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SUMMARY

The performance of a well-calibrated risk model for a binary disease outcome can be characterized
by the population distribution of risk and displayed with the predictiveness curve. Better performance
is characterized by a wider distribution of risk, since this corresponds to better risk stratification in the
sense that more subjects are identified at low and high risk for the disease outcome. Although methods
have been developed to estimate predictiveness curves from cohort studies, most studies to evaluate
novel risk prediction markers employ case-control designs. Here we develop semiparametric methods
that accommodate case-control data. The semiparametric methods are flexible, and naturally generalize
methods previously developed for cohort data. Applications to prostate cancer risk prediction markers
illustrate the methods.

Some key words: Biased sampling; Biomarker; Case-control; Predictiveness curve; Risk prediction; Semiparametric
method.

1. INTRODUCTION

Selecting biomarkers for medical practice is an important and challenging task. Of the thousands of
markers made available by modern techniques, we want to find those that can assist medical decision
making by helping to identify disease or risk of poor outcomes. Criteria for evaluating a biomarker depend
on its purpose. In this paper, our goal is to evaluate risk prediction markers that are used to stratify the
population into risk groups for whom different treatment recommendations are made.

Pepe et al. (2008a) suggested using the predictiveness curve (Bura & Gastwirth, 2001) to evaluate a risk
prediction marker or model. They argued that the performance of a model to predict risk within a population
relies not only on the effect of each predictor in the risk model, but also on the distribution of the predictors.
The predictiveness curve integrates these two factors together by displaying the population distribution
of risk endowed by the risk model. Let D denote a binary outcome that we term disease here, D = 1 for
diseased and D = 0 for nondiseased. Let Y denote a marker of interest and let Risk(Y ) = pr(D = 1 | Y )
denote the risk calculated on the basis of Y . The predictiveness curve is the curve R(v) against v for
v ∈ (0, 1), where R(v) is the vth quantile of Risk(Y ). The inverse function R−1(p) = pr{Risk(Y ) � p} is
the proportion of the population with risks less than or equal to p. An attractive feature of this curve is that it
provides a common meaningful scale for comparing markers that may not be comparable on their original
scales. A risk prediction model with larger variability in R(v) has a better capacity to stratify risk. A
particularly clinically meaningful comparison can be based on R−1(p). Suppose there exists a prespecified
low risk threshold pL and/or a high risk threshold pH such that recommendation for or against treatment is
clear if the estimated risk for a patient is above pH or below pL . A risk model which assigns more people
into the low and high risk ranges, i.e. larger R−1(pL ) and larger 1 − R−1(pH ), is preferred.

Pepe et al. (2001) proposed five phases for developing a biomarker. Case-control studies are conducted
in phases 1, 2 and 3, since they are smaller and more cost efficient than cohort studies. Since early phase
studies dominate biomarker research, it is crucial that measures of biomarker performance accommodate
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case-control designs. Huang et al. (2007) developed a semiparametric estimator of the predictiveness curve
for cohort studies. Here we address the more common case-control design. We focus on the scenario of
a single continuous marker or a predefined marker combination, although our methods can be easily
extended to a general risk model. Biomarker researchers are well aware of problems caused by developing
combinations and assessing them in the same dataset and encourage the assessment of a predefined
combination with independent test data (Ransohoff, 2007; Simon, 2005; Pepe et al., 2008b). The methods
presented here accommodate such evaluations.

Let Y , YD and YD̄ denote the marker measurement in the general, diseased, and nondiseased populations
respectively. Let F , FD and FD̄ be the corresponding distribution functions and let f , fD and f D̄ be the
density functions. Let ρ = pr(D = 1) denote the disease prevalence. We assume either that ρ is known or
that a prevalence estimate ρ̂ is available in addition to the case-control sample. For example, an estimate
might be obtained from a cohort study reported in the literature. Alternatively, it may be calculated from
a parent cohort within which the case-control study is nested (Baker et al., 2002; Pepe et al., 2008b). In
these scenarios, variability in ρ̂ can be evaluated and taken into account in calculating the variance of the
predictiveness curve estimator.

