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Abstract
Neuroscience is just beginning to understand the neural computations that underlie our remarkable
capacity to learn new motor tasks. Studies of natural movements have emphasized the importance
of concepts such as dimensionality reduction within hierarchical levels of redundancy,
optimization of behavior in the presence of sensorimotor noise and internal models for predictive
control. These concepts also provide a framework for understanding the improvements in
performance seen in myoelectric-controlled interface (MCI) and brain-machine interface (BMI)
paradigms. Recent experiments reveal how volitional activity in the motor system combines with
sensory feedback to shape neural representations and drives adaptation of behavior. By elucidating
these mechanisms, a new generation of intelligent interfaces can be designed to exploit neural
plasticity and restore function after neurological injury.
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I. Introduction
David Marr famously identified three levels on which to describe information processing in
the nervous system: implementation, algorithm and computation [1]. Interfacing with the
implementation of the brain, single neurons, is now reliably achieved in invasive BMIs with
chronically implanted electrodes, which allow individual action potentials to be recorded
from stable populations of 10s to 100s of neurons over period of weeks to years [2]–[5].
Interfacing at the level of algorithm may be considered as a problem of `decoding' the neural
representation. Numerous methods have been developed for this purpose, often based on
assuming neural encoding schemes for movement parameters determined during off-line
analysis [6]–[11]. However, restoring sophisticated sensorimotor function after neurological
injury will require BMIs to interface also with high-level, on-line processes that allow the
brain to optimize control of complex effectors with multiple, redundant degrees of freedom.
These occur over a range of time-scales, and may only become apparent once a BMI is
incorporated into the motor system over many days [12]–[14]. With improved stability of
chronic electrodes, long-term BMI experiments are revealing plastic changes in neural
representations and affording new insights into these complex adaptive processes driven by
sensorimotor interactions. In this review, we draw on recent theoretical work in optimal
motor control and experimental studies of learning and plasticity in the context of brain- and
myoelectric-controlled devices to present a framework for interfacing at the computational
level of the brain.
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II. The biomimetic decoding approach to BMI
The conventional biomimetic decoding approach to BMI design has its historical roots in
neuroscience experiments from the 1960s onwards that attempted to uncover the neural
representation of natural movements. In an influential study of center-out reaching,
Georgopoulos and colleagues [15] found that activity of individual neurons in primary
motor cortex (M1) was modulated with the direction of arm movements. Neuronal firing
rates exhibited cosine-shaped tuning functions of direction that were maximal for
movements in the cells' preferred direction (PD). By recording the activity of multiple
neurons with different PDs, a population vector could be calculated (by a weighted sum of
individual vectors) that closely matched the actual direction of movement. One
interpretation of these results is that populations of neurons `encode' information about
direction, which is `decoded' by downstream circuitry (perhaps located in the spinal cord) in
order to execute a movement. Using such logic, the decoding machinery can be replaced by
a BMI algorithm to read out movement information for control of an artificial effector, for
example a computer cursor or robotic arm [16]–[18]. The advantage of effective biomimetic
decoding is the ability to confer immediate intuitive control without undue cognitive load
[19].

Since the first demonstrations of biomimetic BMIs, considerable effort has been expended
developing decoding algorithms of increasing sophistication [6]–[11]. Typically decoders
are trained on neural data recorded during natural movements before `brain control'
commences, and this relationship between neural activity and movement parameters (or
neuromotor mapping) is preserved for control of the artificial effector. The requirement for a
training dataset presents a practical problem for ultimate clinical applications with paralyzed
patients, although motor imagery may provide a suitable substitute for actual movement
[19]. A more serious problem is that an artificial effector is unlikely ever to reproduce the
rich sensory and proprioceptive feedback provided by a real limb which influences the
motor system at multiple levels [20–21]. It is therefore unlikely that neuromotor
relationships derived from natural movements will be optimal under the deprived sensory
conditions afforded by a BMI. This may explain why the quality of off-line decoding
performance is rarely matched by on-line performance, which has been likened to the
movements made by deafferented patients [22], particularly with regard to the lack of fast,
on-line correction of errors. Unlike the smooth, ballistic trajectories of natural limbs,
movements of a BMI often comprise discrete segments, with trajectory deviations corrected
only after delayed visual feedback [23]. These observations have motivated attempts to
restore proprioceptive feedback artificially, for example via microstimulation of sensory
cortex or thalamus [22], [24], although such an agenda may present an even greater
challenge than efferent decoding. Furthermore, a distinction should be drawn between errors
that arise due to external sources of noise (i.e. uncertainty about the state of the limb or the
environment it interacts with) and errors arising from internal sources of noise (due to the
inadequacy of decoding from a limited population of motor cortex neurons). External
sources of noise are fundamentally unpredictable, and therefore generate errors that can only
be corrected through appropriate feedback. By contrast, internal sources of noise can in
principle be monitored and compensated for on-line even in the absence of feedback.

