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Sarcomas are a heterogeneous group of mesenchymal malignancies that very often lead to death. Nowadays, chemotherapy is the
only available treatment for most sarcomas but there are few active drugs and clinical results still remain very poor. Thus, there
is an imperious need to find new therapeutic alternatives in order to improve sarcoma patient’s outcome. During the last years,
there have been described a number of new molecular pathways that have allowed us to know more about cancer biology and
tumorigenesis. Sarcomas are one of the tumors in which more advances have been made. Identification of specific chromosomal
translocations, some important pathways characterization such as mTOR pathway or the insulin-like growth factor pathway,
the stunning development in angiogenesis knowledge, and brand new agents like viruses have lead to the development of new
therapeutic options with promising results. This paper makes an exhaustive review of preclinical and clinical evidence of the most
recent targeted therapies in sarcomas and provides a future view of treatments that may lead to improve prognosis of patients
affected with this disease.

1. Introduction

Sarcomas are a rare and heterogeneous group of malignant
tumors of mesenchymal origin. They can occur through
all the lifespan and affect patients of all ages, although
certain specific subtypes are more frequent in children
and young adults. Almost every part of the body may be
involved, bone and soft-tissue being the most typical place
of arising. Sarcomas are associated with bad prognosis and
approximately 50% of all patients develop metastases even
if they are diagnosed at early stages. Lungs are the most
frequent site of dissemination and metastases are the final
cause of death in almost all these patients [1]. These high
mortality levels make sarcomas one of the most challenging
tumors in oncology.

For most sarcomas, chemotherapy is currently the only
available treatment. Unfortunately, a very limited number of
useful drugs are active against this disease and responses used
to be poor and short. In fact, advanced-stage patients treated

with the most active drugs in this disease (anthracyclines
and ifosfamide) achieve only a median survival of around
1 year [2]. Thus, it is necessary to identify new agents to
improve therapy for patients affected by this often mortal
condition.

In the last years, great advances have been made in the
understanding of sarcomas’ molecular biology [3]. Conse-
quently, new targeted compounds have been developed and
tested in order to improve efficacy and outcome achieved
with classic drugs. This paper will extensively review the
most relevant pathways in soft tissue and bone sarcomas and
the preclinical and clinical experience with the most recent
targeted therapies.

2. Angiogenesis

In the last years, angiogenesis has been one of the most
studied processes in tumor biology with interesting results.
Patients with several malignancies such as renal cancer or
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colorectal cancer are currently being treated with angio-
genic inhibitors alone or in combination with conventional
chemotherapy. These patients achieve significant improve-
ment in overall survival (OS) and/or progression-free sur-
vival (PFS) [4]. Sarcomas have been recently added to the
group of tumors in which angiogenesis is known to play an
important role.

One of the key effectors in angiogenesis is the vascular
endothelial growth factor (VEGF). It is well known that
the interaction between VEGF and its receptor 2 (VEGF-
R2) is the most crucial step in angiogenesis [5–7] and
there are some studies that relate VEGF with sarcomas. A
study by Potti et al. published in 2004 correlated VEGF
serum levels with outcome in patients with sarcoma [8]. 68
out of 273 patients (24.9%) included in the study showed
VEGF overexpression. The most common sarcomas in which
VEGF overexpression was detected were malignant fibrous
histiocytoma (30%), carcinosarcoma (30%), leiomyosar-
coma (25%), and dermatofibrosarcoma (20%) but VEGF
overexpression had prognostic value only in patients affected
with leiomyosarcoma. In addition, this was associated with a
shorter survival. Graeven et al. also determined VEGF serum
levels in 85 patients with STS before surgery. They found
a very strong correlation between tumor grade and VEGF
serum levels, the poorest differentiated tumors being the
ones with the highest VEGF levels [9]. Another study was
designed to assess the correlation between VEGF and tumor
grade [10]. Results confirmed that tumor grade correlated
with VEGF expression. Furthermore, 78% of patients who
died of sarcoma progression had high VEGF levels. However,
VEGF expression was not found to be an independent
predictor of OS or disease-free survival (DFS). In contrast, a
study by Iyoda et al. that correlated VEGF overexpression and
survival in patients with soft-tissue sarcomas (STSs) of the
thorax found this correlation statistically significant. Thus,
patients with absent or faint VEGF expression had higher
5-year DFS than patients with a strong VEGF expression
(83.3% versus 13.2%, resp.) [11].

