
A Software Framework for the Analysis of Complex Microscopy
Image Data

Jerry Chao,
Department of Electrical Engineering, University of Texas at Dallas, Richardson, TX 75080 USA,
and also with the Department of Immunology, University of Texas Southwestern Medical Center,
Dallas, TX 75390 USA (jcscy@utdallas.edu).

E. Sally Ward, and
Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390
USA (sally.ward@utsouthwestern.edu).

Raimund J. Ober [Senior Member, IEEE]
Department of Electrical Engineering, University of Texas at Dallas, Richardson, TX 75080 USA,
and also with the Department of Immunology, University of Texas Southwestern Medical Center,
Dallas, TX 75390 USA (ober@utdallas.edu).

Abstract
Technological advances in both hardware and software have made possible the realization of
sophisticated biological imaging experiments using the optical microscope. As a result, modern
microscopy experiments are capable of producing complex image data sets. For a given data
analysis task, the images in a set are arranged, based on the requirements of the task, by attributes
such as the time and focus levels at which they were acquired. Importantly, different tasks
performed over the course of an analysis are often facilitated by the use of different arrangements
of the images. We present a software framework which supports the use of different logical image
arrangements to analyze a physical set of images. Called the Microscopy Image Analysis Tool
(MIATool), this framework realizes the logical arrangements using arrays of pointers to the
images, thereby removing the need to replicate and manipulate the actual images in their storage
medium. In order that they may be tailored to the specific requirements of disparate analysis tasks,
these logical arrangements may differ in size and dimensionality, with no restrictions placed on
the number of dimensions and the meaning of each dimension. MIATool additionally supports
processing flexibility, extensible image processing capabilities, and data storage management.

Index Terms
Microscopy; multi-dimensional data; image analysis; image viewer; software framework

I. Introduction
The optical microscope has been an invaluable tool for the study of biological events at the
cellular, the subcellular, and more recently, the single molecule level (e.g., [1], [2], [3]).
With advances in both hardware and software technology, the microscopist today is well-
equipped to design and operate sophisticated microscopy image acquisition systems. As
microscopy imaging experiments have become more creative, however, so have the
resulting image data grown in complexity. Therefore, to obtain the desired information from

Correspondence to: Raimund J. Ober.

NIH Public Access
Author Manuscript
IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

Published in final edited form as:
IEEE Trans Inf Technol Biomed. 2010 July ; 14(4): 1075–1087. doi:10.1109/TITB.2010.2049024.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



the acquired images in an efficient manner, software is needed that facilitates the analysis of
complex image data sets. When designing such a software application, the nature of the
image data and of its analysis requirements warrants consideration.

A. Software Design Considerations for Image Data Analysis
Different image arrangements for different analysis tasks—Supported by image
acquisition software and hardware components such as optical filters, focusing devices, and
image detectors, modern microscopy experiments are capable of producing complex and
multi-dimensional image data sets. Throughout the course of a fluorescence microscopy
(e.g., [4], [5]) experiment, for example, images of different colors (i.e., different
wavelengths) can be captured at different times by one or more cameras at different focus
levels. Depending on the nature of an analysis task that needs to be performed, the images
are arranged along an appropriate number of dimensions by color, focal position, acquisition
time stamp, and/or any other experimental or analytical parameters. Importantly, in an
analysis that comprises different types of tasks, different arrangements of the images may be
used to facilitate the execution of the component tasks. As necessitated by the specifics of
the tasks, these arrangements may differ in the number of dimensions as well as the meaning
of the dimensions.

In the most general case, an arrangement is N-dimensional (where N is any positive integer)
and the meaning of each dimension is designated as required by an analysis task. For
example, a simple linear (i.e., one-dimensional) arrangement with the images sorted in no
particular order may be sufficient for a visual inspection of the general image quality.
However, a two-dimensional (2D) arrangement with the same images sorted by time in one
dimension and color in the other may be more suitable for the purpose of generating
overlays of the different colors. In addition, an arrangement is in general not limited to a
reordering of the entire set of acquired images, but may comprise only some of the images
and/or contain repeated images, also as necessitated by the particular task at hand. For
example, to generate the overlay of two large time lapse series acquired simultaneously, but
at different rates by two cameras, one might choose to work with only a small time segment
of interest, and to repeat within that segment images from the slower camera to temporally
align them with the images from the faster camera.

We note that the integer N does not include the x and y dimensions that are intrinsic to an
image. An N-dimensional arrangement of images is therefore equivalent to what would
commonly be referred to as an (N + 2)-dimensional image data set.

Large numbers of images—Besides the multitude of ways in which it may be arranged,
a given data set often consists of a large number of images. Using fast frame rate cameras,
for example, microscopists can acquire many images in a relatively short period of time,
ending up with thousands or even tens of thousands of images by the end of an experiment.
Given the limited hardware resources of a conventional personal computer, data of this size
poses a challenge in terms of both storage on the hard disk and processing in random access
memory (RAM).

Heterogeneity of images and flexible processing—In general, a microscopy
experiment can produce images of different sizes. For example, when using multiple
cameras with different specifications, one may be constrained to images of similar, but
nevertheless different sizes. In addition, the use of image acquisition software programs
from different camera manufacturers may result in a data set composed of images in
different file formats. It would therefore be useful for a software application to support the
display and processing of a heterogeneous data set comprising differently-sized images of

Chao et al. Page 2

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



potentially different file formats. The idea of heterogeneity is also important in terms of the
processing of the image data. Given an arrangement of images, one should be able to
process individual or subsets of the images differently, but at the same time also have the
ability to operate on all images uniformly. For example, due to photobleaching of the
imaged fluorophore, one might find it necessary to apply different pixel intensity adjustment
settings to images in different segments of a time lapse series. On the other hand, to confine
an analysis to a region of interest, one might need to crop all the images in the exact same
way.

Provision for adding new analysis capabilities—An important point to take into
account in the software design is the wide variety of image analysis requirements in
microscopy that range from simple tasks such as the cropping of an image to more
sophisticated processing such as image deconvolution. Not only is it impractical to support
all the existing image processing algorithms for all types of analyses, it is also important to
note that analysis requirements are constantly evolving and that customized or new
algorithms are always needed. Therefore, it is essential that a general microscopy data
analysis application provide some means for the incorporation of new capabilities.

Organized storage of images and associated information—A last point to
consider is that, in addition to the images, there are other types of important information that
an analysis software application should maintain, potentially on a per-image basis. These
include the processing settings (e.g., intensity adjustment settings, crop settings, etc.) which
have been applied to the images and which can be stored to provide a history of the
processing, the metadata (e.g., acquisition time stamp, imaged fluorophore, etc.) which are
essential for certain types of analyses, and analytical results (e.g., computed background
intensity, number of identified objects of interest, etc.) which need to be kept. In light of the
various types of information that need to be saved and associated with the images, a
software application should support a storage management mechanism that helps with the
organization of the images and any related experimental or analytical information, both on a
temporary basis in RAM and on a permanent basis on the hard disk.

B. Current Software Solutions
Software has been and continues to be developed by various parties to support the analysis
of microscopy image data. The Open Microscopy Environment [6], for example, takes an
informatics approach to the analysis and storage of microscopy data. This environment
defines an extensible data model for the management of not only the images themselves, but
also the metadata and the analytical results that are associated with the images. In [7], a data
model and architecture are introduced in the context of leveraging grid technologies for the
knowledge-based processing of large image data sets. Another example is the popular Java-
based application ImageJ [8] which offers an abundance of image analysis capabilities that
range from standard functionalities such as intensity adjustment to advanced features such as
object tracking. For more information on some of the currently available software packages,
see [9].