Furthermore, we assume the risk of disease pr(D = 1 | Y ) is monotone increasing in Y . Under this
assumption, R(v) equals pr{D = 1 | Y = F−1(v)}, the risk at the vth quantile of Y . Thus, the curve
R(v) against v is the same as the curve pr(D = 1 | Y = y) against F(y). Therefore, estimation of the
predictiveness curve can be undertaken in two steps: estimation of the risk model pr(D = 1 | Y = y) and
estimation of the marker distribution F(y). We develop estimators for these two entities and combine them
to get a predictiveness curve estimator. We consider a case-control study with nD cases YDi (i = 1, . . . , nD),
nD̄ controls YD̄i (i = 1, . . . , nD̄), and write {Yk, k = 1, . . . , n} for {YD̄1, . . . , YD̄nD̄

, YD1, . . . , YDnD } where
n = nD̄ + nD . A 2008 University of Washington working paper 333 by Huang and Pepe contains proofs.

2. SEMIPARAMETRIC ESTIMATORS

2·1. Estimation of the risk model

Suppose the risk model of interest is pr(D = 1 | Y ) = G(θ, Y ), where

logit{G(θ, Y )} = θ0 + η(θ1, Y ) (1)

and η is some monotone increasing function of Y . Examples of logit{G(θ, Y )} include θ0 + θ1Y with
θ1 > 0, the linear logistic model, and θ0 + θ1Y (θ2) with θ1 > 0, where Y (θ2) = (Y θ2 − 1)/θ2 when θ2 � 0
and Y (θ2) = log Y when θ2 = 0, the logistic model with Box–Cox transformation (Cole & Green, 1992). In
case-control studies, the maximum likelihood estimator of the odds ratio from the retrospective likelihood
can be obtained by applying the prospective logistic model to the sample (Anderson, 1972; Prentice & Pyke,
1979), and this achieves the semiparametric information bound (Bickel et al., 1993; Breslow et al., 2000;
Gilbert, 2000).

Let S denote being selected into the case-control sample. We apply the standard logistic regres-
sion model logit{pr(D = 1 | Y, S)} = θ0S + η(θ1S, Y ) to the data and correct the intercept with disease
prevalence according to Bayes’ theorem: logit{pr(D = 1 | Y )} = logit{pr(D = 1 | Y, S)} − logit{pr(D =
1 | S)} + logit{pr(D = 1)}. That is, let (θ̂0S, θ̂1S) be the maximum likelihood estimators of (θ0S, θ1S), then
the estimator of θ is θ̂ = (θ̂0, θ̂1), where θ̂0 = θ̂0S + log[nD̄ρ̂/{nD(1 − ρ̂)}] and θ̂1 = θ̂1S .

2·2. Estimation of the marker distribution and the predictiveness curve

In a case-control study, since we do not have an independent identically distributed sample from the
population, the marker distribution F cannot be estimated directly. Rather, with an estimate of disease
prevalence, ρ̂, we can estimate F according to ρ̂FD + (1 − ρ̂)FD̄ , substituting estimates for FD and FD̄ .
Next, we examine two ways of estimating FD and FD̄ .

First, in the absence of matching, since control and case samples are representative of their corresponding
distributions in the population, natural estimators for FD̄ and FD are the empirical estimators F̃D̄ and F̃D .
We estimate F with F̃ = ρ̂ F̃D + (1 − ρ̂)F̃D̄ . The semiparametric empirical estimators of R(v) and R−1(p)
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are R̃(v) = G{θ̂ , F̃−1(v)} for v ∈ (0, 1) and R̃−1(p) = F̃{G−1(θ̂ , p)} for p ∈ {R(v) : v ∈ (0, 1)}, where
G−1(θ, p) = inf{y : G(θ, y) � p}.