Hypoxia-inducible factor1α (HIF-1α) is another impor-
tant player in angiogenesis since it is a transcription factor
that acts as an upstream regulator of VEGF. In a 2006 paper
by Shintani et al. HIF-1α expression was determined by
immunohistochemistry in a group of 49 specimens of STS.
The analysis showed that patients with a strong or moderate
expression of HIF-1α had poorer OS than those with a weak
or negative expression [12].

There are many other angiogenesis markers but not all
of them are so clearly related with prognosis and survival
as VEGF and HIF-1α in sarcomas. Microvascular density
(MVD) is one of them. Thus, in a work by Comandone et al.,
patients with high MVD had worse OS and DFS than patients
with lower MVD [13]. In contrast, 3 other authors reported
results that did not confirm this correlation between MVD
and prognosis, so the real role of MVD in sarcomas remains
unclear [14–16].

2.1. Angiogenic Inhibitors. These previous data provided a
rationale for the development of preclinical and clinical
studies with angiogenic inhibitors in sarcomas. An increasing

number of these drugs have been developed in the last years
and the effects of many of them have been assessed (Figure 1).

2.1.1. Small-Molecule VEGF-R Inhibitors. Sunitinib is a
multitargeted tyrosine kinase inhibitor (TKI) active against
VEGF-R1, 2, 3, PDGFR and KIT, among others. In 2009,
Stacchiotti et al. reported 3 responses and 1 stabilization
in a cohort of 5 patients affected with advanced alveolar
STS treated with sunitinib [17]. The same year, a phase II
trial of sunitinib in the treatment of non-GIST sarcomas
was published. A cohort of 53 patients with advanced non-
GIST STS received 37.5 mg of sunitinib daily. 10 of these
patients (20%) achieved stable disease (SD) for at least 16
weeks and, interestingly, 1 patient affected with desmoplastic
round cell tumor (DSRCT) achieved a durable partial
response (PR) for 56 weeks [18]. Focusing on 3 specific
histologies (leiomyosarcoma, liposarcoma, and malignant
fibrous histiocytoma), a phase II study was reported in 2010.
In this trial, 48 patients with unresectable or metastatic STS
of the histologies mentioned previously were treated daily
with 50 mg of sunitinib malate for 4 weeks every 6 weeks. 3 or
less prior lines of therapy were allowed. Median PFS and OS
for liposarcoma, leiomyosarcoma, and fibrous histiocytoma
were 3.9 and 18.6, 4.2 and 10.1, and 2.5 and 13.6 months,
respectively. The 3-month progression-free rates (PFRs) in
the untreated and pretreated patients with liposarcoma,
leiomyosarcoma, and fibrous histiocytoma were 75% and
69.2%, 60%, and 62.5%, and 25% and 44.4%, respectively.
The authors concluded that the 3-month PFR of >40%
suggests activity for sunitinib at least in liposarcomas and
leiomyosarcomas [19]. In contrast to these studies, the
Gynecologic Oncology Group conducted a phase II study to
assess the efficacy of sunitinib in the treatment of recurrent
or persistent uterine leiomyosarcoma with disappointing
results: of 25 patients enrolled, just 2 achieved a PR and the
median PFS was 1.5 months [20].