The typical microscopy image analysis software package today, however, assumes the use
of either a single or a few image arrangements throughout the course of an analysis.
Moreover, an image data set is limited to a certain number of dimensions, commonly set to
five (i.e., limited to a three-dimensional (3D) arrangement), and these dimensions are fixed
to represent an image’s x and y dimensions, focal position along the microscope’s optical
(z-)axis, color, and acquisition time. Therefore, an analysis consisting of disparate tasks that
require arrangements of higher numbers of dimensions with arbitrary representations is in
general not readily supported. Some applications also require the loading of an entire set of

Chao et al. Page 3

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



images into RAM for viewing and processing, and therefore have difficulty supporting the
analysis of large numbers of images. The typical software application today also does not
readily provide for the arbitrary reordering, repetition, and subset construction of the images
in a set. In addition, the images comprising a set are commonly required to have the same
size and/or file format, and the storage of processing settings, metadata, and analytical
results is not generally supported by all software packages. In general, the typical software
solution today addresses some, but not all of the aspects of image analysis discussed in
Section I-A.

C. The Microscopy Image Analysis Tool
In this paper, we discuss the design of a microscopy image analysis software framework
which takes into account all the points raised in Section I-A regarding the analysis of a
complex image data set. This framework is motivated by the recognition that the different
tasks involved in the analysis of a data set are potentially facilitated by different
arrangements of its images. Importantly, it is based on the central idea that these
arrangements can be achieved as different logical views of the same physical images which
may reside either in RAM or on the hard disk. In this way, a clear distinction is drawn
between the logical data sets (i.e., arrangements) which are used for analysis, and the actual
images in RAM or on disk which are looked upon only as physical repositories of the data,
and which remain unchanged throughout the course of an analysis. In addition to its
underlying support for multiple and arbitrary logical arrangements of images, this
framework is a generic one where no restrictions are placed on the dimensionality of an
arrangement. Furthermore, the meaning of each dimension of an arrangement can be
designated arbitrarily as necessitated by the analysis task at hand.

We note that the framework we introduce here is not meant to supersede other software
solutions such as those described in Section I-B. Rather, it is an approach to microscopy
image analysis which we find effective in dealing with the challenges posed by a complex
data set. In fact, given the wide-ranging problem domains, objectives, and approaches that
characterize the different software solutions, it is entirely possible that our framework may
be used in conjunction with the other solutions to make certain types of analyses more
efficient.

Called the Microscopy Image Analysis Tool, or MIATool for short, our software framework
realizes different logical arrangements of the images in a given physical data set via multi-
dimensional arrays of pointers to the images. We note that the term “pointer” as used here is
distinct from the pointer data type found in programming languages such as C and C++.
Rather, it is used in the sense of a general, language-independent data type that stores the
address of an image that can reside in RAM or on a hard disk. For example, if in RAM, the
value stored could be a memory address. If on disk, the value stored could be a file path.

The use of image pointers provides at least three advantages. First, it eliminates the need to
physically replicate the images in RAM or on the hard disk in order to create different
arrangements, and therefore helps to save a significant amount of memory and disk space.
Also, any reordering, repetition, and subset construction of the images needed to arrive at an
arrangement can all be easily achieved by moving, replicating, and selectively creating or
removing pointers. Second, since pointers are typically much smaller in size than the images
they reference, a pointer array occupies considerably less RAM than an array of actual
images. Therefore, pointer arrays allow MIATool to store and process large logical data sets
in RAM. Third, since pointers can refer to images of different sizes and file formats, a
pointer array can naturally support the analysis of a heterogeneous data set.

Chao et al. Page 4

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



To accommodate the analysis of the images specified by an array of pointers, the MIATool
framework employs arrays of corresponding size and dimension to manage the various
processing settings, metadata, and analytical results that are associated with the pointer-
referenced images. The main idea behind these corresponding arrays is that they allow each
pointer in a pointer array to be associated with its own processing specification, metadata,
and analytical results. Consequently, they provide the flexibility to process each referenced
image differently, while at the same time support the uniform processing of some or all of
the referenced images through the specification of the same processing settings for
appropriate subsets of pointers in a pointer array. Additionally, an advantage offered by
corresponding arrays of processing settings is that they can be saved in place of the actual
images that result from the processing, which are typically much larger in size than the
settings. When this option is used, MIATool is able to make further savings in the usage of
the limited hard disk space and at the same time preserve a record of the processing.

Since visual feedback plays an important role in many types of image processing, the
MIATool framework specifies an image viewer which supports the visualization of the
images referenced by an N-dimensional image pointer array. In addition, it specifies
processing tools which allow the manipulation, via a graphical user interface, of the
processing settings contained in arrays that correspond to the image pointer array that is
currently displayed in a viewer. By interacting with a viewer to provide immediate visual
feedback whenever processing settings are changed, these tools make possible the
interactive, on-the-fly processing of the pointer-referenced images. While the advantage of
immediate visual feedback renders these tools most suitable for types of processing that
require relatively little time to complete (e.g., intensity adjustment, cropping, etc.), such
tools can in principle be created for all kinds of image processing. Importantly, by defining
standard ways of interaction between the viewer, the processing tools, and the corresponding
arrays of processing settings, the MIATool framework facilitates the addition of new
processing capabilities to its existing repertoire.

To help keep track of the multiple image pointer arrays and their corresponding arrays of
settings and information that may be used over the course of analyzing a physical image data
set, a storage management mechanism is provided by the MIATool framework. Capable of
managing storage both in RAM and on the hard disk, this storage manager uses a
hierarchical structure to associate a physical image data set with the arrays employed for its
analysis, and to maintain the relationships among the various arrays. Furthermore, it serves
as the standard channel through which the various arrays are stored and retrieved.

The remainder of this paper is organized as follows. In Section II, we give a description of
the general architecture of the MIATool software framework. In Section III, we illustrate the
use of different image pointer arrays to perform different analysis tasks on a given physical
image data set. This is done via examples of some commonly encountered problems in
microscopy image analysis. We follow in Section IV with a discussion on how MIATool
uses arrays corresponding to an image pointer array to provide flexibility in the processing
of the images it references and to maintain the metadata and analytical results that are
associated with those images. In Section V, we present the MIATool image viewer and
processing tools which together provide a visual, user-interactive means for working with an
image pointer array and its corresponding arrays. In Section VI, we describe how MIATool
manages the storage of a physical image data set and the various types of arrays that are
used for its analysis. Lastly, we conclude our presentation in Section VII.

Chao et al. Page 5

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



II. Architecture
The MIATool software framework comprises three principal components, as shown in Fig.
1. The first component consists of the logical N-dimensional pointer array interpretation of a
physical image data set (Section III), along with corresponding N-dimensional arrays of
processing settings, metadata, and analytical results that are used to support the analysis of
the pointer-referenced images (Section IV). These corresponding arrays are contained in
modules which are capable of carrying out the actual processing of the images. The second
component includes a viewer and processing tools (Section V) which together provide a
graphical user interface for the viewing of the images referenced by an N-dimensional image
pointer array, and the interactive, on-the-fly processing of those images by way of
modifying the processing settings contained in corresponding arrays. The third component is
a storage manager (Section VI) which associates in RAM or on the hard disk a physical
image data set with its potentially many pointer and corresponding arrays.

The underlying pointer array-based representation and processing of a logical data set, the
graphical user interface for visual, interactive data analysis, and the image and information
storage manager therefore constitute the three main components of the software framework.
Provided that standard protocols of interaction are adhered to, this architecture is amenable
to the independent development of the components. Based on this design, a prototype
software application, MIATool V1.1 [10], has been implemented using the technical
programming language of MATLAB (The MathWorks, Inc., Natick, MA) and its image
processing toolbox. A preliminary introduction to the prototype implementation MIATool
V1.1 was published in the conference paper [11]. In contrast, the current paper focuses on
the underlying implementation-independent software framework, including the reference
architecture that provides a blueprint for the implementation of the design considerations
delineated in Section I-A.

In the sections that follow, we make use of diagrams created using the standard Unified
Modeling Language (UML) (e.g., [12]) notation system to help illustrate the design of, and
the interaction between, the three main components of the MIATool framework. These
diagrams were created using the software package StarUML 5.0
(http://staruml.sourceforge.net).

III. Data analysis using logical arrangements of images
A complex image data set generated by a microscopy experiment is often subjected to
multiple types of processing tasks throughout the course of an analysis. As identified in
Section I-A to be an important consideration in the design of a data analysis software, these
different tasks are often facilitated by different arrangements of the images that may differ in
size and dimensionality. To address this important aspect of data analysis, the MIATool
software framework supports the realization of different arrangements of a set of images as
logical data sets in the form of arrays of pointers to the images. Since the images physically
reside either in RAM or on disk, a pointer is simply a memory address or a file path which
uniquely identifies an image in a data set.

