumed regularity conditions,  converges almost

surely and uniformly to RRj(t) for t ∈ [tL, tU], and  converges
asymptotically to a zero-mean Gaussian process with covariance function

, where

(10)

with Φij(t) defined as in Theorem 1.

The proof of Theorem 3 (Web Appendix) is quite similar in structure to that of Theorem 2.

THEOREM 4. Under the assumed regularity conditions, Δ̂j(t) = Δ̂(t β̂, θ̂ converges almost
surely and uniformly to Δj(t) for t ∈ [0, tU], while n1/2{Δ̂j(t)−Δj(t)}, converges
asymptotically to a zero-mean Gaussian process with covariance function

, where

(11)

with Φij(t) as defined as in Theorem 1.

The proof begins by expressing n1/2{êj(t)−ej(t)} as a sum of independent and identically
distributed zero-mean variates, as n → ∞ (Andersen et al, 1993). The Functional Delta
Method is then combined with Theorem 1.

For large data sets, variance estimation can be computationally intense, in which case the
bootstrap is a useful alternative. Although the bootstrap is not typically suggested in the
interests of reducing computing time, it can achieve such an objective in settings where the
point estimator can be computed quickly but computation of the asymptotic variance is
slow. In cases where the size of the data set precludes the standard bootstrap, the m of n
bootstrap may be applied, such that resamples of size m(< n) are drawn and the estimated
variance is then multiplied by m/n.

4. Simulation study
We evaluated the finite sample properties of the proposed estimators through a series of
simulation studies. For each of the n subjects, a covariate Zi1 was generated as a binary
variable with values 0 or 1 and Pr(Zi1 = 1) = 0.5. The treatment indicator, Gi, was generated
from a Bernoulli distribution with parameter pi1(β) = exp(β0+β1Zi1)/[1 + exp(β0 + β1 Zi1)].
We chose β0 = log(1/3) and β1 = log(9) such that Pr(Zi1 = 1|Gi = 1) = 0:75 and Pr(Zi1 = 1|Gi
= 0) = 0:25. When Gi = 1, we generated a variable Zi2 as piece-wise constant with
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probabilities P(Zi2 = k) = P(Zi2 = k + 1) = 0.5 across time interval (k, k + 1], for k = 0, …, 4.
When Gi = 0, Zi2 was generated as a binary variable (0 or 1) with Pr(Zi2 = 1) = 0.5. Event
times were generated from a Cox model with hazard function

while censoring times were generated from a Cox model with hazard function

Various values of (η1, η2, η3), and µ were employed for the Cox models. For each set of
parameters, several percentages of censoring were investigated by varying the baseline death
and censoring hazards. Censoring times were truncated at t = 5.

Sample sizes of n = 500 and n = 200 were examined, and a total of 1000 simulations were
used for each simulation setting. For the first two measures, we employed the log transform
to ensure that the confidence interval bounds were in a valid range. To assess the finite-
sample performance of our proposed method, the bias of each of the three estimators was
evaluated at time points t = 1, t = 2 and t = 3. The bootstrap standard errors were evaluated
at t = 2 with sample size n = 200, and 100 bootstrap resamples per simulation.

For n = 200, our estimators appear to be approximately unbiased in general (Table 1).

The bias is reduced when sample size increases to n = 500 (Web Table 1). The average
bootstrap standard errors (ASE) are generally close to the empirical standard deviations
(ESD) for sample size n = 200 (Table 2) and, correspondingly, the empirical coverage
probabilities (CP) are fairly close to the nominal value of 0.95.

5. Data analysis
We applied the proposed methods to analyze wait-list survival for patients with end-stage
renal disease, where the effect of race (Caucasian vs. African American) was of interest.
Data were obtained from the Scientific Registry of Transplant Recipients (SRTR) and
collected by the Organ Procurement and Transplant Network (OPTN). Hospitalization data
were obtained from the Centers for Medicare and Medicaid Services (CMS). Only patients
whose primary payer was Medicare were included in the analysis. The data included n=7110
Caucasian and African American patients who were placed on the kidney transplant waiting
list in calender year 2000. Patients were followed from the time of placement on the kidney
transplant waiting list to the earliest of death, transplantation, loss to follow-up or end of
study (Dec 31, 2005). Among the 2975 African Americans, 27% died and 45% received a
kidney transplant. Among the 4135 Caucasians, 27% died and 54% got transplanted.

It has previously been reported that African Americans have lower kidney wait list mortality
rate than Caucasians. However, Caucasians also have a higher kidney transplant rate than
African Americans. Unlike liver, lung and heart transplantation, poor patient health is a
contra-indication for kidney transplantation. Although donor kidneys are not specifically
directed towards healthier patients, it is generally felt that patients in poorer health are less
likely to receive a kidney transplant. It is quite possible that the healthiest patients are
transplanted off the wait list at a greater rate for Caucasians than for African Americans.
Therefore, we suspect that dependent censoring of kidney wait list mortality occurs via
patient health. We use time-dependent hospitalization history as a surrogate for patient
health. Note that hospitalization history is inappropriate as an adjustment covariate for
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patient wait list survival. Patients with a greater number of previous hospitalizations have a
greater mortality hazard and hospital admissions can be viewed as intermediate end points
along the path from wait listing to death. Previous comparisons of wait list mortality by race
did not adjust for dependent censoring. Moreover, most previous comparisons of Caucasians
and African Americans assumed that effect of race is constant over time.