Sorafenib is another TKI recently added to the group of
drugs with activity in sarcomas. This TKI targets VEGF-R 2
and 3, PDGFR, Raf, and KIT, and several preclinical studies
have demonstrated efficacy in different soft-tissue and bone
sarcoma cell lines [20–25]. These encouraging preclinical
results, together with some case reports of responses in
patients with sarcomas treated with sorafenib [26, 27], led
to the development of several clinical trials. In 2009, Maki
et al. published a phase II trial of sorafenib in patients with
metastatic or recurrent sarcomas [28]. A total of 145 patients
with different types of sarcomas were enrolled but just the
angiosarcoma patients met the response rate (RR) primary
end point planned for the study (5 out of 37 patients, 14%).
Another study pointed out osteosarcoma as other sarcoma
subtype in which sorafenib showed activity. The Italian
group conducted a phase II trial of sorafenib in relapsed
and unresectable high-grade osteosarcoma after failure of
standard therapy that showed 3 PRs (8%), 2 minor responses
(6%), and 12 SDs (34%). Furthermore, median PFS and OS
were 4 and 7 months, respectively, demonstrating sorafenib
as the first targeted therapy active in osteosarcoma [29]. In
order to find other responsive histologies to sorafenib, the
Southwest Oncology Group (SWOG) promoted a phase II
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Figure 1: Inhibition of angiogenesis by blocking different tumorigenic signaling pathways.

trial testing its activity in advanced vascular sarcoma, high-
grade liposarcoma, and leiomyosarcoma [30]. No responses
were found and just 6 out of 8 patients with vascular
sarcoma achieved clinical benefit. New strategies, such as
discontinuation treatment, have also been tested. Thus, Pacey
et al. assessed the efficacy of sorafenib in STS in a phase II
randomized discontinuation trial [31]. Evidence of activity
was found, since some tumor regressions were observed
including 1 objective partial response.

Pazopanib is a new TKI that also has effects on angio-
genesis by blocking VEGF-R 1, 2, and 3, PDGFR, and KIT.
A phase II trial performed by the European Organisation for
Research and Treatment of Cancer (EORTC) in patients with
relapsed or refractory advanced STS treated with pazopanib
achieved promising results [32]. 142 patients were enrolled
and they were classified in 4 different groups: adipocytic STS,
leiomyosarcomas, synovial sarcomas, and other STS types.
Pazopanib in adipocytic STS patients showed insufficient
activity but PFR at 12 weeks in the remaining groups was
encouraging: 18 (44%) of 41 patients in the leiomyosarcoma
cohort, 18 (49%) of 37 in the synovial sarcomas, and 16
(39%) of 41 in the other STS types. These data led to
the first placebo-controlled randomized phase III trial to
date with a VEGFR inhibitor (pazopanib) in advanced STS.
The results, reported in the 2011 ASCO Annual Meeting,
achieved a significant increase in PFS showing the relevance
of angiogenesis in sarcomas [33]. Finally, the activity of a new
TKI named dasatinib has been assessed in several sarcoma
cell lines. This drug blocks VEGF-R2 and PDGFR and has

the unique property of inhibiting the Src family. This latter
effect leads to the inhibition of migration and invasion in
different sarcoma cell lines in vitro, which can lead to further
development of clinical trials [34–37].

2.1.2. Anti-VEGF Antibodies. Bevacizumab is the only mon-
oclonal anti-VEGF antibody to date that has been proved
to have activity in sarcomas. A set of preclinical studies
demonstrated activity in sarcoma models in vitro and in
vivo [38–42]. The experience achieved in a number of other
malignancies such as colon, breast, or non-small-cell lung
cancer, has shown that the effect of bevacizumab in combi-
nation with chemotherapy is higher than as a single agent.
This strategy was first assessed in sarcomas by D’Adamo el
al. in a phase II trial of doxorubicin and bevacizumab in
patients with metastatic STS [43]. There were just 2 partial
responses but 11 of 17 patients recruited (65%) achieved
stable disease for 4 cycles or more. Interestingly, cardiac
toxicity was significantly high and 4 patients developed
cardiac toxicity grade 2, 1 patient grade 3, and 1 patient
grade 4 despite prophylactic treatment with dexrazoxane.
These results suggest the activity of this combination in
sarcomas but make necessary finding safer schedules. The
efficacy of bevacizumab in combination with other drugs
has also been explored in a recently published phase IB
trial. In this study, 38 chemotherapy-naive patients with
advanced or recurrent STS were treated with a combination
of docetaxel, gemcitabine, and bevacizumab [44]. After a
median follow-up of 36 months, the overall RR observed was
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31.4%. There were 5 complete responses (CRs), 6 PRs, and
18 SDs lasting for a median of 6 months. The combination
treatment was considered safe and the highest-grade adverse
events found were mostly related to bevacizumab.