By creating, manipulating, and storing arrays of image pointers, MIATool avoids having to
create or modify physical arrangements of the images which would require the replication or
shuffling of the images in RAM or on the hard disk. As a pointer is typically much smaller
in size than the image it references, this allows MIATool to make efficient use of the limited
amount of RAM and disk space. As a result, this also enables MIATool to accommodate the
analysis and storage of large data sets and hence address another important design criterion.

Chao et al. Page 6

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://staruml.sourceforge.net


As shown in the UML class diagram of Fig. 2, the concept of a logical image data set is
embodied in an ImageSet. The ImageSet class contains in general an N-dimensional image
pointer array, and supports operations such as the creation of the array (importImages) and
the retrieval of an actual image via a pointer (getImage). Each image pointer in the array
takes the form of an ImageSingle, a class which stores not only the physical location (e.g.,
the file path) of an image, but also information such as the image’s size, color type, and file
format. In addition, the ImageSingle class provides operations for creating a pointer to an
image (setImage) and for retrieving an image via a pointer (getImage).

The storage of image attributes in an ImageSingle is important in that it allows the
ImageSingles belonging to an ImageSet to reference images of, for example, different sizes,
color types, and file formats. This directly enables MIATool to support the analysis of
heterogeneous image data sets, and thereby address the data heterogeneity design criterion.
In particular, the support for heterogeneous image data allows MIATool to deal with data
sets of mixed image file formats which can easily arise, for example, from collaborative
projects involving different imaging modalities contributed by potentially different research
groups (see, e.g., [13], [14]). Note that in order to realize support for such data sets, an
implementation of the getImage operation of the ImageSingle class should use the value of
the file format attribute to determine the appropriate image reading routine to invoke to
retrieve the referenced image from disk.

We note that in our MATLAB implementation of the ImageSingle class in MIATool V1.1,
the address of an image on disk is a file path that is straightforwardly stored as a string field.
However, since MATLAB does not support a native pointer data type such as that in C or C
++, the address of an image in RAM is stored in two basic ways. One, the image can reside
in a field of the ImageSingle itself, in which case its address is simply given by the field.
Two, the image can reside in the “UserData” property of a MATLAB figure, in which case
its address is given by the handle of the figure. Note that these details are implementation-
specific choices which we made in the development of MIATool V1.1. Other methods are
certainly possible and can be used in a different implementation of the framework.

Depending on the specific requirements of an analysis, an image pointer array can be of any
dimensionality and can contain pointers arranged to represent an arbitrary reordering of the
physical set of images. A pointer array can also contain repeated pointers to the same image,
and at the same time consist of pointers that refer to just a subset of the images in the
complete data set. In what follows, we illustrate, using concrete examples of problems
frequently faced in microscopy image analysis, the use of different pointer arrays (and hence
different ImageSets) to analyze a physical image data set. These examples represent a small
sample of the broad range of pointer arrangements that may be employed to carry out
different analysis tasks on a data set. Importantly, though a particular example might in and
of itself be a relatively simple image processing task, together they demonstrate the high
level of data analysis customization that MIATool is designed to support. (For more data
analysis examples using pointer arrangements, see [11].)

Let us consider a fluorescence microscopy (e.g., [4], [5]) live cell imaging experiment in
which a cell is labeled with two differently-colored fluorescent dyes. The green dye is
attached to the protein of interest, and the red dye to endosomes with which vesicles
containing the protein of interest interact. The objective is to track the trajectories of the
fast-moving vesicles and observe their associations with the relatively stationary endosomes.
Accordingly, two simultaneously running cameras are used to image the same focal plane
within the cell, but each captures the fluorescence of a different dye, and writes sequentially
numbered images in the order of acquisition to its own designated directory on the hard disk.
In general, the two cameras may not be synchronized in time, and hence the total number of

Chao et al. Page 7

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



images acquired by each camera may be different at the end of the experiment. Furthermore,
the images captured by the two cameras can potentially be of different sizes and saved in
different file formats.

To visually assess the quality of the acquired images, we may first want to step through and
view the image files contained in the two camera output directories. For this purpose, we can
construct an ImageSet containing a 2D array of image pointers that mirrors the physical
arrangement of the images on disk (Fig. 3(a)). Specifically, this array has two rows of
potentially different lengths, each containing pointers to images in a different directory (or
equivalently, from a different camera, of a different color) that are ordered by the sequence
numbers of the images they reference. The MIATool viewer (Section V) can then be used to
traverse this 2D pointer array and display the referenced images of possibly different sizes
and file formats. Conferred by pointers that can reference images with different attributes,
this ability of the MIATool framework to handle heterogeneous data sets is an important
advantage over software designs that restrict data sets to consist of images of uniform size
and file format.

After the initial verification of image quality, we may want to overlay the images from the
two cameras in order to visualize the interactions between the green vesicles and the red
endosomes. To ensure that these interactions are properly observed, overlays need to be
performed with pairs of images that were captured at approximately the same time.
Assuming that the two cameras were not temporally synchronized, we then need to form
pairs of images based on their acquisition time stamps. This can be done using another
ImageSet which contains a pointer array that is similar to the one used for the initial
visualization, but whose columns represent time points rather than sequence numbers (Fig.
3(b)). Compared to the array of Fig. 3(a), the pointers in one row of the array of Fig. 3(b)
might be shifted with respect to the pointers in the other row as per the time stamp
information. In addition, if images of the relatively immobile endosomes were acquired at a
slower rate, pointers to these images may be repeated to synchronize them against the
pointers to the faster acquired images of the vesicles. Given this time-synchronized pointer
array, overlaid images can be generated by moving through the columns and processing the
images one pair at a time. It is important to note that instead of creating it from scratch, the
array of Fig. 3(b) can be derived by shifting and replicating the pointers in the array of Fig.
3(a). In general, it is often the case that the creation of a new ImageSet can be made more
efficient by deriving it from an existing ImageSet.

Now suppose that thousands of images were taken by each camera, and that from the
viewing of the overlaid images, we identify a small sequence of a few hundred time points
which contain the trajectory of a representative green vesicle. To logically isolate this
particular sequence, we can create a third ImageSet which contains a 2D pointer array that
references only the images confined to this time frame (Fig. 3(c)). As an example of how
one pointer array can sometimes be easily derived from another, the creation of this new 2D
array simply requires that we keep a contiguous portion of the array of Fig. 3(b) and discard
the rest. The significantly smaller pointer array of Fig. 3(c) allows us to focus our analysis
on just a particular segment of the image data. A collection of such arrays can be generated
to “mark” all the events of interest within a large physical data set.

Let us now assume that the red dye used to label the endosomes also attaches to other
cellular organelles, but at much lower quantities. Due to the significant difference in the
amount of labeling, an appropriate intensity setting for viewing the strongly labeled
endosomes will not allow the weakly labeled organelles to be seen clearly. Therefore, a
different intensity setting is needed in order to observe any potential interactions between
the green vesicles and the weakly labeled organelles. A method that supports the

Chao et al. Page 8

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



simultaneous existence of two intensity adjustment settings per image, and yet requires only
a single pointer array, is to stack two copies of a given 2D array to form a 3D array. This 3D
pointer array will therefore contain two pointers to each image along its third dimension, and
each of the two pointers can be associated with a different intensity setting (Section IV). Fig.
3(d) shows an example of such a 3D array of duplicate pointers that has been derived by
stacking two copies of the array of Fig. 3(c). In order to work with it, a fourth ImageSet
would be created. As other arrangements of possibly different dimensionalities can be made
of the same set of duplicate pointers, an advantage of this particular 3D arrangement is that,
for any given image, one can go from one intensity setting to the other by simply toggling
the value of the third dimension.