However, there is a more efficient way to obtain estimators for FD and FD̄ . Observe that the risk model
(1) implies the following relationship between marker densities in cases and controls:

fD(Y ) = L R(Y ) f D̄(Y ) = exp{α + η(β, Y )} f D̄(Y ), (2)

where α = θ0 + log{(1 − ρ)/ρ}, β = θ1, and L R(Y ) is the likelihood ratio function of Y (Green & Swets,
1966). When we estimate FD and FD̄ empirically, positive point masses are allocated only to marker
values observed in the corresponding case or control sample. For a marker measured on a continuous
scale, the supports for F̃D̄ and F̃D are rarely the same. Therefore, the relationship (2) is not incorporated
into estimation of FD and FD̄ in the empirical procedure. A related issue arises in a different problem
where the task is to estimate the misclassification rates of a binary classification rule constructed from
binomial regression (Lloyd, 2000). Lloyd (2000) pointed out that if the accuracy of the rule is summarized
by the empirical type I and type II misclassification rates, the exponential tilt relationship (2) between
densities of predictors in the diseased and nondiseased populations is ignored.

Incorporation of (2) can be achieved by using the semiparametric likelihood framework (Qin & Zhang,
1997, 2003). This was originally proposed by Qin & Zhang (1997) to test the logistic regression as-
sumption under a case-control sampling plan, and used by Qin & Zhang (2003) to estimate the receiver
operating characteristic curve as an alternative to the fully parametric and nonparametric approaches.
Suppose η(β, Y ) = βTr (Y ), where r (Y ) is a vector of functions of Y . The likelihood ratio of Y be-
comes L R(Y ) = exp{α + βTr (Y )}. Here, we focus on Y being a single marker, but this method applies
also when Y is a vector of markers. The semiparametric likelihood for observing the case-control data
is L(α, β, FD̄) = ∏nD̄

i=1 d FD̄(YD̄i )
∏nD

j=1 exp{α + βTr (YDj )}d FD̄(YDj ), subject to
∑n

i=1 d FD̄(Yi ) = 1 and∑n
i=1 exp{α + βTr (Yi )}d FD̄(Yi ) = 1.
Solving this restricted maximum likelihood using the Lagrange multiplier method, the resulting maxi-

mum likelihood estimators for FD̄ and FD are

F̂D̄(y) = 1

nD̄

n∑
i=1

I (Yi � y)

1 + nD
nD̄

exp{α̂ + β̂Tr (Yi )}
= 1

n

n∑
i=1

I (Yi � y)
nD̄
n + nD

n
ˆL R(Yi )

,

F̂D(y) = 1

nD̄

n∑
i=1

exp{α̂ + β̂Tr (Yi )}I (Yi � y)

1 + nD
nD̄

exp{α̂ + β̂Tr (Yi )}
= 1

n

n∑
i=1

ˆL R(Yi )I (Yi � y)
nD̄
n + nD

n
ˆL R(Yi )

,

where α̂ = θ̂ − log{ρ̂/(1 − ρ̂)}, β̂ = θ̂ , and ˆL R is the maximum likelihood estimator of L R.
We use these estimators to compute F̂ = (1 − ρ̂)F̂D̄ + ρ̂ F̂D . Then we insert θ̂ and F̂ into G to get the

semiparametric maximum likelihood estimators of R(v) and R−1(p): R̂(v) = G{θ̂ , F̂−1(v)} for v ∈ (0, 1),
R̂−1(p) = F̂{G−1(θ̂ , p)} for p ∈ {R(v) : v ∈ (0, 1)}.

An intrinsic property of the predictiveness curve is that the area under the curve is equal to ρ since∫ 1
0 R(v)dv = pr(D = 1) = ρ. The analogue is not necessarily true though for an estimated predictiveness

curve. However, it can be shown that the area under the semiparametric maximum likelihood estimator R̂(v)
is always equal to ρ̂. See an unpublished 2007 University of Washington dissertation by Huang for a proof.
This property facilitates visual comparison between two estimated curves, for example predictiveness
curves for different markers. This result does not hold for R̃(v). An intuitive explanation is that the
empirically estimated marker distribution does not take advantage of the structure imposed by the risk
model.