3. The Insulin-Like Growth Factor Pathway

The insulin-like growth factor (IGF) system is a well-known
complex network that regulates growth and development
in superior organisms (Figure 2). The IGF receptor type 1
(IGFR-1) belongs to the family of tyrosine kinase receptors.
The binding of its ligand IGF1 causes its phosphorylation
and the subsequent activation of the downstream pathway
that finally leads to proliferation and inhibition of apoptosis.
The relationship between the IGF system and sarcomas is
long-time known but the first studies to describe it were
merely epidemiological [45]. In the last years, a variety
of studies have confirmed this point. Thus, Prieur et al.
described in 2004 the binding of EWS/FLI1 to the IGFBP3
promoter and the subsequent inhibition of IGFBP3 and the
increase in free IGFR-1 ligand levels, which are related to
the development of this malignancy [46]. Other sarcomas
such as alveolar soft part sarcoma, leiomyosarcoma, synovial
sarcoma, rhabdomyosarcoma, or desmoplastic small round
cell tumor have also been described as tumors in which
increases in IGFR-1 levels or some of its ligands have been
correlated with sarcomagenesis [47–58].

3.1. IGF Pathway Inhibitors. The background described pre-
viously has led to the development of several studies that test
different strategies to assess the inhibition of the IGF pathway
in sarcoma models in vitro and in vivo [59–67]. The results,
especially in rhabdomyosarcoma and Ewing’s sarcoma, have
been encouraging and the clinical development of these
drugs is currently being carried out.

3.1.1. Anti-IGFR-1 Antibodies. Among the different strate-
gies developed to inhibit the IGF pathway, the most promis-
ing results have been achieved with monoclonal antibodies.
There are several phase I studies that assess the safety and
efficacy of inhibiting the IGF system in sarcomas with these
drugs. Thus, Tolcher et al. published in 2009 an early clinical
study with AMG 479, a fully human monoclonal antibody to
IGFR-1. 15 out of 53 patients enrolled were sarcoma patients
(12 Ewing’s sarcoma, 3 others). Interestingly, 1 durable CR
and 1 PR were achieved in 2 patients with Ewing’s sarcoma
[68]. In another phase I study recently published, a cohort of
patients with different sarcoma histologies were treated with
figitumumab (a fully human monoclonal antibody targeting
the IGFR-1). Among 29 patients enrolled, 2 Ewing’s sarcoma
patients had objective responses (1 CR, 1 PR), 6 Ewing’s
sarcoma patients, 1 synovial sarcoma, and 1 fibrosarcoma
achieved SD [69]. Unfortunately, the clinical development of
this drug has been stopped due to disappointing results in
other malignancies.

Several phase II trials with anti-IGFR-1 antibodies are
currently being conducted. Preliminary data of treatment
with IMC-A12 (cixutumumab) in patients with advanced
or metastatic STS and Ewing’s sarcoma have been reported

in the 2011 ASCO Annual Meeting. The best results were
observed in the adipocytic sarcoma arm, with clinical benefit
being achieved in 22 out of 37 patients (1 PR, 21 SD).
Moreover, the PFS at 12 weeks in this group of patients was
50% [70]. With such promising results, further investigations
are warranted.

3.1.2. IGFR-1 TKIs. A number of small molecules that
inhibit IGFR-1 by binding to the tyrosine kinase intracellular
portion of the receptor are currently in clinical development.
No results of efficacy and safety are available yet but there
is a body of preclinical data that support this therapeutic
approach [71–78]. Reports of clinical outcome in patients
treated with these drugs are long awaited and will allow us
to confirm the usefulness of this strategy.