To illustrate the concept of logical data sets, we have thus far demonstrated MIATool’s use
of different image pointer arrays to perform different analysis tasks on a relatively simple
physical image data set. To show how easily a change to the experiment can make the
resulting data more complex, let us assume that two additional cameras were used to capture
the same green and red fluorescence, but from a focal plane within the cell that is located
higher along the microscope’s z-axis. Due to the additional view of the cell that is provided
by the images from this “top” plane, this multifocal plane imaging setup [15] allows us to
detect the fast-moving green vesicles of interest at locations along the z-axis that we would
otherwise not be able to detect by imaging at only the “bottom” focal plane. Therefore, by
using four cameras to simultaneously capture images from two distinct focal planes, we can
better visualize the trajectories of the green vesicles in three dimensions.

Since MIATool places no limits on the number and meaning of the dimensions of an image
pointer array, the same analysis tasks can be performed on the more complex data set using
the same type of logical arrangements as before, but with an additional dimension to
distinguish images from the “top” and “bottom” focal planes. At the end of the same
sequence of tasks, we would obtain a four-dimensional (4D) pointer array as depicted in Fig.
3(e). Note that in Fig. 3(e), the two 3D arrays corresponding to the “top” and “bottom” focal
planes are intended to represent a 4D array where the fourth dimension allows us to toggle
between images of the same color and from the same time point, but from different focal
planes and with potentially different intensity settings.

In practice, we have used the same types of logical arrangements to analyze complex image
data of a similar nature. In [16] and [17], for example, 3D trajectories of vesicles and single
molecules inside live cells were determined from images acquired with multifocal plane
imaging setups. In those experiments, multiple cameras were operated at different speeds to
capture images of different colors from up to four distinct focal planes.

To close this section, we provide some concrete numbers regarding the size of the image
data set on which our examples have been based. These numbers are representative of the
actual image data we analyzed in [16] and [17] using our prototype implementation of
MIATool, and will illustrate the significant advantage gained with the use of image pointer
arrays in terms of RAM usage.

Suppose that 6000 16-bit grayscale images, each of 420×400 pixels, are acquired by the
camera which captures the fluorescence of the green dye from the “bottom” focal plane.
This amounts to approximately 328 kilobytes (KB) per image, and approximately 1.88
gigabytes (GB) for all 6000 images. At the same time, suppose 4000 16-bit grayscale
images, each of 420×420 pixels, are acquired by the camera that captures the fluorescence of
the red dye from the “bottom” focal plane. This equates to approximately 345 KB per image,
and approximately 1.31 GB for all 4000 images. The total size for all 10000 images from the
“bottom” focal plane is then approximately 3.19 GB. Now suppose that the same amounts of

Chao et al. Page 9

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



data are acquired by the two cameras that image the “top” focal plane. The size of the entire
set of 20000 images then becomes approximately 6.38 GB.

Given a conventional personal computer with 1, 2, or even 4 GB of RAM, software
applications that require the loading of all 6.38 GB of images into RAM would either not be
able to handle this data set, or at a minimum cause a substantial slowdown of the application
itself and the rest of the computer system. Using the pointer array representation of
MIATool, however, an ImageSet containing a pointer array that references the 20000
images would require a significantly smaller amount of RAM. In MIATool V1.1, for
example, an ImageSet containing a 3D array of pointers to the 20000 images would only
take up approximately 145 megabytes (MB) of RAM. This 3D array is constructed by
stacking two copies of the type of 2D pointer array depicted in Fig. 3(a) along a third
dimension. One copy contains pointers that reference the 10000 images from the “bottom”
focal plane, and the other contains pointers that reference the 10000 images from the “top”
focal plane.

We note that the significant savings in RAM provided by an ImageSet will translate to
similar savings in disk space. Therefore, instead of physically replicating images to form
various arrangements such as those illustrated in Fig. 3, the saving of ImageSets containing
pointer arrangements could save a nontrivial amount of disk space. Also, it is important to
point out that, regardless of how large or small the data set, a software application that
requires all images to be of the same size would not readily support the analysis of the type
of heterogeneous data described.

IV. Corresponding arrangements of processing settings, metadata, and
analytical results

In Section III, we illustrated MIATool’s use of different image pointer arrays to facilitate the
different processing tasks that comprise a data analysis. Here, we describe the means by
which the framework supports the execution of a given task. In general, a task may require
that each of the images referenced by its pointer array be processed differently. Moreover,
the processing of the referenced images may potentially be based on metadata that is
specific to each image, and may produce analytical results that need to be maintained on a
per-image basis. Specified as a crucial design consideration in Section I-A, MIATool
supports this processing flexibility by making use of arrays of processing settings, metadata,
and analytical results which are constructed in parallel to an image pointer array. In what
follows in this section, we give our main focus to arrays of processing settings, but end with
a discussion on arrays of metadata and analytical results which can conceptually be seen as
simple special cases of arrays of processing settings.

Given an N-dimensional image pointer array, one should on the one hand be able to process
each of the referenced images differently, and on the other hand have the option to process
all referenced images in a uniform way. In order to accommodate both extremes and all
permutations in between, MIATool uses arrays corresponding in size and dimension to a
pointer array to support the flexible processing of its referenced images. More specifically,
an image referenced by a pointer belonging to element (x1, x2,…, xN) of a pointer array is
processed according to the settings that are stored in element (x1, x2,…, xN) of a
corresponding array. With such a parallel design, custom processing is possible on a per-
image basis, while at the same time uniform processing for all or subsets of the images can
be achieved by simply specifying identical settings in the appropriate elements of a
corresponding array.

Chao et al. Page 10

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Different corresponding arrays of processing settings are used for different processing tasks.
Just as an image pointer array is stored in and managed by an ImageSet, these corresponding
arrays are kept in and handled by various Set classes, as illustrated in Fig. 4. Arrays that
store intensity adjustment and crop settings, for example, reside in the classes IntensitySet
and CropSet. Moreover, analogous to image pointers being instances of the ImageSingle
class, each element of a corresponding array is an instance of a Single class that contains the
processing settings for a specific image. As shown in Fig. 4, an IntensitySingle, for instance,
keeps information such as the intensity adjustment method to use and the values of the
associated adjustment parameters. Similarly, a CropSingle stores parameters whose values
describe the region of the image to retain while the rest is trimmed.

Importantly, Fig. 5 shows that all Set classes support a common repertoire of operations
specified by the interface SetUsage. In addition to operations for the storing and retrieving
of processing settings to and from the elements of the array that is managed by a Set, this
interface requires a Set class to implement two important operations. Given an image pointer
array by way of an ImageSet, the initializeSingleArray operation creates an array of
processing settings that corresponds in size and dimension to that pointer array, and hence
initializes the Set for working with the supplied ImageSet. The applyParameters operation
accepts the same ImageSet as input, and processes each of its referenced images according
to the settings stored in the Set. The applyParameters operation shows that Sets do not only
store the processing settings, but also carry out the actual tasks of intensity adjustment,
cropping, segmentation, labeling, etc. In an analogous manner, all Single classes implement
the interface SingleUsage, which specifies analogous operations at the level of a single
image.

In general, the output of the applyParameters operation of a Set is a new ImageSet
containing an array of pointers to the (e.g., intensity-adjusted, cropped, segmented, or
labeled) images generated by its processing. These resulting images can again reside either
in RAM or on the hard disk, and if need be, they can be subjected to further processing by
the next Set in a sequence of processing operations. In this model of processing, actual
images and an ImageSet that refers to them are generated at each intermediate processing
step. While this is a good way to proceed in cases where images created at intermediate
steps are desired, in other cases it could present problems when there is insufficient RAM or
disk space.

An alternative model of processing is therefore to iterate through the initial array of pointers
and process one referenced image at a time from beginning to finish. In this way, only a
single set of final images is created at the end of the processing sequence. This alternative
approach can be readily realized by carrying out the processing at the level of Singles
instead of Sets. That is, given an image (i.e., an ImageSingle) from the initial ImageSet, we
can process it from beginning to end by invoking in proper order the applyParameters
operation on each of its corresponding Singles. The two models of processing need not be
mutually exclusive, and depending on the available hardware resources and the intermediate
results that are desired, they can be applied as appropriate to different segments of a
sequence of processing steps.