Another fundamental issue that has received surprisingly little attention within the BMI
community is the validity of the primary assumption underlying the biomimetic approach,
namely that movement parameters are meaningfully and consistently encoded by the firing
rates of M1 neurons at all. Indeed the recent history of movement neuroscience may be
viewed as a steady retreat from this idea [25]–[28], from debates over `muscles versus
movements' [29]–[33] to the ever expanding range of parameters found to co-vary with
neural activity in primary motor cortex [26], [27]. On the one hand, the lack of a specific
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`encoding' scheme does not render `decoding' impossible. Indeed, over forty years ago
Humphrey and colleagues [34] showed that the correct choice of weights allowed them to
decode from the same set of neurons either force, displacement or their temporal derivatives
during repeated wrist movements (see also [18]). On the other hand, without principled
assumptions about what parameters are encoded, there is no reason to expect any decoder to
generalize beyond that sub-space of movements sampled within the training set. Thus, we
should not be surprised to learn that neuromotor mappings derived from an instructed
center-out task do not generalize to freely-made movements [35], [36], or that the distinct
neural pathways subserving postural control, goal-directed movements and on-line trajectory
corrections may employ different encoding schemes [27], [37], [38]. Therefore, while
features of ballistic movements to targets made during training phases can be accurately
fitted off-line, these decoders may be inappropriate for fast, on-line corrections of errors
arising from central sources of variability in neural command signals.

III. The Biofeedback approach to BMI
An alternative conceptual approach to BMI can be traced from early biofeedback
experiments in which subjects were trained to volitionally modulate the firing rate of
neurons [39], [40]. Typically, these experiments required subjects to learn arbitrary
mappings between neural activity and a feedback signal (visual or auditory) in order to
achieve a reward. An important early question was the degree of flexibility to associate or
dissociate two signals. Thus, Fetz and Baker [41] showed that monkeys could learn within
minutes to differentially activate neighboring motor cortical neurons to drive a biofeedback
meter arm to the reinforcement target. Furthermore, the activity of cortical neurons and four
groups of forearm muscles could also be readily activated in various combinations [42]. In
particular, the activity of neurons and consistently coactivated forearm muscles could be
dissociated when the monkey was rewarded for such patterns. More recently bidirectional
dissociation has been demonstrated for corticomotoneuronal (CM) cells and their target
muscles, which normally have tight correlational linkages [43]. This degree of flexibility
indicates that the specific neuromotor mappings that subserve natural movements are
unnecessary for learned BMI control. Moreover, volitional control could exploit a larger
population of neurons than those identified by traditional biomimetic decoding methods
[44].

Recently, Ganguly and Carmena [13] have extended this approach to a two dimensional
BMI decoder. Importantly they used a subset of recorded cells which showed stable activity
over a period of up to 20 days. This afforded the animal time to practice over several days
and consolidate a stable neural representation of a biomimetic BMI. Interestingly, the animal
was then able to learn a new, randomized neuromotor mapping based on the same set of
neurons, and even to switch readily between the two when required.

