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When electrons are confined to move in a plane, strange things
happen. For example, under normal circumstances, they are
not expected to conduct electricity at low temperatures. The
absence of electrical conduction in two dimensions (2D) at
zero temperature has been one of the most cherished para-
digms in solid-state physics (1). In fact, the 1977 physics Nobel
Prize was awarded, in part, for the formulation of the basic
principle on which this result is based. However, recent
experiments (2) on a dilute electron gas confined to move at
the interface between two semiconductors pose a distinct
counterexample to the standard view. Transport measure-
ments reveal (2) that as the temperature is lowered, the
resistivity drops without any signature of the anticipated
up-turn as required by the standard account. It is the possible
existence of a new conducting state and hence a new quantum
phase transition in 2D that is the primary focus of this session.
In the absence of a magnetic field, the only quantum phase
transition known to exist in 2D that involves a conducting
phase is the insulator–superconductor transition (for a review,
see ref. 3). Consequently, this session focuses on the general
properties of quantum phase transitions, the evidence for the
new conducting state in a 2D electron gas, and the range of
phenomena that can occur in insulator–superconductor tran-
sitions.

Unlike classical phase transitions, such as the melting of ice,
all quantum phase transitions occur at the absolute zero of
temperature. Although initially surprising, this state of affairs
is expected, as quantum mechanics is explicitly a zero-
temperature theory of matter. As such, quantum phase tran-
sitions are not controlled by changing system parameters such
as the temperature as in the melting of ice, but rather by
changing some external parameter such as the number of
defects or the magnitude of an applied magnetic field. In all
instances, the underlying quantum mechanical states are trans-
formed between ones that either look different topologically or
have distinctly different magnetic properties. Two examples of
quantum phase transitions are the disorder-induced metal–
insulator transition and the insulator–superconductor transi-
tion. In a clean crystal, electrons form perfect Bloch waves or
traveling waves and move unimpeded throughout the crystal.
When defects (disorder) are present, electrons can become
characterized by exponentially decaying states which cannot
carry current at zero temperature because of their confined
spatial extent. In a plane, the localization principle (1) estab-
lishes that as long as electrons act independently, only localized
states form whenever disorder is present. However, if electrons
are attracted through a third party to one another, they can
form pairs. Such pairs constitute the charge carriers in a
superconductor and are called Cooper pairs. Superconductors
are perfect conductors of electricity and therefore have a
vanishing resistance. However, formation of Cooper pairs is

not a sufficient condition for superconductivity. If one envi-
sions dividing a material into partitions, insulating behavior
obtains if each partition at each snapshot in time has the same
number of Cooper pairs. That is, the state is static. However,
if the number of pairs f luctuates between partitions, transport
of Cooper pairs is possible and superconductivity obtains.

The fundamental physical principle that drives all quantum
phase transitions is quantum uncertainty or quantum entan-
glement. A superconductor can be viewed as an entangled
state containing all possible configurations of the Cooper
pairs. Scattering a single Cooper pair would require disrupting
each configuration in which that Cooper pair resides. Since
each Cooper pair exists in each configuration (of which there
are an infinite number), such a scattering event is highly
improbable. We refer to a superconducting state then as
possessing phase coherence—that is, rigidity to scattering.
Insulators lack phase coherence. In the insulating state, the
certainty that results in the particle number within each
partition is counterbalanced by the complete loss of phase
coherence. In contrast, in a superconductor, phase certainty
gives rise to infinite uncertainty in the particle number.
Consequently, the product of the number uncertainty times the
uncertainty in phase is the same on either side of the transition
as dictated by the Heisenberg uncertainty principle. In essence,
quantum uncertainty is to quantum phase transitions what
thermal agitation is to classical phase transitions. Both trans-
form matter from one state to another.

In the experiments revealing the new conducting phase, the
tuning parameter is the concentration of charge carriers (2,
4–6). For negatively charged carriers, such as electrons, a
positive bias voltage is required to adjust the electron density
(2, 4)—the more positive, the higher the electron density.
Subsequently, if the electrons are confined to move laterally at
the ultrathin (25-Å) interface between two semiconductors,
transport will be in 2D, as it is confined to a plane. Devices of
this sort constitute a special kind of transistor, not too dissim-
ilar from those used in desktop computers. As illustrated in
Fig. 1, when the electron density is slowly increased beyond
'1011 per cm2, the resistivity changes from increasing (insu-
lating behavior) to decreasing as the temperature decreases,
the signature of conducting behavior.

