

NIH Public Access

Author Manuscript

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2013 June 01

Published in final edited form as:

Cancer Epidemiol Biomarkers Prev. 2012 June ; 21(6): 988–992. doi:10.1158/1055-9965.EPI-12-0166.

EGFR Somatic Mutations in Lung Tumors: Radon Exposure and Passive-smoking in Former- and Never-smoking U.S. Women

Masataka Taga^{1,2,*,**}, Leah E. Mechanic^{2,**}, Nobutoshi Hagiwara^{2,3,*}, Kirsi H. Vähäkangas⁴, William P. Bennett⁵, Michael C. R. Alavanja⁶, Judith A. Welsh², Mohammed A. Khan², Adam Lee⁷, Robert Diasio⁷, Eric Edell⁸, Aaron Bungum⁸, Jin Sung Jang⁸, Ping Yang⁹, Jin Jen⁸, and Curtis C. Harris²

 ¹Department of Radiobiology/Molecular Epidemiology Radiation Effects Research Foundation;
5-2 Hijiyama Park, Minami-ku; Hiroshima City, 732-0815 Japan ²Laboratory of Human Carcinogenesis; National Cancer Institute, NIH; 37 Convent Drive; Building 37, Room 3068; Bethesda, MD 20892 ³Department of Surgery I, Nippon Medical School Hospital, Tokyo, Japan
⁴Faculty of Health Sciences, University of Eastern Finland; P.O. Box 1627; 70211 Kuopio, Finland
⁵Department of Biology, Beckman Research Institute at the City of Hope; 1500 East Duarte Road; Duarte, CA 91010 ⁶Department of Cancer, Epidemiology and Genetics; National Cancer Institute, NIH; Executive Plaza South, Room 8000; Bethesda, MD 20892 ⁷Mayo Clinic; Molecular Pharmacology and Developmental Therapeutics, and the Cancer Center, Gonda 19-127; 200 First Street SW; Rochester, MN 55905 ⁸Mayo Clinic; Pulmonary and Critical Care Medicine; Stabile 13-64; 200 First Street SW; Rochester, MN 55905 ⁹Mayo Clinic; Department of Health and Human Sciences Research, Charlton 6; 200 First Street SW; Rochester, MN 55905

Abstract

Background—Lung cancer patients with mutations in *EGFR* tyrosine kinase have improved prognosis when treated with *EGFR* inhibitors. We hypothesized that *EGFR* mutations may be related to residential radon or passive tobacco smoke.

Methods—This hypothesis was investigated by analyzing *EGFR* mutations in seventy lung tumors from a population of never and long-term former female smokers from Missouri with detailed exposure assessments. The relationship with passive-smoking was also examined in never-smoking female lung cancer cases from the Mayo clinic.

Results—Overall, the frequency of *EGFR* mutation was 41% [95% Confidence Interval (CI): 32-49%]. Neither radon nor passive-smoking exposure was consistently associated with *EGFR* mutations in lung tumors.

Conclusions—The results suggest that *EGFR* mutations are common in female, never-smoking, lung cancer cases from the U.S, and *EGFR* mutations are unlikely due to exposure to radon or passive-smoking.

Conflict of interest statement

No potential conflicts of interest were disclosed.

Address Correspondence to: Leah Mechanic, Ph.D., M.P.H., National Cancer Institute, NIH, Laboratory of Human Carcinogenesis, National Cancer Institute, NIH, 37 Convent Drive, Building 37, Room 3068, Bethesda, MD 20892, mechanil@mail.nih.gov. *Work was conducted when these authors were in the Laboratory of Human Carcinogenesis.

^{**} These authors contributed equally to this work and performed the analyses of EGFR mutations.

Keywords

EGFR mutations; never-smokers; lung cancer; radon; passive-smoking; second hand smoke; tobacco smoke

Introduction

Among never-smokers, lung cancer is the seventh leading cause of cancer death. A large proportion of lung cancer in never-smokers remains unexplained by established environmental risk factors. However, radon and passive-smoke exposure were associated with lung cancer in never-smokers in several studies (for review (1)).

Lung cancer has a poor prognosis overall, but small molecule inhibitors of *EGFR* result in improved survival in some patients. Therapeutic response correlates with somatic mutations in the *EGFR* gene. Those mutations are inversely correlated with cigarette smoking and more frequently observed in never-smokers (for review (2)). We investigated the possibility that residential radon or passive-smoking was associated with the presence of *EGFR* mutations in lung tumors in two populations of female never and long-term former smokers.

Methods

Study Populations

The Missouri Women's Health Study case series included Caucasian lung cancer cases nested within a case-control study of never- and former-smoking women (3-4). Lung cancer patients from the Mayo Clinic were described previously (5). Cases were limited to Caucasian women to ensure comparability to the Missouri study.