2·3. Estimation in a cohort design

Our semiparametric methods were developed for case-control designs but can nevertheless be ap-
plied to a cohort study as well by plugging in the sample prevalence ρ̂ = nD/n. Let α̂, β̂ be the
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maximum likelihood estimators of α, β by applying the logistic regression model logit{pr(D = 1 | Y )} =
α + βTr (Y ) + log(nD/nD̄) to the cohort sample. The last term is included here in order to make the notation,
and the definition of α in particular, consistent with the previous subsection. For y ∈ R, the semiparamet-
ric empirical estimator of F becomes F̃(y) = nD(nDn)−1

∑nD
i=1 I (YDi � y) + nD̄(nD̄n)−1

∑nD̄
i=1 I (YD̄i �

y) = n−1
∑n

i=1 I (Yi � y), while the semiparametric maximum likelihood estimator F̂(y) can be easily
shown to also equal n−1

∑n
i=1 I (Yi � y). That is, F̂ and F̃ calculated from a cohort sample are both equal

to the empirical distribution function. This is also true for a case-control sample where the proportion of
cases is equal to ρ̂. Consequently, the two semiparametric estimators of the predictiveness curve devel-
oped in § 2·2 when applied to a cohort study are the same as the semiparametric estimator developed by
Huang et al. (2007). That is, our methods generalize earlier methods to case-control designs.

3. ASYMPTOTIC THEORY FOR THE SEMIPARAMETRIC ESTIMATORS

We present asymptotic theory for the semiparametric estimators defined in § 2·2 as well as some
consequent attractive properties. We assume the following conditions hold:

(i) G(s, Y ) is differentiable with respect to s and Y at s = θ , Y = F−1(v);
(ii) ∂G−1(s, p)/∂s exists at s = θ ;

(iii) for 0 < a < b < 1, F has the continuous positive density f on [F−1(a) − ε, F−1(b) + ε] for some
ε > 0;

(iv) ρ̂ is either estimated from a cohort or is set equal to a known constant ρ.

Asymptotic theory for the semiparametric maximum likelihood predictiveness curve estimator is pre-
sented in Theorems 1 and 2.

THEOREM 1. As n → ∞, n1/2{R̂(v) − R(v)} converges to a normal random variable with mean zero
and variance

	1M (v) =
{

∂ R(v)

∂v

}2

var
(
n1/2[F̂{F−1(v)} − v]

) +
{

∂ R(v)

∂θ

}T

var{n1/2(θ̂ − θ )}
{

∂ R(v)

∂θ

}

+ 2

{
∂ R(v)

∂θ

}T

cov
(
n1/2(θ̂ − θ ), n1/2[F̂{F−1(v)} − v]

) {
∂ R(v)

∂v

}
,

and n1/2{R̂−1(p) − R−1(p)} converges to a normal random variable with mean zero and variance
	2M (p) = 	1M (v)/{∂ R(v)/∂v}2 for v = R−1(p).

THEOREM 2. As n → ∞, n1/2{R̃(v) − R(v)} converges to a normal random variable with mean zero
and variance

	1E (v) =
{

∂ R(v)

∂v

}2

var
(
n1/2[F̃{F−1(v)} − v]

) +
{

∂ R(v)

∂θ

}T

var{n1/2(θ̂ − θ )}
{

∂ R(v)

∂θ

}

+ 2

{
∂ R(v)

∂θ

}T

cov
(
n1/2(θ̂ − θ ), n1/2[F̃{F−1(v)} − v]

) {
∂ R(v)

∂v

}
,

and n1/2{R̃−1(p) − R−1(p)} converges to a normal random variable with mean zero and variance
	2E (p) = 	1E (v)/{∂ R(v)/∂v}2 for v = R−1(p).

Theorems 1 and 2 state that variance of R̂(v) and R̃(v) and their inverse are related by a factor equal to
the derivative of R(v). Intuitively, a perturbation in R(v) can be approximated by R′(v) times a perturbation
in R−1(p).