While biomimetic and biofeedback BMIs can be seen as contrasting approaches, it should be
acknowledged that few BMI groups actually fall into such extreme positions. The pioneering
closed-loop decoding studies [16]–[18] already recognized the importance of learning
mechanisms to optimize BMI control. Nevertheless, this conceptual distinction is relevant to
how BMIs are envisaged to relate to normal motor function. A biomimetic BMI may be
conceived of as a `prosthesis' to restore (as seamlessly as possible) function lost through
injury, whereas a biofeedback BMI represents a `tool' that the brain has to learn to use in a
new way. Although such tools can replace a lost function, they may also have broader
applicability in affording new or enhanced abilities to their user, or as a rehabilitation
mechanism for training new neural circuits to compensate after injury [12], [45], [46].
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IV. Internal models for arm movements and BMIs
To understand how feedback drives learning in the BMI paradigm, it is useful first to
consider the computations that must be performed by the motor system during natural
movements. Human reaching movements are typically fast, accurate and characterized by
stereotyped features such linear trajectories and bell-shaped speed profiles [47]. It is
commonly accepted that such movements cannot be generated by simple feedback control,
due to delays in sensory information and the need to co-ordinate muscles acting across
different joints of the limb [48]. Instead the motor system requires advanced knowledge of
the kinematics and dynamics of the limb and environment; this knowledge is often described
as an internal model. An `inverse model' describes the transformation from desired states of
the environment to motor commands (Figure 1B) and could generate feed-forward, goal-
directed movements without the delays incurred by feedback. However, inverse models are
in general ill-posed, one-to-many mappings due to multiple levels of redundancy in the
motor hierarchy (Figure 1A). Whenever a particular goal is specified (for example an object
to reach for), we are confronted with a wealth of potential choices concerning how best to
achieve it. There are multiple trajectories that the hand could follow to reach the goal, and
any given trajectory could be generated using multiple patterns of joint angles and muscular
contractions (due to redundancy in the musculoskeletal system). A further level of
redundancy results from the massive convergence and divergence within the corticospinal
pathway [49], which allows a particular set of muscle activations to be achieved by many
different activity patterns distributed across the population of cortical neurons.

By analogy with natural movements, the ability of subjects to learn feed-forward control of a
BMI requires the acquisition of an internal model of the neuromotor mapping between a
desired goal state (e.g. target location) and the neural control signals required to achieve that
state. As with natural movements, in general this inverse problem is ill-posed due to the
dimensionality reduction from control to task spaces. If 100 neurons control the position of a
cursor in two dimensions then any given target can be reached by a manifold of potential
solutions within the space of neural firing rates.

Accurate control either of natural arm movements or a BMI therefore involves two distinct
problems: (1) learning the relationship between motor commands and their effect on the
world, and (2) choosing from the manifold of all possible acts that could achieve a desired
goal the particular solution that is best. These problems are separated explicitly within the
framework of optimal feedback control [50]. In this scheme, the motor system learns a
`forward' model (which predicts the peripheral state based on a copy of the efference
command) and a feedback policy that operates on task-relevant dimensions of the state-
space (Figure 1C). Acquiring a forward model is then a well-posed problem that can be
achieved by self-supervised mechanisms and may facilitate subsequent optimization of the
controller. This theoretical framework has the additional advantage that internal predictions
based on efference copy can be combined with available sensory feedback in generating an
estimate of the current state. However, while optimal feedback control explains several
features of natural movements, distinguishing the relative contributions of inverse models,
forward models and sensory feedback remains an unresolved issue.

V. Optimal control of a BMI
Irrespective of how natural movements are controlled, their repeatable kinematic profiles
have been interpreted at the computational level as the optimization of behavior within the
constraints of the redundant motor system based on some additional criterion, e.g.
smoothness [51], torque change [52] or inaccuracy due to motor noise [53], [54]. Optimal
control theory can be formulated mathematically by defining a cost function, and selecting a
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control policy to minimize that function [55], [56]. By analogy, we may suppose that
acquiring optimal control of a BMI involves minimizing some cost function within the
constraints imposed by the decoding scheme. Experimental studies have described a variety
of changes in the tuning functions of individual neurons during brain-control [16], [18],
[57], [58]; reviewed in [14]. To what extent can these disparate results be explained by a
single cost function? One possibility is that the brain tries to limit the amount of effort
required to make BMI movements, for example the metabolic cost of driving neurons to
high firing rates. This is consistent with an overall decrease in firing rates with development
of BMI control seen in some studies (e.g. [18], [58]). Alternatively, given the limited
accuracy of BMI systems, it may be that minimizing the influence of neural noise on
effector movements is critical for optimizing performance [59], [60]. The minimization of
overall motor error has been used to explain cosine tuning of muscles during natural
movements [54], [61]. However the extension of this approach to BMI paradigms is not
straightforward since the signal-dependence of neural noise is hard to characterize and
unlikely to be statistically independent across the population [61], [62]. In general, it seems
likely that the brain attempts to minimize some combination of effort and inaccuracy with
the relative contribution of each depending on particular experimental circumstances.