Logistic regression was used to model the probability that a patient is Caucasian given age,
gender, diagnosis (diabetes, hypertension, glomerulonephritis, polycystic kidney disease and
other), body mass index and chronic obstructive lung disease (yes or no). A Cox model,
stratified by race, was fitted to estimate the inverse probability censoring weight adjusting
for the covariates listed above, as well as time-dependent number of previous
hospitalizations. The transplant hazard is significantly decreased by 8% for each additional
hospitalization (Web Table 2). The IPTW weight ranged from 1.04 to 21.39 and the IPCW
weight ranged from 1.04 to 33.07.

Due to the size of the data set, standard error estimators were based on the m of n bootstrap
to reduce computation time. Specifically, we repeatedly sampled with replacement m = 1000
patients from the n = 7110 patients in the study population, then multiplied the bootstrap

standard error by . A total of 5000 bootstrap resamples were drawn.

We evaluated the race effect over the [0,70] month interval. Within approximately one
month after wait listing, Caucasians had significantly lower cumulative hazard of death than
African Americans (Figure 1).

Compared to African Americans, the cumulative hazard for Caucasians is lower at the very
beginning of follow-up, but is significantly higher comparing after approximately 11 months
with ratio of cumulative hazards ranging from ϕ̂1(t) = 1:18 to ϕ̂1(t) = 1:47. The pattern of the
estimated relative risk is similar to the ratio of cumulative hazards (Figure 2).

Figure 3 shows that Caucasians have shorter restricted mean lifetime than African
Americans based on the first 8 months after wait-listing. The difference in restricted mean
lifetime is significant after 18 months of wait-listing, with the estimated difference ranging
from Δ̂1(t) = −0:17 months to Δ̂1(t) = −3:39 months comparing Caucasians to African
Americans.

Supplementary analysis is provided in the Web Appendix. We examine 4 different
estimators of each of ϕ1(t) (Web Figure 1), RR1(t) (Web Figure 2) and Δ1(1) (Web Figure
3): the proposed IPTW/IPCW estimator (denoted by the solid line); an IPTW estimator (long
dashes); an IPTW estimator adjusted for age only (short dashes); and an unadjusted
estimator (dotted line). There is not much difference between IPTW/IPCW and IPTW
estimators, implying that the dependent censoring was not strong. There was a considerable
difference between the unadjusted and IPTW estimator, indicating that substantial
confounding was controlled by the baseline adjustment covariate, Zi(0). There was only a
slight discrepancy between the Zi(0)- and age-adjusted IPTW estimators, indicating that the
majority of the covariate adjustment due to Zi(0) was actually through age alone. Comparing
Web Figures 1–3, the discrepancy between the four estimators was most pronounced for
Δ̂1(t). This makes sense in that, although both ϕ1(t) and RR1(t) are cumulative in nature,
Δ1(t) involves an integration of quantities from each.

6. Discussion
In this article, we propose methods for estimating the cumulative treatment effect when the
proportional hazards assumption does not hold. Through double inverse weighting, the
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proposed estimators adjust for discrepancies in treatment-specific baseline covariate
distributions and overcome dependent censoring. Simulation studies show that the proposed
estimators are approximately unbiased and that the bootstrap standard errors perform well in
finite samples.

An alternative to the methods we propose is the G-computation method (Robins, 1986,
1987). The fact that this method requires specification of a model for the longitudinal
covariate process may be considered a disadvantage in settings where the longitudinal
covariate is of no inherent interest, or is difficult to model. A parallel disadvantage of our
proposed methods is the requirement to model the dependent censoring process. Since
methods for such modeling are well-established, such modeling will typically be
straightforward. However, the dependent censoring process may be of little interest.
Moreover, the inverse weighting may lead to instability, a phenomenon which has no analog
in the G-computation method. Note that, in many practical applications, models for the both
the longitudinal and dependent censoring processes will in fact be of clinical relevance. For
instance, with respect to the end-stage renal disease data analyzed in Section 5,
hospitalization history represents an important outcome which, arguably, has received
insufficient attention in the nephrology literature. Further, the time-until-transplant model is
of interest since there are relatively few published rigorous analyses of the factors affecting
transplant rates.

Applying our methods to kidney wait list survival data, we found that the effect of race
(Caucasian vs. African American) is time dependent. The cumulative hazard and risk of
death are significantly higher for Caucasians relative to African Americans 11 months after
wait listing, while Caucasians have significantly shorter (3.39 months shorter) restricted
mean lifetime based on the first 70 months after wait listing. The difference in restricted
mean lifetime is statistically significant in the long term, although not of clinical importance.