Estimating F using the maximum likelihood method in a case-control design is a special case of the
biased sampling problem. Vardi (1985) developed a nonparametric maximum likelihood estimator for F
in a biased sampling model with known selection weights, for which the large sample theory was provided
by Gill et al. (1988). Gilbert et al. (1999) extended this method to allow the weight functions to depend
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Fig. 1. (a) The semiparametric maximum likelihood estimators (solid) and semiparametric empirical estimators
(dotted) of predictiveness curves for PSA (black) and PSA velocity (grey) for predicting prostate cancer; (b) the 95%
pointwise confidence intervals constructed from percentiles of the bootstrap distribution based on the semiparametric
maximum likelihood estimators of predictiveness curves for PSA (black) and PSA velocity (grey); and (c) the
semiparametric maximum likelihood estimators of predictiveness curves for PSA (black) and PSA velocity (grey)

when ρ = 0·165 (solid) and ρ = 0·274 (dashed). The horizontal lines indicate disease prevalences plugged in.

on an unknown finite-dimensional parameter θ . Gilbert (2000) demonstrated that the maximum likelihood
estimators for θ and FD̄ are semiparametric efficient. The efficiency of our semiparametric maximum
likelihood estimators follows.

It can be shown that the asymptotic covariance between θ̂ and the estimator of F is the same for the two
semiparametric procedures. This is expected according to the convolution theorem (van der Vaart, 1998,
Theorem 25.20) given the fact that θ̂ is the semiparametric efficient estimator. Thus, the difference in
asymptotic variance between R̂(v) and R̃(v) or between R̂−1(p) and R̂−1(p) is completely attributed to the
difference in the asymptotic variances of F̂ and F̃ . The latter can be shown to be positively proportional to
the asymptotic variance of n1/2(F̂D̄ − F̃D̄). Thus, as expected, R̂(v) and R̂−1(p) are asymptotically more
efficient than R̃(v) and R̃−1(p).

4. ILLUSTRATION

We illustrate our methods using a simulated case-control dataset from the Prostate Cancer Prevention
Trial, a randomized prospective study of men with PSA, the prostate specific antigen, less than 3·0 ng/mL,
and 55 years of age and older who were followed up for seven years with annual PSA measurements.
Thompson et al. (2006) identified 5519 men on the placebo arm who had undergone prostate biopsy, had a
PSA and digital rectal exam during the year prior to biopsy and at least two PSA values from the three years
prior to biopsy. Sample disease prevalence from the study cohort is ρ̂ = 21·9%. We randomly sampled
250 cases and 250 controls from this cohort to form a case-control sample for illustration.

We compare PSA and PSA velocity as risk prediction markers for prostate cancer utilizing the predic-
tiveness curve technique. A logistic regression risk model with a Box–Cox transformation of the marker
is employed. The two semiparametric estimators of the predictiveness curves displayed in Fig. 1(a) are
fairly similar to each other for both markers. Their variance estimates are also similar. The pointwise
95% bootstrap percentile confidence intervals for R(v) constructed from the semiparametric maximum
likelihood estimators are displayed in Fig. 1(b), with variability in ρ̂ incorporated.

PSA has steeper predictiveness curves, suggesting that it is a better marker for predicting risk of prostate
cancer. Table 1 presents values for the risk percentiles of PSA and PSA velocity in the population, R(v),
for v = 10% and 90%. In addition, risk stratum sizes, R−1(p), for a low risk threshold of 10% and a high
risk threshold of 30% are presented. P-values for comparing markers are based on the bootstrap variance
estimates. Using the semiparametric methods we conclude that PSA is a significantly better risk prediction
marker than PSA velocity. Specifically, it is better for predicting high risk as quantified by larger R(0·9),
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Table 1. Comparisons between PSA and PSA velocity for the predicting risk of prostate cancer using the
semiparametric maximum likelihood method