VI. Investigating learning using myoelectric-controlled interfaces
To explore the ease with which the brain optimizes behavior under novel neuromotor
mappings, Radhakrishnan and colleagues [63] developed a myoelectric-controlled interface
(MCI) mimicking the dimensional reduction problem faced during BMI control. Rectified
and smoothed EMG activity from six hand and arm muscles was mapped onto a two-
dimensional visual task space through a linear combination of vectors aligned to a direction
of action (DoA) for each muscle. In what follows it will be important to distinguish the DoA
(also referred to as the `decoded PD' [64]) from the preferred direction (PD) of individual
units (neurons in BMI studies, or muscles in MCI studies) defined by the peak of the tuning
function of activity with respect to actual cursor movements. The DoA is determined by the
particular decoding algorithm chosen by the experimenter, while the PD is measured
experimentally from the subjects behavior. In the case of biomimetic decoding, the DoA is
chosen to be the same as the PD during natural hand movements in space, but this does not
have to be the case. Reference [63] compared such intuitive, biomimetic control (in which
DoAs were aligned with the action of each muscle on the hand), with `nonintuitive' control
in which DoAs were assigned randomly. Although performance was initially poorer under
nonintuitive arrangements, after 200 practice trials (~ 30min) performance reached a plateau
comparable to control under the intuitive mapping (Figure 2A). After training, tuning
functions (muscle activity as a function of cursor movement) were cosine-shaped with a PD
that aligned to the DoA in cursor space. Such broad tuning functions are consistent with the
minimization of position error in the presence of signal-dependent muscle noise [54], [61].
Further experiments that manipulated the noise level in a subset of muscles showed a
relative decrease in use of those muscles, again suggesting an accuracy constraint [63].
Importantly, after training these tuning functions emerged early in the movement, indicative
of feed-forward control based on an appropriate predictive internal model.

The apparent ease with which subjects could learn this task is in contrast to the longer time-
frame (days) required to learn BMI control in animal studies [13] (Figure 2B). One
explanation could be the presence of proprioceptive information about the limb in an MCI
setting, even though the arm is restrained and actual movement is minimal. However
degrading sensory signals with randomly amplitude- and frequency-modulated vibration of
the hand and arm did not affect the rate at which MCI learning progressed [63]. We suggest
that proprioception is unnecessary for MCI tasks since the brain has access to information
about the motor command via efference copy. Acquiring an internal model of the MCI is
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then equivalent to learning the mapping between the efferent command and its consequence
in the task space (Figure 2C). A similar process may underlie learning in BMI contexts
when proprioceptive feedback is unavailable (Figure 2D). In principle, feedback about the
task space may be provided in any modality and exploiting relatively direct proprioceptive
channels into the motor system may be advantageous [65]. However, the key difference
between MCI and BMI tasks is the level of efference copy onto which this maps. For an
MCI task, the mapping is at the level of muscle activity, whereas in a BMI the task space
maps onto the activity of individual neurons, which is lower in the hierarchical
representation of Figure 1A.

VII. Hierarchical remapping: a unifying framework for MCI and BMI
experiments

Further insight into the mechanisms of internal model acquisition comes from experiments
in which a previously learned BMI or MCI decoder is subject to specific perturbations [64],
[66]. These experiments deliberately decouple the DoA of units (neurons or muscles) from
their preferred direction with respect to arm movements. Again, the DoA is determined by
the experimenter, while the PD (with respect to movements of the cursor) is measured
empirically. Since the mapping from units to cursor space is redundant, multiple different
strategies can compensate for any perturbation so subjects' particular choice is informative
of their expectations about the causes of errors. Jarosiewicz and colleagues [64] examined
three such strategies in response to rotational perturbation of the DoAs of 25% or 50% of
cortical units: reaiming, reweighting and remapping (Figure 3A). Reaiming may be
described as aiming for an imaginary target repositioned in the task space so as to
compensate for the overall rotation, although this strategy need not be explicit [67]. In any
case, when the activity of units is plotted as a function of the direction of cursor movement
towards the actual target, reaiming appears as a consistent rotation of the PD of all units
relative to their old DoA as if the perturbation were a global visuomotor rotation (note that
since this applies to all the units, the magnitude of this rotation is less than the actual
rotation applied to the perturbed units). However, this strategy requires an overall increase in
activity (effort) since the new PD of units is inappropriate for the direction they actually act
on the cursor (the perturbation in fact only affects some of the units). Reweighting is a local
strategy in which the activity of perturbed units is selectively reduced. However, this
strategy is also sub-optimal since subsequent control uses only the unperturbed subset of
units and will therefore be less accurate. Local remapping describes the selectively rotation
of the PDs of rotated units to reflect their new DoA; the tuning functions of remaining units
are unchanged. This strategy minimizes both effort and inaccuracy since all units continue to
contribute to control and are maximally active for movements aligned to the new direction
they act on the cursor. Reaiming and remapping therefore reflect extremes of a spectrum
ranging from global, sub-optimal to local, optimal strategies. While [64] found some
evidence of local remapping, the observed PD changes for unperturbed units also indicated a
large contribution of global, sub-optimal reaiming to the adaptation process.