It is likely that race is associated with unmeasured factors which predict kidney wait list
death and that, as a result, our estimates of the race effect may be subject to residual bias.
However, a few points are important in this regard. First, we are not trying to separate the
biological/genetic factors associated with race from the socioeconomic. The proposed
methods are designed to elicit valid (and perhaps associational as opposed to causal)
estimators of group-specific contrasts. Second, the threat of unmeasured confounders is
likely less than if race groups from the general population were being compared. Since all
members of the study population have end-stage renal disease, the variability of mortality
risk factors is likely less variable than in the general population. Third, although the SRTR
database does not have information on every mortality risk factor, it has the most important
factors (e.g., age, diabetes status). The nature of the information collected by patients is not
decided haphazardly, since the SRTR database is used to build models to compare center-
specific mortality to the national average. Fourth, the degree of association between any
missing mortality predictors and race (i.e., after adjusting for the measured baseline
covariate) is questionable; as is the degree to which such factors predict mortality after
adjusting for race and Zi(0). Fifth, supplementary analysis revealed that most of the
confounding adjusted by Zi(0) was via age alone. Although far from proving its absence, the
hypothesis of meaningful bias due to unmeasured confounders is weakened by the fact that
confounding due to the “usual suspects” was adjusted away by age alone.

As implied in the preceding paragraph, our supplementary analysis pertaining to residual
confounding was predicated on measured covariates being at least as strong confounders as
the unmeasured covariates. More formal methods exist for evaluating unmeasured
confounding, and the sensitivity analysis area has received considerable attention in the last
decade. For example, Lin et al (1998) developed methods for both logistic and Cox
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regression, through which bias-corrected regression parameter estimators are computed from
the uncorrected counterparts. Robins, Rotnitzky and Scharfstein (1999) proposed sensitivity
analysis methods for marginal structural models (see also Brumback at et, 2004). Such
methods involve removing the impact of the unmeasured confounder through bias-corrected
versions of the response variates. Chiba (2010) proposes that different techniques are
appropriate for bias-correction if the causal risk ratio (as opposed to risk difference) is being
estimated. Klungsor et al (2009) developed sensitivity analysis method for the causal hazard
ratio estimated through marginal structural Cox models; the methods involve bias correction
that is incorporated as a treatment-specific offset. It is possible that the methods of Klungsor
et al (2009) could be applied to our setting, in which case the bias-correction offsets would
be used to compute corrected weighted Nelson-Aalen estimators. Several other forms of
sensitivity analyses are available. Brumback et al (2004) describe the use of methods such as
those described above as perhaps preliminary steps on the way to a full Bayesian analysis
(e.g., Greenland, 2005). Further, McCandless, Gustafson and Levy (2007) described yet
another layer of sensitivity analysis by formally incorporating uncertainty in the assumed
prior distributions.

The consistency of the estimators proposed in this article requires the consistency of the
double inverse weight. Therefore, misspecification of the logistic model for treatment or the
proportional hazards model for censoring may result in bias for the treatment effect
estimators. It has been suggested that models used for IPTW and IPCW contain a rich set of
covariates, comparing the pitfalls of omitting important covariates with those of including
non-significant covariates. The magnitude of the bias introduced by model misspecification
would depend on number of covariates mis-modeled, the strength of their association with
both the treatment and failure time, and their variability in the study population. The impact
of misspecifying the IPCW model would also depend on the percentage of subjects
censored. In practice, when very few subjects are censored in the sample, it may not be
worthwhile to use IPCW, since the weight estimator will have little precision, and since little
bias would result from dependent but infrequent censoring. Diagnostic methods are well-
established for the logistic model (Hosmer and Lemeshow, 1989) and the Cox model (Klein
and Moeschberger, 2003).

In the proposed inverse weight, the IPTW and IPCW components are the unstabilized
versions. Stabilization in its usual form (e.g., Hernan et al, 2000; Robins et al, 2000) may
not be feasible in our setting since the estimators do not condition on the baseline covariate,
Zi(0) of which the stabilization factor is typically a function. However, it may be possible to
develop augmented estimators along the lines of Robins, Rotnitzsky and Zhao (1994) which
could offer improved efficiency and robustness.

Inference at some specific time point, or small set of time points, can be based on the point-
wise confidence intervals we propose. The rationale for our presenting each estimator as a
process is to satisfy different investigators who may have different opinions on the
appropriate truncation time. If simultaneous inference is desired, confidence bands can be
constructed as in several previous articles, including Wei and Schaubel (2008).
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Appendix

Functions listed in Theorem 1
Definitions for the functions used in Theorem 1 are as follows.
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Figure 1.
Analysis of wait list mortality by race: Estimator and 95% pointwise confidence intervals for
the ratio of cumulative hazard functions (Caucasian/African American), ϕ1(t).
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Figure 2.
Analysis of wait list mortality by race: Estimator and 95% pointwise confidence intervals for
the risk ratio (Caucasian/African American), RR1(t).
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Figure 3.
Analysis of wait list mortality by race: Estimator and 95% pointwise confidence intervals for
the difference in restricted mean lifetime (Caucasian-African American), Δ1(t).
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