In addition to processing flexibility, the use of corresponding arrays provides at least three
further advantages. First, the parallel design allows the straightforward propagation of
processing settings when one image pointer array is derived from another as illustrated by
the sequence of analysis tasks described in Section III. Due to the one-to-one
correspondence between a pointer array and its associated arrays of processing settings, the
arrays of settings corresponding to an existing pointer array can be manipulated in exactly
the same way as the pointer array to arrive at arrays of settings that not only correspond in

Chao et al. Page 11

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



size and dimension to a derived pointer array, but also retain the same processing settings
for the images referenced by the derived pointer array. This carryover of processing settings
is useful since in many situations, preexisting settings apply just as well to a derived image
pointer array.

Second, by adhering to the paradigm of Sets and their associated Singles, the design
criterion of software extensibility is accounted for as new image processing capabilities can
be incorporated into MIATool with relative ease in the form of new types of Sets and
Singles. As we will see in Section V, this paradigm also forms the basis for the extensibility
of the image display and the interactive, on-the-fly processing framework adopted by the
MIATool viewer and the various image processing tools. Third, the saving of Sets and
Singles provides a practically useful alternative to the saving of the images that result from
the processing. A Single that contains processing settings is typically much smaller than the
image that results from the processing, and therefore occupies significantly less disk space.
This is another way by which MIATool addresses the design consideration of
accommodating the analysis of large image data sets. Furthermore, the saved settings readily
provide a record of the processing that can be used at a later time to generate the desired
images.

Besides processing settings, corresponding arrays can be used for the storage of information
such as the metadata and the analytical results that are associated with the images referenced
by a pointer array. For example, new types of Sets and Singles can be created to maintain for
each referenced image of a pointer array metadata such as its acquisition time stamp, focus
level, and color (i.e., wavelength). Analytical results such as the objects of interest identified
in a tracking application and their computed attributes (e.g., size, centroid, fluorescence
intensity, etc.) can also be stored on a per-image basis using the Set and Single paradigm.
Note that since these Sets and Singles are used purely for information maintenance and do
not perform any processing on images, the applyParameters operations specified by the
SetUsage and SingleUsage interfaces can be trivially defined to either do nothing or to
simply return the stored information.

V. Image viewer and processing tools
In Section IV, we discussed MIATool’s use of corresponding arrays (i.e., Sets) of processing
settings, metadata, and analytical results for the processing of the images referenced by an
array of pointers (i.e., an ImageSet). There, the nature of the processing described assumes
that the precise processing specifications are already known, and that therefore no visual
feedback or user interactivity is necessary during the execution of an analysis task. For many
types of image processing, however, the ability to visualize the images as well as the
changes made to the images is desirable if not crucial. A simple intensity adjustment, for
example, often requires the user to manually try out and visually assess different adjustment
methods and/or intensity settings before deciding on the best choice. In this section, we
describe the viewer and tools specified by the MIATool framework to support image
visualization and user-interactive, on-the-fly processing with visual feedback.

As we alluded to in the discussion of Fig. 3(a), perhaps the most basic of necessities when
given an N-dimensional image pointer array is to be able to traverse the array and view the
referenced images. To address this requirement, MIATool provides as a basic component of
its graphical user interface an image viewer that supports the traversal and display of the
images referenced by a pointer array. Since each pointer in an N-dimensional array is
uniquely identified by an N-tuple (x1, x2,…, xN), the MIATool viewer allows the selection
of a pointer with a set of N controls such as sliders, each specifying the value of a different
dimension. The screen capture of Fig. 6, for example, shows an instance of the MIATool

Chao et al. Page 12

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



V1.1 [10] viewer that has been opened with four sliders for the traversal of a 4D image
pointer array.

Upon the selection of a pointer, the MIATool viewer retrieves on the fly the referenced
image from RAM or the hard disk and displays it to a window. The currently displayed
image is always overwritten with a newly retrieved image. In this way, the viewing of a
large image data set which physically resides on disk is made possible without having to
first load all the referenced images into RAM, which can often be a problem when the
amount of RAM is very limited. The physical image data set displayed by the viewer of Fig.
6, for example, consists of 11321 16-bit grayscale images, each of 320×390 pixels. The size
of each image is therefore approximately 244 KB, and that of the entire data set is
approximately 2.63 GB. The loading of all 2.63 GB of data into RAM could already prove
difficult with a conventional personal computer. However, as we explain next, the 4D image
pointer array (i.e., ImageSet) that is loaded in the viewer of Fig. 6 actually references 31568
images by virtue of replicated pointers to the 11321 physical images on the disk. Whereas
this 4D ImageSet as implemented in MIATool V1.1 only takes up approximately 231 MB of
RAM, an equivalent 4D arrangement of actual replicated images would require around 7.34
GB of RAM.

The set of 11321 physical images was produced by the type of live cell fluorescence
imaging experiment we carried out in [17], where multifocal plane microscopy [15] was
used to image and track in three dimensions the itineraries of the neonatal Fc receptor
(FcRn) and its ligand immunoglobulin G (IgG) in a human microvascular endothelial cell.
Similar to the experiment described in Section III, four cameras were used to simultaneously
acquire time sequences of images from two distinct focal planes, and the images from each
camera were written to the camera’s own separate directory in the order they were acquired.
In the “bottom” focal plane, the first camera captured the fluorescence from pHluorin-
labeled FcRn, and the second camera captured the fluorescence from quantum dot (QD)
655-labeled IgG. In the “top” focal plane, the third camera captured the fluorescence from
monomeric red fluorescence protein (mRFP)-labeled FcRn, and the fourth camera captured
the fluorescence from QD 655-labeled IgG. (For more details concerning the experiment,
see [17].)

Since the four cameras acquired images at different rates, the resulting data set of 11321
images consists of four directories of image sequences of different lengths. This 2D physical
arrangement of images is therefore sorted by camera and sequence number, and the images
acquired by the different cameras are not temporally synchronized with one another.
However, to properly visualize the trajectories of, and the interactions between FcRn and
IgG, we needed to view overlays of temporally synchronized images from each focal plane
with different intensity settings. To this end, we made use of the pointer array manipulations
illustrated in Fig. 3 to temporally synchronize the images and introduce the necessary
dimensions. The resulting 4D pointer array is the 2 (focal planes) × 3946 (time points) × 2
(colors/fluorophores) × 2 (intensity settings) array loaded in the viewer of Fig. 6, and it is
similar to the 4D array depicted in Fig. 3(e).

Abstracted by the class MIAToolViewer as shown in Fig. 7, the MIATool viewer supports
various display modes that are useful for microscopy image analysis. Besides the standard
2D display, an image can be presented, for example, as a 3D mesh or as one of the color
channels in an overlay (as in Fig. 6) with other images. Note that modes such as the overlay
display require the selection of multiple images instead of just one, and the mechanism for
making such a selection in a viewer is implementation-specific. In MIATool V1.1, for
example, viewing of RGB overlays is achieved by scrolling through one dimension of an
ImageSet and viewing the images in another dimension in groups of up to three as different

Chao et al. Page 13

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



color channels of a single RGB image. In Fig. 6, the dimension from which images are taken
to form the overlays is indicated by the disabled (i.e., grayed out) slider.

It is important to point out that the specification of the simultaneous display of multiple
images in a MIAToolViewer is a general concept that readily includes the 3D visualization
of the images. Just as up to three images can be selected to form an RGB overlay, up to M
(where M is an integer greater than 1) images can be selected and displayed as a 3D volume
of, for instance, a time lapse sequence or a z-stack. Such visualization options in three
dimensions can be useful, if not essential, in the analysis of complex biological structures
(see, e.g., [18], [19]).

Importantly, Fig. 7 also illustrates that, given an image pointer array in the form of an
ImageSet, the viewer can additionally be supplied with corresponding Sets. By carrying out
on-the-fly processing of an image according to its associated settings contained in these
Sets, the viewer enables the viewing of processed (e.g., intensity-adjusted, cropped,
segmented, etc.) images without requiring that they pre-exist in RAM or on the hard disk.
However, in order that the viewer is shielded from the specifics of the various processing
tasks, this on-demand processing of images relies on its interaction with the SetUsage and
SingleUsage interfaces (Fig. 5). As such, new processing capabilities can be added to the
viewer by way of new types of Sets and Singles that support operations which conform to
their respective interfaces.