We have recently applied similar perturbations in the MCI setting by rotating the DoA of a
subset of muscles [66]. In contrast to BMI experiments, we saw rapid remapping at the level
of muscles, with PDs evolving to reflect the new DoAs within about 30 min while the PD of
unperturbed muscles was unchanged. We suggest the difference in these results may be
resolved by considering the motor hierarchy represented in Figure 3B. Since there is
redundancy at each level, remapping at any one level may be achieved by a strategy that is
either global or local at the level beneath. We propose that remapping is hierarchical such
that control is optimized at progressively lower levels with time (Figure 3B). Therefore the
time required to adapt to a perturbation will depend on the level within the hierarchy at
which it acts. A globally-consistent perturbation such as visuomotor rotation is learned
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quickly (typically around 20–50 trials). This would correspond to a prior expectation that
environmental changes act on the body as a whole. In response to a perturbation of
individual muscle DoAs in an MCI task, subjects' behavior approaches optimality at the
level of muscles after about 100 trials [66]. This hierarchical scheme can be extended to
incorporate remapping at the neural level; the results of [64] suggest that such a process is
incomplete within a single session. Transient increases in tuning depth reported early in
brain control [60] may also reflect sub-optimal, global reaiming or reweighting at the neural
level. The results of Ganguly and Carmena [13], however, suggest that after sufficient
practice over several sessions, optimal remapping at the level of individual neurons is
possible.

The hierarchical remapping framework may also help explain why some BMI experiments
report spontaneous changes or cessation of overt arm movements after extended periods of
brain control [16], [18], [57]. Since only a small proportion of motor cortex neurons will
contribute to any decoder, activation of the remaining population may be unnecessary for
control. Recently, a reduction in the tuning depth of neurons that did not contribute to a BMI
decoder has been reported [58], consistent with local remapping, but this occurred only late
in the learning process after the monkey achieved proficiency. As cortical activity is
optimized to the level of the individual neurons controlling a BMI, the population signal
controlling activity at the level of muscles may no longer be appropriate or sufficient to
move the limb. This is particularly advantageous if the motor system aims to minimize the
overall effort. Note however that if accuracy is the more important factor, there may be no
penalty for concurrent modulation of neurons that are not associated with brain control,
which may explain the persistence of residual limb movements reported in other
experiments [23].

The hypothesis of hierarchical remapping requires further experimental testing to establish
its validity. Nevertheless, theoretical considerations of redundancy suggest some such
process must occur for the brain to be able to learn anything. In response to a global error
signal, the brain is faced with a multitude of possible sources at the neural level. An
unstructured search through this high-dimensional space would be impossibly inefficient.
BMI remapping experiments like those in [13], [58] and [64] reveal the route by the brain
eventually finds optimal solutions to these neuronal `credit assignment' problems.

VIII. Role of Hebbian plasticity in neural remapping
Developing successful neuroprostheses will require interfacing with the brain on all three of
Marr's levels. Here we have suggested that concepts derived from computational level
descriptions of natural movements such as dimensionality reduction, cost functions, internal
models and optimal feedback control may be usefully applied to the problem of learning to
control a BMI. But because BMIs also interface directly with the implementation of the
brain (individual neurons) they afford new possibilities for bridging these levels by relating
neural activity during learning with the changes in neural connectivity and subsequent
behavioural improvement.