4. The Mammalian Target
Rapamycin Pathway

The mammalian target of rapamycin (mTOR) is a ser-
ine/threonine kinase integrated in the phosphatidyl-inositol
3-kinase (PI3K) complex network of signaling. It forms part
of 2 multiprotein complexes named mTOR complex 1 and
mTOR complex 2 (mTORC1 and mTORC2) and plays a key
role in cell growth, proliferation, angiogenesis, and survival
(Figure 3). Due to the many functions that mTOR regulates,
its abnormal activity leads to a number of malignancies
including sarcomas. The upregulation of growth factors or
mutations in tyrosine kinase receptors that belongs to the
mTOR network have been reported to be involved in the
development of various sarcomas [79–84]. Furthermore,
deletions of some mTOR pathway tumor suppressors such
as tuberous sclerosis complex 1 and 2 (TSC1 and TSC2) and
neurofibromatosis type 1 (NF1) are associated with both,
benign and malignant mesenchymal tumors [85–88]. Hence,
the capital importance of mTOR in tumorigenesis has made
the development of mTOR inhibitors an important issue in
oncology.

4.1. mTOR Inhibitors. To date, 4 compounds with anti-
mTOR activity have reached the clinical setting. All of
them belong to a single family of drugs and are derived
from an initial molecule called sirolimus (rapamycin). Thus,
temsirolimus, everolimus, ridaforolimus, and the already
mentioned sirolimus are nowadays under investigation in
sarcomas and other tumors. Sirolimus inhibits mTOR kinase
activity by binding to FK506 binding protein (FKBP12),
one of the proteins that form mTORC1. This leads to cell
cycle arresting in G1 phase and the subsequent inhibition in
proliferation and cell growth. Preclinical data suggest activity
of sirolimus in some paediatric malignancies including
Ewing’s sarcoma, rhabdomyosarcoma, and osteosarcoma
[89, 90]. But, despite preclinical evidences, the only phase
II trial with sirolimus in sarcomas to date (combined with
ciclofosfamide) has been reported as negative [91]. A pro-
drug of sirolimus named temsirolimus has also been tested
in treatment of sarcoma. At least 2 papers have reported
tumor growth inhibition in murine xenograft models of
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rhabdomyosarcoma when treated with temsirolimus [92,
93]. But the first phase II trial published reported disappoint-
ing results, with just 2 out of 41 STS patients achieving PR.
Thus, the authors concluded that temsirolimus in patients
with STS has limited clinical activity and significant toxicity
[94]. On the other hand, preliminary results of another
phase II trial of temsirolimus in pediatric patients with

neuroblastoma, high-grade glioma, and rhabdomyosarcoma
are slightly more encouraging, with 2 PR (1 neuroblastoma,
1 rhabdomyosarcoma) and 11 SD from a total of 52 patients
[95]. Everolimus is an orally available mTOR inhibitor
developed to be much more soluble than sirolimus. Cell
cycle arrest in different tumor models has been observed
with everolimus and even prolonged survival in a murine
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model of leiomyosarcoma has been reported [96]. The
only preliminary data reported to date of a phase II trial
of everolimus in STS or bone sarcoma showed a clinical
efficacy (CR + PR + SD) of 20% [97]. The last member
of the family of rapamycin analogs (also called rapalogs)
is ridaforolimus. It has a better pharmacokinetic profile,
presenting a more favorable bioavailability than sirolimus.
Activity of ridaforolimus alone has been confirmed in cell
lines and xenograft models of sarcoma. Moreover, additive
inhibitory effects when combined with cytotoxic agents
have also been reported [98]. In the clinical setting, a
phase II trial by Chawla et al. achieved a 29% clinical
benefit in patients with advanced sarcoma treated with
intravenous ridaforolimus and a median OS of 40 weeks
[99]. Such interesting results led to the only phase III trial
to date with an mTOR inhibitor: the SUCCEED trial. This
double-blind, placebo-controlled phase III trial randomized
sarcoma patients who had achieved CR, PR, or SD after
1, 2, or 3 lines of chemotherapy to receive placebo or
ridaforolimus as maintenance treatment. Results recently
reported showed a 28% reduction in the risk of progression
in ridaforolimus arm compared with placebo arm and a
3.1-week improvement in PFS [100]. Mature OS data are
not yet available but everything indicates that ridaforolimus
is a promising drug in treatment of sarcomas and further
investigations are warranted.