To allow the user to view and to interactively specify and modify processing settings,
MIATool provides graphical user interfaces for displaying and manipulating the contents of
the various types of Sets. The graphical user interface to each type of Set is managed by a
different image processing tool. For example, as shown in Fig. 8, an IntensityTool is
responsible for mediating access to an IntensitySet, while a CropTool is the intermediary
that facilitates the manipulation of a CropSet. As it is important for the user to receive
immediate visual feedback on the effects of the changed settings on the images, an image
processing tool is designed to be able to work with the MIATool viewer. Through the
interface ViewerUsage (Fig. 8) that is supported by the viewer, a Tool can retrieve a Set
from the viewer, return to it a modified version of the Set based on the user input, and “ask”
the viewer to re-process and re-display the current image. Any changes due to the modified
settings are then reflected immediately in the refreshed display. As an example, Fig. 9 shows
the same viewer as in Fig. 6, but displaying an altered version of the same image that has
been specified interactively via the intensity adjustment tool and the crop tool shown.

Conversely, all image processing tools implement a common interface ToolUsage (Fig. 8)
which is used by the MIATool viewer. Relying on the operations specified by this interface,
the viewer can, for example, open and close the graphical user interface that is provided by a
Tool without knowing the Tool’s implementation details. Through this interface, it can also
request the various Tools to display the processing settings that correspond to the currently
displayed image (e.g., the settings displayed in the intensity adjustment tool and the crop
tool of Fig. 9 reflect that of the displayed image). This capability is essential as the viewer
uses it to ensure that the information reported by the tool graphical user interfaces stays
updated whenever a new current image is selected by the user. Importantly, by adhering to
the ToolUsage and ViewerUsage interfaces, the design criterion of software extensibility
specified in Section I-A is also fulfilled for the visual and interactive component of
MIATool as viewer-compatible image processing tools can be created with relative ease to
support new types of Sets and Singles.

Along with the Sets they modify, the image processing tools we have discussed thus far
constitute a simple and extensible means of supporting processing on a per-image basis.

Chao et al. Page 14

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



While it makes sense to realize many kinds of image processing in this manner, there is a
different category of processing that operates on multiple images at a time. Just as 3D
visualization displays multiple images together in one form or another, 3D processing such
as movie making and particle tracking operates on multiple images at a time. Analogous to
how 3D visualization can be realized, an implementation of the MIATool framework can
take advantage of the MIATool viewer’s multiple image selection feature to create 3D
processing tools. Internally in our laboratory, for example, a movie making tool and other
types of 3D processing tools have been implemented which, analogous to the way RGB
overlays are displayed in MIATool V1.1, operate on images along a particular dimension of
an image pointer array.

VI. Storage Management of Images and Associated Information
In Section III, we gave practical examples of microscopy image analysis which illustrate
that different image pointer arrays (ImageSets) may be employed for performing various
analysis tasks on images from the same physical data set (Fig. 3). In Section IV, we
discussed corresponding arrays of settings of various types (IntensitySets, CropSets, etc.), as
well as arrays of metadata and analytical results, which may be associated with a given
image pointer array. Consequently, a physical set of images in RAM or on the hard disk can
be associated with several ImageSets, each of which can in turn be associated with several
corresponding Sets. All things combined, a physical image data set can potentially be
associated with many ImageSets and corresponding Sets of different types. Even more Sets
could be involved if, for example, multiple Sets of the same type are associated with the
same image pointer array. One can imagine, for instance, the use of multiple CropSets to
define different regions of interest within the referenced images.

In addition to being potentially large in quantity, the Sets associated with a physical data set
are related to one another in different ways. For example, while all ImageSets are “peers” in
the sense that they represent independent logical data sets derived from the same physical
image data, a given IntensitySet is “attached” to the particular ImageSet with which it is
associated.

Due to the potentially large amount of differently-related information that can be associated
with a physical image data set, a storage management mechanism that provides organization
is needed as pointed out in Section I-A as a software design criterion. That is, not only is it
important for this mechanism to group data and information that are related, it is essential
that it organizes them in a way that encodes their relationships. To this end, MIATool
employs a manager which enforces storage in a hierarchical directory structure to help with
the organization of a physical image data set with the potentially many and differently-
related ImageSets and corresponding Sets that are used for its analysis. The hierarchical
directory structure importantly allows the manager to capture the relationships between the
various ImageSets and corresponding Sets, and it can be applied to both storage in RAM and
storage on the hard disk.

As illustrated in Fig. 10(a), the MIATool storage manager stores all ImageSets and their
corresponding Sets in the same directory as the physical image data with which they are
associated, but under a subdirectory structure of their own to denote a clear separation
between the physical images and the logical data sets used to analyze them. Within this
subdirectory, each ImageSet is given its own subdirectory, underneath which all of its
corresponding IntensitySets, CropSets, etc., are grouped by type and stored in separate
subdirectories of their own. For storage on disk, this hierarchy of directories is literally
created on the hard disk. For storage in RAM, however, the implemented directory structure
would only be logical in nature.

Chao et al. Page 15

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The MIATool storage manager is abstracted by the class MIAToolDirectory, diagrammed in
Fig. 10(b). An instance of MIAToolDirectory acts as a table of contents for the directory
structure it manages. It keeps track of information such as the location of the top level
directory and the names of the subdirectories that contain the physical image data and the
ImageSets. It also records information such as the number of saved ImageSets and their file
names, and maintains details such as the number and file names of corresponding Sets of
each type that are associated with each ImageSet. (Note that when the storage is in RAM,
details such as directory and file names are still relevant as they provide a means for
uniquely identifying each ImageSet and its associated Sets.) Importantly, a
MIAToolDirectory provides operations for the saving and the retrieval of ImageSets and the
various Sets to and from its managed directory structure. These operations ensure that
ImageSets and their associated Sets are saved to and retrieved from the correct locations
within the hierarchy of directories, and that the information contained in a
MIAToolDirectory is updated properly (e.g., that an appropriate counter is incremented
when a new Set is saved).

Though most straightforwardly interpreted and implemented as a directory structure that
resides on a single hard drive of a single computer, it is important to note that the
hierarchical structure managed by a MIAToolDirectory can be realized as one that spans
multiple networked computers running potentially different operating systems. As long as
all the images and all the associated ImageSets and their corresponding Sets are uniquely
identifiable and retrievable across the network and the various platforms, a
MIAToolDirectory can be implemented that manages subdirectories of images, ImageSets,
and other Sets that reside on different computers. A MIAToolDirectory implementation that
supports such network-spanning, cross-platform image data sets can be particularly useful
for large-scale collaborative projects (see, e.g., [13], [14]).

In a collaborative project, it is also important that different users are able to access the same
image data set simultaneously, and yet manipulate it differently. This sharing of data can
help to avoid the replication of the large amounts of data that are especially typical of large-
scale collaborations. To this end, read-only image data can be stored on shared drives across
the network, such that multiple users can access the images at the same time, but are not able
to overwrite them. Given a shared data set, two general approaches can be used to support
the analyses performed by the users. With either approach, each user can create and work
with his or her own ImageSets that reference the same shared images. However, the two
schemes differ in the way the access to the shared images and the storage of results are
realized.

In the first approach, each user has his or her own storage manager (i.e., MIAToolDirectory)
through which he or she accesses the shared images and saves the results of analysis. In this
scenario, each user’s own ImageSets and corresponding Sets are saved under his or her own
directory structure. This approach avoids the sharing of a storage manager by the users, but
lacks a central mechanism that keeps track of the storage locations of the results of all
analyses that are associated with the shared image data. (Note that since they are read-only,
it is possible to have multiple storage managers that provide potentially concurrent access to
the shared images.)

In the second approach, all users go through a shared storage manager to access the shared
images and save their results. In this scheme, each user’s ImageSets and corresponding Sets
are saved under a single central directory structure. The single storage manager adopted by
this approach provides a means to centrally locate the results of all analyses that are
performed on the shared image data. However, while the storage manager can allow
concurrent access to the read-only images, the saving of the users’ analysis results must be

Chao et al. Page 16

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



done in a sequential way to ensure that the manager always has accurate knowledge of the
contents of the central directory structure.