PSA PSA velocity
Measure Estimate 95% Confidence Estimate 95% Confidence P-value

interval interval

R(0·1) 0·072 (0·046, 0·109) 0·122 (0·075, 0·159) 0·027
R(0·9) 0·413 (0·356, 0·476) 0·313 (0·275, 0·356) <0·001
R−1(0·1) 0·188 (0·073, 0·291) 0·060 (0·020, 0·142) 0·021
1 − R−1(0·3) 0·244 (0·191, 0·296) 0·129 (0·030, 0·197) 0·009
R−1(0·3) − R−1(0·1) 0·568 (0·443, 0·724) 0·811 (0·668, 0·935) 0·004

better for predicting low risk, i.e. smaller R(0·1), and it classifies more people into the low and high risk
ranges.

In practice, there may not always be a cohort for estimating prevalence. Often an investigator plugs
in a specific prevalence value and treats it as known. We illustrate application of a sensitivity analysis
using our example. Consider two values ρ = 0·165 and ρ = 0·274, which correspond to a 25% change
from ρ̂ = 0·219. The corresponding predictiveness curves are displayed in Fig. 1(c). The comparison of
predictiveness curves with respect to steepness is not sensitive to perturbation in prevalence. PSA appears
overall to be a better risk prediction marker than PSA velocity in the sense that the risk percentiles vary
more. Comparisons at particular risk thresholds, on the other hand, are affected by prevalence. For example,
when ρ = 0·165, based on the semiparametric maximum likelihood procedure, PSA assigns significantly
more people into the low risk range than PSA velocity, with estimates of R−1(0·1) being 31·3% and 13·5%
respectively, p-value < 0·001. PSA is also a significantly better marker for predicting high risk than PSA
velocity, with estimates of 1 − R−1(0·3) being 12·5% and 2·9% respectively, p-value < 0·001. In contrast,
when ρ = 0·263, estimates of R−1(0·1) become 9·7% and 3·8% for PSA and PSA velocity, and estimates of
1 − R−1(0·3) are 38·9% and 36·9% respectively. Neither of the comparisons is significant with p-values
being 0·192 and 0·736, respectively. The comparison with respect to the percentage classified into the
equivocal risk range is significant when ρ = 0·165, p-value < 0·001, but not when ρ = 0·274, p-value
= 0·375.

5. CONCLUDING REMARKS

In this paper, we have developed flexible semiparametric estimators of the predictiveness curve for
case-control studies. This is particularly valuable for evaluating a risk prediction marker or model early
in its development when case-control designs are most common. Both semiparametric estimators are easy
to compute: risk models can be estimated utilizing standard statistical procedures, and risk distributions
can be calculated easily based on analytic formulae. There are other approaches under development for
estimating the predictiveness curve, including a nonparametric approach and an approach based on its
relationship with the receiver operating characteristic curve (Huang & Pepe, 2009).

The validity of both semiparametric estimators relies upon assumptions about the risk model. If the
risk model is misspecified, bias can be introduced into both estimators. This, however, may not be a big
concern since the risk model can be made highly flexible using techniques such as regression splines.
Given a well-specified model, the semiparametric maximum likelihood estimator is more efficient than
its empirical counterpart. Asymptotic relative efficiency of the former versus the latter is a complicated
function of the disease prevalence, the separation between cases and controls, the case-control sampling
ratio and the quantile of interest. In our example, the two estimators have similar variance when the disease
prevalence is medium. It is shown in the 2007 dissertation by Huang that for rare diseases, using the
model-based approach may achieve considerable efficiency gains for certain quantiles.

An important use of asymptotic theory is to guide study design. To design an efficient case-control study
for evaluating a risk model, the optimal case-control sampling ratio is dictated by the disease prevalence,
the separation between cases and controls and the performance measure that is of primary interest. A
detailed study can be found in the 2007 dissertation by Huang.
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Comparing markers or models for their risk stratification capacity is of great significance in medical
practice. Researchers are often interested in whether additional risk factors which may be hard to measure
can lead to a significant improvement in utility compared with an existing model. More research on
methods to evaluate incremental value is warranted. Methods described here can be easily extended and
adapted for such purposes.
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