At the transition between these two limits, the resistivity is
virtually independent of temperature. While it is still unclear
ultimately what value the resistivity will acquire at zero tem-
perature, the marked decrease in the resistivity above a certain
density is totally unexpected and, more importantly, not
predicted by any theory. Whether we can correctly conclude
that a zero-temperature transition exists between two distinct
phases of matter is still not settled, however. Nonetheless, the
data do possess a feature common to quantum phase transi-
tions (7), namely scale invariance. In this context, scale invari-
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ance simply implies that the data above the flat region in Fig.
1 all look alike. This also holds for the data below the flat
region in Fig. 1. As a consequence, the upper and lower family
of resistivity curves at various densities can all be made to
collapse onto just two distinct curves by scaling each curve with
the same density-dependent scale factor. The resultant curves
have slopes of opposite sign as shown in the Inset of Fig. 1. It
is difficult to reconcile this bipartite structure unless the two
phases are in fact distinct electrically at zero temperature.

These experiments lead naturally to the question, what is so
special about the density regime probed? We know definitively
that at high and ultra-low densities, a 2D electron gas is localized
by disorder. Because the Coulomb interaction decays as 1yr (with
r the separation between the electrons), whereas the kinetic
energy decays as 1yr2, Coulomb interactions dominate at low
density. At sufficiently low electron densities, the electrons form
a crystal. It is precisely between the ultra-low crystalline limit and
the noninteracting high-density regime that the possibly new
conducting phase resides. This density regime represents one of
the yet-unconquered frontiers in solid-state physics. Experimen-
tally, it is clear that whatever happens in this intermediate density
regime is far from ordinary as evidenced by the observed
destruction (8) of the conducting phase by an applied in-plane
magnetic field. As an in-plane magnetic field can only polarize the
spins, the conducting phase is highly sensitive to the spin state, a
key characteristic of superconductivity.

Experimentally, a direct transition from a superconductor to
an insulator in 2D has been observed by two distinct mecha-
nisms. The first is simply by decreasing the thickness of the
sample (for a review, see ref. 3). This effectively changes the
scattering length and hence is equivalent to changing the
amount of disorder. As a result, Cooper pairs remain intact
throughout the transition. Whereas single electrons are local-
ized by disorder, Cooper pairs in a superconducting state are
not. Under normal circumstances, Cooper pairs give rise to a
zero resistance state at T 5 0. The second means by which a

superconducting state can be transformed to an insulator in 2D
is by applying a perpendicular magnetic field (7, 9, 10). A
perpendicular magnetic field creates resistive excitations called
vortices (the dual of Cooper pairs), which frustrate the onset
of global phase coherence. Surprisingly, however, in both the
disorder (11) and magnetic field-tuned transitions (9, 10, 12),
the resistivity has been observed to flatten on the ‘‘supercon-
ducting’’ side. The nonvanishing of the resistivity is indicative
of a lack of phase coherence. Phase fluctuations are particu-
larly strong in 2D and are well known to widen the temperature
regime over which the resistivity drops to zero. However, the
precise origin of the flattening of the resistivity (an indication
of a possible metallic state) at low temperatures is not known.

Ultimately, the resolution of the experimental puzzles raised
here must be settled by further experiments. But a natural
question that arises is, are the two phenomena related? This
question is particularly germane (13) because the only excitations
proven to survive the localizing effect of disorder in 2D are
Cooper pairs. It is partly for this simple reason (13) and other
more complex arguments (14, 15) that superconductivity has
been proposed to explain the new conducting state in 2D.
Because phase fluctuations create a myriad of options (‘‘metal’’
or superconductor at T 5 0) for Cooper pairs in a plane,
measurements sensitive to pair formation must augment the
standard transport measurements to definitively settle whether
Cooper pair formation is responsible for the new conducting state
in a 2D electron gas. But maybe some yet-undiscovered (16)
conducting spin singlet state exists that can survive the localizing
effect of disorder. But maybe not, and possibly only ‘‘classical’’
trapping effects (17) are responsible for the decrease of the
resistivity on the conducting side. Although the former cannot be
ruled out, the latter seems unlikely, as new experiments (18)
reveal that the new conducting phase is tied to the formation of
a Fermi surface and is related to the plateau transitions (19) in
the quantum Hall effect. This implies that indeed a deep quantum
mechanical principle is responsible for the new conducting state,
perhaps as has been suggested (13) that the proximity of the new
conducting phase to a strongly correlated insulator mediates
pairing as in copper-oxide superconductors.
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FIG. 1. Resistivity (r) vs. temperature for 2D electrons in silicon in
zero magnetic field and at different electron densities (n) (from top to
bottom: 0.86, 0.88, 0.90, 0.93, 0.95, 0.99, and 1.10 3 1011 per cm2.
Collapse of the data onto two distinct scaling curves above and below
the critical transition density (nc) is shown in the Inset. Here d 5 (n 2
nc)ync, z 5 0.8, and n 5 1.5.
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