A very rare type of mesenchymal malignant tumor
named Perivascular Epithelioid Cell Tumor (PEComa) has
been specially related to the mTOR pathway. Dysfunction
in tumor suppressors TSC1 and 2 and the subsequent
upregulation of mTORC1 seems to be a crucial step in the
development of this disease. Thus, responses with sirolimus
and temosirolimus have been reported in at least 2 studies
[101, 102]. However, another study did not find these
positive results, making necessary additional investigations
[103].

All 4 rapalogs described previously belong to a first
generation of mTOR inhibitors able to inhibit mTORC1
but not mTORC2. mTORC2 seems to be responsible for
feedback phosphorylation of Akt in the PI3K/Akt pathway,
which could be a possible mechanism of resistance in
sarcomas. So, a new generation of mTOR inhibitors with
activity against mTORC1 and mTORC2 is under early
development in an attempt to block this escape route.

5. Specific Chromosomal Translocations as
Therapeutic Targets

About 1/3 of sarcomas are associated with specific chromoso-
mal translocations. These translocations are an early step in
carcinogenesis, promoting some of the processes that finally
lead to the appearance of sarcomas [104]. Thus, trying to
inhibit the effects of these genetic alterations seems to be
a reasonable option in fighting sarcomas. Dermatofibrosar-
coma protuberans is an example of this group of sarcomas. It
is characterized by a t(17; 22) translocation that leads to the
overexpression of platelet-derived growth factor B (PDGFB).
Imatinib is a TKI with known activity against the receptor

of PDGFB, PDGFR. Because of that, its efficacy has been
assessed in dermatofibrosarcoma protuberans with excellent
results (46% PR, 25% SD) [105, 106].

Clear cell sarcoma is also associated with a specific
chromosomal translocation, t(12; 22)(q13; q12) in most of
the cases. One of the consequences of this chromosomal
rearrangement is the activation of the hepatocyte growth
factor receptor (MET). This activation is involved in invasion
and angiogenesis. A response in a clear cell sarcoma patient
with the MET inhibitor ARQ197 has recently been reported
in a phase II trial, which is especially relevant in this
treatment-resistant disease [107].

But probably the most studied translocation-related
sarcoma is Ewing’s sarcoma. This disease characteristically
has a t(11; 22) translocation that leads to expression of the
oncogenic fusion protein EWS/FLI1. This chimerical protein
is involved in Ewing’s sarcoma development since it acts as
an oncogenic transcription factor but needs binding to other
proteins such as RNA helicase A for its oncogenic function.
Recently described YK-4-279, a new compound that blocks
RNA helicase A binding to EWS/FLI1, induces apoptosis
in Ewing’s sarcoma cell lines and reduces tumor growth in
orthotopic xenografts [108]. A clinical trial to assess the
efficacy of this new drug is planned.

6. Virotherapy

One of the most innovative approaches in cancer treatment
developed in the last years is oncolytic virotherapy. The
general basis of this strategy is that the therapeutic virus is
capable to recognize specifically tumor cells, replicate into
them, and lead to their death without damaging normal
cells. A paper recently published in Nature by Breitbach
et al. assessed the safety and efficacy of an intravenous
delivery of an oncolytic poxvirus in humans. Treatment
was generally well tolerated and the only sarcoma patient
enrolled (a 55-year-old female with a heavily pretreated
advanced leiomyosarcoma) achieved SD by RECIST criteria
for >16 weeks [109]. This result is as encouraging for
sarcoma treatment as a 2010 study published by Li et al.
In that paper, the authors reported marked cytolysis and
apoptosis in osteosarcoma cell lines in vitro and significant
tumor growth suppression in a human osteosarcoma murine
xenograft model when treated with a telomerase-specific
oncolytic adenovirus [110]. More in-deep preclinical and
clinical investigations are needed but virotherapy seems
a feasible and reasonable option in future treatments for
sarcomas.