VII. Conclusion
We have described the MIATool software framework which has been built based on several
design considerations pertaining to the analysis of complex image data sets produced by
modern optical microscopy experiments. A central design criterion is support for the use of
different arrangements of a set of images to facilitate the execution of the different
processing tasks that comprise a microscopy data analysis. To this end, MIATool supports
data analysis that is based on logical image arrangements in the form of arrays of pointers to
the physical images. These image pointer arrays can be of arbitrary size and dimension, thus
allowing MIATool to accommodate analysis tasks with disparate requirements.

The use of image pointer arrays also allows MIATool to support the storage and analysis of
large image data sets, and thereby address another important software design consideration.
Pointer arrays are typically significantly smaller in size than the sets of images they
reference. Therefore, by enabling the realization, manipulation, and storage of different
image arrangements without the need to replicate and shuffle the actual images in their
physical storage medium, pointer arrays make for the space-efficient usage of RAM and the
hard disk, and naturally permit MIATool to handle data sets containing large numbers of
images. An additional advantage of using a pointer array is that its pointers can refer to
images of different sizes and file formats. Consequently, MIATool can easily support sets of
different-sized images of possibly different file formats, and hence account for the data
heterogeneity design consideration.

To address the design criterion of flexibility in processing, the idea of image pointer arrays
is complemented by corresponding arrays of processing settings, metadata, and analytical
results which provide the ability to perform differential processing on a per-image basis.
Importantly, the construction of these corresponding arrays is described by a simple
paradigm that, when adhered to, allows the relatively easy incorporation of new image
processing capabilities. A crucial design consideration, the idea of software extensibility
also plays an important role in the design of MIATool’s image viewer and processing tools.
The viewer supports the visualization of the images referenced by a multi-dimensional
image pointer array, while the tools support their interactive, on-the-fly processing via the
modification of the processing settings stored in corresponding arrays. By specifying the
viewer and the processing tools to interact through well-defined interfaces, the framework
allows the straightforward addition of new viewer-compatible processing tools.

Lastly, in accordance with the storage management design criterion, MIATool specifies a
storage manager which enforces, either in RAM or on the hard disk, the association of a
physical image data set with the pointer and corresponding arrays that are used for its
analysis. Importantly, this manager plays an organizing role in using a hierarchical directory
structure to maintain the relationships among the various arrays.

The MIATool framework and its current implementation [10] have been developed over the
course of several years based on design elements we have found to be essential for working
with microscopy image data. In our laboratory, it has been, and continues to be, employed
for projects of varying sophistication. Taken together, we find that the various features of
MIATool make it a suitable software framework for a research environment where
microscopy imaging experiments produce constantly evolving data analysis requirements.

Chao et al. Page 17

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Acknowledgments
This work was supported in part by grants from the National Institutes of Health (R01 GM071048, R01 AI050747,
R01 AI039167, and R01 GM085575).

References
1. Lacey, AJ., editor. Light Microscopy in Biology: A Practical Approach. 2nd ed. Oxford, UK:

Oxford University Press; 1999.

2. Inoué, S.; Spring, KR. Video Microscopy: The Fundamentals. 2nd ed. New York: Plenum Press;
1997.

3. Moerner WE. New directions in single-molecule imaging and analysis. Proc. Natl. Acad. Sci. USA.
2007; vol. 104(no. 31):12 596–12 602.

4. Herman, B. Fluorescence Microscopy. 2nd ed. Oxford, UK: BIOS Scientific Publishers; 1998.

5. Lichtman JW, Conchello J. Fluorescence microscopy. Nat. Methods. 2005; vol. 2(no. 12):910–919.
[PubMed: 16299476]

6. Swedlow JR, Goldberg I, Brauner E, Sorger PK. Informatics and quantitative analysis in biological
imaging. Science. 2003; vol. 300(no. 5616):100–102. [PubMed: 12677061]

7. Ahmed WM, Lenz D, Liu J, Robinson JP, Ghafoor A. XML-based data model and architecture for a
knowledge-based grid-enabled problem-solving environment for high-throughput biological
imaging. IEEE Trans. Inf. Technol. Biomed. 2008 Mar.vol. 12(no. 2):226–240. [PubMed:
18348952]

8. Rasband, WS. ImageJ. [Online]. Available: http://rsb.info.nih.gov/ij

9. Clendenon JL, Byars JM, Hyink DP. Image processing software for 3D light microscopy. Nephron
Exp. Nephrol. 2006; vol. 103(no. 2):e50–e54. [PubMed: 16543764]

10. MIATool V1.1. [Online]. Available: http://www4.utsouthwestern.edu/wardlab/miatool

11. Chao, J.; Long, P.; Ward, ES.; Ober, RJ. Design and application of the Microscopy Image Analysis
Tool. Proc. IEEE Engineering in Medicine and Biology Workshop; Dallas, TX. 2007. p. 94-97.

12. Schmuller, J. Sams Teach Yourself UML in 24 Hours. 3rd ed. Indianapolis, IN: Sams Publishing;
2004.

13. Lichtman JW, Sanes JR. Ome sweet ome: what can the genome tell us about the connectome?
Curr. Opin. Neurobiol. 2008; vol. 18(no. 3):346–353. [PubMed: 18801435]

14. Helmstaedter M, Briggman KL, Denk W. 3D structural imaging of the brain with photons and
electrons. Curr. Opin. Neurobiol. 2008; vol. 18(no. 6):633–641. [PubMed: 19361979]

15. Prabhat P, Ram S, Ward ES, Ober RJ. Simultaneous imaging of different focal planes in
fluorescence microscopy for the study of cellular dynamics in three dimensions. IEEE Trans.
Nanobiosci. 2004; vol. 3(no. 4):237–242.

16. Prabhat P, Gan Z, Chao J, Ram S, Vaccaro C, Gibbons S, Ober RJ, Ward ES. Elucidation of
intracellular recycling pathways leading to exocytosis of the Fc receptor, FcRn, by using
multifocal plane microscopy. Proc. Natl. Acad. Sci. USA. 2007; vol. 104(no. 14):5889–5894.
[PubMed: 17384151]

17. Ram S, Prabhat P, Chao J, Ward ES, Ober RJ. High accuracy 3D quantum dot tracking with
multifocal plane microscopy for the study of fast intracellular dynamics in live cells. Biophys. J.
2008; vol. 95(no. 12):6025–6043. [PubMed: 18835896]

18. Jurrus E, Hardy M, Tasdizen T, Fletcher PT, Koshevoy P, Chien C-B, Denk W, Whitaker R. Axon
tracking in serial block-face scanning electron microscopy. Med. Image Anal. 2009; vol. 13(no. 1):
180–188. [PubMed: 18617436]

19. Lu J, Tapia JC, White OL, Lichtman JW. The interscutularis muscle connectome. PLoS Biol.
2009; vol. 7(no. 2):e1000032.

Chao et al. Page 18

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://rsb.info.nih.gov/ij
http://www4.utsouthwestern.edu/wardlab/miatool


Biographies

Jerry Chao received the B.S. and M.S. degrees in computer science from the University of
Texas at Dallas, Richardson, in 2000 and 2002, respectively. He is currently working toward
the Ph.D. degree in the Department of Electrical Engineering at the same institution.

From 2003 to 2005, he developed software for microscopy image acquisition and analysis at
the University of Texas Southwestern Medical Center, Dallas. He is currently a Research
Assistant in the Department of Electrical Engineering, University of Texas at Dallas,
Richardson. His research interests include image and signal processing for cellular
microscopy and the development of software for bioengineering applications.

Mr. Chao is a Student Member of the Biophysical Society.

E. Sally Ward received the Ph.D. degree from the Department of Biochemistry, Cambridge
University, Cambridge, U.K., in 1985.