Donald Hebb [68] proposed that the efficacy of neural connections is enhanced when there
is a persistent causal relationship between pre- and post-synaptic activity. We demonstrated
such plasticity with a recurrent BMI that used endogenous activity recorded from M1 in a
freely-behaving monkey to control intracortical microstimulation (ICMS) of a second site
[12]. Continuous pairing of action potentials recorded at one site with stimuli delivered to a
second electrode caused changes in the motor representation at the recording site consistent
with a strengthening of connections to those cortical or downstream sites activated by
stimulation. Plasticity could only be induced when stimuli were delivered within ~50 ms of
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the triggering spike, consistent with a mechanism of spike-timing dependent plasticity [69].
Similar Hebbian plasticity has now been demonstrated more directly for primate
corticospinal connections. Using action potentials of CM cells to trigger intraspinal stimuli
near the terminals of these cells during 20+ hours of free behavior led to clear increases in
the sizes of post-spike effects obtained in spike-triggered averages of EMG activity [70].
These plastic changes also depended on the interval between spikes and stimuli, consistent
with spike-timing dependent plasticity. A third example of such plasticity has been reported
for spike-triggered stimulation of cortical sites in freely behaving rats [71].

Can the associative plasticity mechanisms revealed by these recurrent BMIs help to
understand remapping observed in biofeedback BMI experiments? In a recurrent BMI,
neural recordings cause electrical stimulation of a second site, whereas in biofeedback
BMIs, neural recordings cause resultant sensory feedback. If associative plasticity occurs as
a result of consistent causal relationships, then plasticity may occur at any sites receiving
convergent input from both an efference copy of the command signals and resultant sensory
representations. In simplistic terms, this may be precisely what is required in order to learn
an internal model of the neuromotor mapping (Figure 2D).

If activity-dependent plasticity underlies changes in behavior during learning then plasticity
induced artificially should also have behavioral consequences. Reference [72] provides one
recent demonstration of this in rats, by examining the perceptual threshold for detecting
ICMS after pairing with another site. Reference [73] used a non-invasive paired-stimulation
protocol in humans to induce corticospinal plasticity and produce a mismatch between
subjects' perceived and actual force production. These studies provide a small glimpse of the
future possibilities afforded by BMI technologies. Long-term, recurrent interfaces between
neuronal populations and sophisticated BMI decoding algorithms provide an unprecedented
opportunity to shape neural representations and connectivity through activity-dependent
mechanisms. In combination with a computational-level description of motor learning, these
technologies may allow the formation of new hybrid circuits to replace or enhance damaged
pathways and restore function following neurological injury.
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Fig. 1.
A. Schematic representation of multiple levels of redundancy within the motor system. B.
Generating optimal movements requires advance knowledge of the environment. Here an
inverse model converts visual target information into a feed-forward motor command to
drive a BMI. C. Optimal feed-back control uses a forward model to generate predictions
based on a copy of the motor command. This prediction can be combined with sensory
feedback to form a state estimate that drives movement through a feedback controller.
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Fig. 2.
A. Learning curves for MCI performance. Average trial time reaches a comparable level
irrespective of whether the decoding algorithm is intuitive (muscles act on the cursor in
directions that are consistent with their action on the limb) or non-intuitive (muscles act in
random directions). By the end of a single training session, subjects make fast, straight
movements to the target. Adapted from [63]. B. Learning curves for BMI performance with
the same neural population. Average trial time decreases over successive days for two
monkeys. In this case the decoding algorithm was biomimetic (intuitive). Subsequent
training on a randomized (non-intuitive) decoder required several more days to be optimized
(not shown; see Fig. 6 in [13]). Adapted from [13]. C, D. Proposed model for learning MCI
and BMI control involves acquiring the mapping between a copy of the efferent command
signal and task-space feedback provided by the interface.
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Fig. 3.
A. Three (out of many) strategies that can be used to compensate for local rotational
perturbation to a MCI or BMI mapping. The plots show the activity of representative units
as a function of target direction relative to the original DoA (before a perturbation occurs).
Tuning functions are assumed to be cosine-shaped, initially peaked at the DoA (gray line).
Plots show predictions of three strategies (reaiming, reweighting and remapping) after a
local perturbation in which the DoA of a subset of units rotates (indicated by arrows beneath
the abscissa). Tuning functions for rotated units (solid line) and non-rotated units (dashed
line) are shown following perturbation. B. Schematic of the hierarchical remapping
framework. Remapping progresses from global to local levels of the redundant motor
hierarchy. Therefore optimal adaptation to perturbations at a high level (e.g. visuomotor
rotation) occurs before adaptation at lower levels (e.g. after local perturbation of BMI
decoders).
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