7. Combined Targeted Therapies

Although clinical experience with targeted therapies in
sarcomas as single treatment is short, there are some
published studies with combination of 2 of these drugs. The
most studied double-inhibition-targeted therapies are those
related with IGFR-1 pathway, with preclinical evidences
of activity in sarcoma models [111–113]. Based on these
studies, at least 2 phase I trials have been reported, one
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of them with figitumumab and everolimus in advanced
sarcoma patients and the other solid tumors and the other
with cixutumumab combined with temsirolimus in Ewing’s
sarcoma patients that is currently enrolling [114, 115].
Both studies reported good toxicity profiles, making the
combination of 2 targeted therapies an attractive and safe
option to be developed. Most trials involving the targeted
therapies reviewed in this paper are summarized in Table 1.

8. Future Perspectives

An increasing number of new targets in treatment of
sarcomas are being identified in the last years. The finding of
new important key effectors in sarcomas biology has resulted
in a growing development of inhibitor drugs that need
to be tested. For instance, increased activity in Hedgehog
pathway has recently been reported in certain sarcomas such
as rhabdomyosarcoma, osteosarcoma, chondrosarcoma, and
Ewing’s sarcoma [117–121]. Other reports suggest that
rhabdomyosarcoma and osteosarcoma aggressiveness seems
to be related with Notch signalling pathway [122, 123]. This
has led to the conduction of a clinical trial with Hedgehog
and Notch inhibitors with no results to date.

Anaplastic lymphoma kinase (ALK) is another protein
recently related to sarcomas that is upregulated in approxi-
mately 50% of cases of inflammatory myofibroblastic tumor.
Interestingly, in a phase I trial with the ALK inhibitor
crizotinib, a patient with ALK overexpression related to
inflammatory myofibroblastic tumor experienced a durable
PR [116].

Histone deacetylase (HDAC) inhibitors have also shown
signs of efficacy in preclinical models of sarcomas [124–128]
and several clinical trials are currently ongoing.

PI3K/mTOR dual-inhibitor NVP-BEZ235 that induces
G1 cell cycle arrest in sarcomas in vitro and in vivo [129] has
been identified as well as a brand new promising agent.

Other molecules such as MDM2 and protein families
BCL-2 and CDKs have been described lately as associ-
ated with sarcomas [130–132]. Future investigations with
inhibitors are warranted.

9. Conclusions

Despite the low incidence of sarcomas in general popula-
tion regarding other types of cancer, the finding of new
active treatments is essential since it is a rarely curable
disease. Hence, a rapidly increasing number of targeted
therapies have been developed in the last years with different
results. In general, most of these treatments do not achieve
significant tumor shrinkage and SD is usually the best
response reported. In addition, OS has not been dramatically
increased in the majority of these patients, showing the
necessity of keep working. In an attempt to improve response
rates, one of the strategies that are currently ongoing is
the combination treatment with targeted therapies and
conventional cytotoxic drugs. Toxicity is an important issue
when using this approach and more clinical trials are needed
to assess the safety of this therapeutic option. Combinations

of more than one targeted agent are another reasonable
choice. The strategy of inhibiting a signalling pathway and
simultaneously others that could be possible ways of escape
is an attractive alternative still under early development.
Phase I trials reported to date with 2 targeted therapies show
favourable toxicity profiles, making this strategy a feasible
and promising issue to be explored. Different approaches
like those, future identification of new pathways and their
correspondent inhibitors and the arise of innovative agents
such as oncolytic viruses, make the final endpoint of cure
sarcsomas a goal not so far to be reached.
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