From 1985 to 1987, she was a Research Fellow at Gonville and Caius College while
working at the Department of Biochemistry, Cambridge University. From 1988 to 1990, she
held the Stanley Elmore Senior Research Fellowship at Sidney Sussex College and carried
out research at the MRC Laboratory of Molecular Biology, Cambridge. In 1990, she joined
the University of Texas Southwestern Medical Center, Dallas, as an Assistant Professor.
Since 2002, she has been a Professor in the Department of Immunology at the same
institution, and currently holds the Paul and Betty Meek-FINA Professorship in Molecular
Immunology. Her research interests include antibody engineering, molecular mechanisms
that lead to autoimmune disease, questions related to the in vivo dynamics of antibodies, and
the use of microscopy techniques for the study of antibody trafficking in cells.

Raimund J. Ober (S’87-M’87-SM’95) received the Ph.D. degree in engineering from
Cambridge University, Cambridge, U.K., in 1987.

From 1987 to 1990, he was a Research Fellow at Girton College and the Engineering
Department, Cambridge University. In 1990, he joined the University of Texas at Dallas,

Chao et al. Page 19

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Richardson, where he is currently a Professor with the Department of Electrical
Engineering. He is also Adjunct Professor at the University of Texas Southwestern Medical
Center, Dallas. He is an Associate Editor of Multidimensional Systems and Signal
Processing and Mathematics of Control, Signals, and Systems, and a past Associate Editor
of IEEE Transactions on Circuits and Systems and Systems and Control Letters. His
research interests include the development of microscopy techniques for cellular
investigations, in particular at the single molecule level, the study of cellular trafficking
pathways using microscopy investigations, and signal/image processing of bioengineering
data.

Chao et al. Page 20

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 1.
The three-component MIATool software framework. The first component provides the
underlying representation and analysis of logical image data sets using multi-dimensional
image pointer arrays and corresponding arrays of processing settings, metadata, and
analytical results. The second component provides a graphical user interface for the viewing
and the interactive, on-the-fly processing of the pointer arrays. The third component
provides the RAM and disk storage management that associates a physical image data set
with the pointer arrays and the corresponding arrays that are used for its analysis.

Chao et al. Page 21

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 2.
The ImageSet and ImageSingle classes. An ImageSet contains an N-dimensional array of
ImageSingles, where each ImageSingle is a pointer which contains, for example, the
location on the hard disk at which an image resides. An ImageSingle also stores information
such as the size and color type of the image it references. Both the ImageSet and the
ImageSingle support operations for creating pointers to images and for retrieving images via
pointers.

Chao et al. Page 22

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
(a)–(d) Logical arrangements (image pointer arrays) of different sizes and dimensionalities
for performing different analysis tasks on the same set of physical images. An image pointer
is represented by a number followed by a subscript. The number refers to the sequence
number of the physical image that is referenced by the pointer, and the subscript “g” or “r”
refers, respectively, to the green or red color of that image. These arrangements are suitable
for (a) the simple visual inspection of, (b) the temporally-synchronized overlay of, (c) the
logical extraction of an event of interest from, and (d) the differential processing (e.g.,
intensity adjustment) of “duplicates” of, the physical images. (e) A 4D arrangement which
references images acquired from two different focal planes. The superscripts “B” and “T”
associated with the pointers refer to the “bottom” and “top” focal planes, respectively.

Chao et al. Page 23

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 4.
Examples of Set and Single classes for the processing of ImageSets and ImageSingles.
Analogous to the ImageSet-ImageSingle relationship, a Set contains an N-dimensional array
of its associated type of Singles. A Single at a particular position in the N-dimensional array
stores the settings for the processing of the ImageSingle located at the same position in the
array contained in a corresponding ImageSet. An IntensitySingle and a CropSingle contain,
respectively, the settings for the intensity adjustment and cropping of the image referenced
by a corresponding ImageSingle. Similarly, a SegmentationSingle and a LabelSingle store,
respectively, settings for the partitioning and labeling of the referenced image.

Chao et al. Page 24

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 5.
The SetUsage and SingleUsage interfaces. The SetUsage interface is supported by all Sets
and specifies standard Set operations such as the creation of an N-dimensional array of
Singles, the assignment and the retrieval of processing settings to and from a particular
Single, and the actual processing of the images referenced by a corresponding ImageSet
according to the stored processing settings. Analogously, the SingleUsage interface is
implemented by all Singles and specifies similar standard operations at the level of a Single.

Chao et al. Page 25

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
An instance of the MIATool V1.1 viewer that has been opened with four sliders for the
traversal of a 4D image pointer array. The array contains replicated pointers that reference a
physical data set of 11321 images on the hard disk, acquired using a two-plane multifocal
plane microscopy imaging setup. The dimensions of the pointer array are given by 2 (focal
planes) × 3946 (time points) × 2 (colors/fluorophores) × 2 (intensity settings). The displayed
image is an RGB overlay, formed on the fly, of two grayscale images of a human
microvascular endothelial cell acquired at different wavelengths corresponding to QD 655-
labeled IgG (red channel) and pHluorin-labeled FcRn (green channel). The two grayscale
images were acquired by two cameras that simultaneously imaged the “bottom” focal plane
of the two-plane imaging setup.

Chao et al. Page 26

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 7.
The MIAToolViewer class. A MIAToolViewer supports the interactive traversal and
viewing of the images referenced by an ImageSet. Optionally, it uses the processing settings
contained in the various types of Sets to process (e.g., intensity-adjust, crop, etc.) the images
on the fly before displaying them in processed form. A MIAToolViewer supports operations
for loading the ImageSet to view and the Sets to use, and for displaying the currently
selected images. Different types of displays can be specified. A grayscale image, for
example, can be visualized individually as a standard 2D image, a 3D mesh, or a contour
plot, or it can be displayed simultaneously with other grayscale images, either in parallel but
in its own window, or as a color channel in an overlay.

Chao et al. Page 27

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 8.
Interaction of the MIATool viewer with various image processing tools via the
ViewerUsage and the ToolUsage interfaces. The processing settings contained in a Set can
be displayed and modified through the graphical user interface provided by a corresponding
Tool. The settings in an IntensitySet, for example, can be manipulated using an
IntensityTool. Via the ViewerUsage interface supported by the MIATool viewer, any type
of Tool can retrieve its corresponding Set, return a potentially modified version of the Set,
and for immediate visual feedback request the viewer to re-display the current image which
may have been altered by the changed settings. On the other hand, all types of Tools
implement the ToolUsage interface which allows the viewer to, for example, open and close
a Tool, and to request a Tool to update its settings display whenever a new current image is
selected.

Chao et al. Page 28

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 9.
An instance of the MIATool V1.1 intensity adjustment tool (upper right panel) and an
instance of the crop tool (lower left panel) that have been opened for the display and
modification of, respectively, an IntensitySet and a CropSet that are loaded in an instance of
the MIATool viewer (upper left panel). The viewer instance is the same as the one in Fig. 6
and is displaying a version of the same image that has been intensity-adjusted and cropped
on the fly according to altered intensity and crop settings specified via the two tools. The
settings displayed in the tools reflect that of the modified image currently displayed.

Chao et al. Page 29

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 10.
MIATool’s image and Set storage management. (a) Sketch of a representative hierarchical
directory structure used by the MIATool storage manager. Underneath a root directory are
two subdirectories, one containing the physical set of images and the other the logical data
sets used to analyze those images. Within the latter subdirectory, each logical data set (i.e.,
ImageSet) occupies its own subdirectory. Underneath each ImageSet subdirectory are
subdirectories which store the Sets (e.g., IntensitySets, CropSets, etc.) that correspond to
that ImageSet. (b) The storage manager abstracted by the MIAToolDirectory class. A
MIAToolDirectory manages a directory structure like the one depicted in (a). It keeps track
of the location of the root directory and the names of all of its subdirectories, and maintains
information such as the number of saved ImageSets, their file names, and similar details
pertaining to any saved Sets corresponding to each ImageSet. A MIAToolDirectory also

Chao et al. Page 30

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



supports operations for the saving and retrieval of the various Sets to and from the directory
structure it manages.

Chao et al. Page 31

IEEE Trans Inf Technol Biomed. Author manuscript; available in PMC 2012 June 11.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