EGFR Mutation Analysis

Missouri Women—DNA previously isolated from microdissected tumor samples (4), available from 105 of 132 samples, was used for EGFR mutation analysis in the Laboratory of Human Carcinogenesis. Due to evaporation, the majority of DNA samples (74% or 78/105) were reconstituted using 10 µl of Tris-EDTA buffer (pH 7.5). PCR amplification was performed as a 50 µl reaction including 2 µl DNA stock solution, 1.25 U of Native Pfu DNA polymerase (Stratagene), 1X Pfu buffer, 300 nM forward and reverse primers for either exon 19 or exon 21 of EGFR; primers were identical to those reported previously (6). Amplification was performed using the following conditions: 95°C for 5 minutes followed by 40 cycles of 96°C for 45 sec, 58°C for 1 min, and 72°C for 1 min; a terminal extension cycle of 5 min at 72°C was included. If initial PCR reactions failed to amplify, a second PCR amplification reaction was performed using 5 µl of a 1:10 dilution of the PCR reaction mixture. Samples that failed the first series of amplifications were re-amplified using a second aliquot of genomic DNA. Overall, thirty-two (30%) of 105 genomic samples failed to amplify. DNA sequencing was performed as per manufacturer's instructions on an ABI PRISM 3100 Genetic Analyzer (Applied Biosystems) by NCI DNA MiniCore Facility using the PCR amplification primers. Forward and reverse sequences were 100% concordant.

Mayo Clinic—*EGFR* mutations were analyzed at the Mayo Clinic as part of oncogene mutation screening using the OncoCartaTM Panel v1.0 (Sequenom, San Diego, CA) on the Sequenom MassArray Genetic Analysis platform following manufacturer's protocol. Data analysis was performed using MassArray Typer Analyzer 4.0 software (Sequenom, San Diego, CA). Performance of the assay was evaluated against a panel of lung tumor samples

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2013 June 01.

and cell lines with previously identified mutations. EGFR gene mutation data was available for all 73 cases from the Mayo clinic study.

Statistical Analysis

Samples with incomplete sequencing data for *EGFR* (e.g. failed amplification at one or more exons) were considered missing. The Mayo Clinic study had mutation data on additional EGFR exons compared to the Missouri study. Cases with mutations in exons other than 19 and 21 were considered wild-type for *EGFR* (N=3). Results were similar when they were considered mutant (data not shown).

Never-smokers were defined as persons who had either smoked < 100 cigarettes or not used any tobacco products during their lifetimes. To examine association of any exposure to passive-smoking in the Missouri study, categories of exposure (< 21, 21-52, and >52 pack-years) were combined and compared to 0 pack-years. Former-smokers in the Missouri study abstained from tobacco for at least 15 years prior to interview (3). In the Mayo Clinic Study, passive-smoke dosimetry included both adult and/or in childhood exposures. Data analysis was performed by SAS version 9.1 (SAS Institute, Cary, NC) using two-sided tests in the Laboratory of Human Carcinogenesis.

Results

Twenty-four of the Missouri cases (34%; 95% CI: 23% - 47%) and thirty-four of the Mayo clinic cases (47%; 95% CI: 35% - 59%) had mutations detected in exons 19 or 21 of *EGFR* (Table 1). Overall, the mutation frequency was 41% (95% CI: 32\% - 49.0%).

While there was a difference in the quartiles of radon exposure associated with *EGFR* mutation (P=0.01), this was not significant when exposure was dichotomized at the median (P=0.14, Fisher's Exact Test) and no difference was observed when considering radon as a continuous measure (P=0.16) and there was no evidence for a dose-response relationship with radon exposure (Table 2).

In the Missouri Women's Health Study cases, there was an inverse association of *EGFR* mutations with any exposure to passive-smoke, but no clear dose response relationship was observed with passive-smoke exposure quantified in pack-years. In the Mayo clinic population, no association was observed between *EGFR* mutations and adult exposure, childhood exposure, or any exposure to passive-smoke (Table 2).

Discussion

Our data do not support the hypothesis that radon exposure contributes to mutations in *EGFR*. The mutation frequency appeared elevated at low-dose exposure and diminished at higher exposure levels, but we noticed a similar trend with *TP53* mutations (4). The relationship of radon with lung cancer risk is thought to be linear (1), so our inverse trend between radon dose and *EGFR* mutations probably occurred by chance.

We observed an inverse association of passive-smoke exposure with *EGFR* mutations in lung tumors in the Missouri study, but this finding failed to replicate in the Mayo Clinic never-smoker patient cohort. Previously, an inverse association with passive-smoke exposure as an adult or in childhood was observed (7). However, another study linked long-term exposure to passive-smoking with excess *EGFR* mutations (8).

In conclusion, we observed a high frequency of *EGFR* mutations in lung tumors from neversmoking and long-term former-smoking women in the U.S., but no association between *EGFR* mutations with passive-smoking or residential radon exposure.

Acknowledgments

We thank Karen MacPherson for bibliographic assistance.

Funding

Grant support: Intramural Research Program of the NIH, NCI and CCR. The support from the Mayo Clinic study was provided by the Mayo Foundation, Mayo Clinic Cancer Center, Center for Individualized Medicine and NIH grants CA-77118 (Yang) and CA-80127 (Yang). The Radiation Effects Research Foundation (RERF), Hiroshima and Nagasaki, Japan is a private, non-profit foundation funded by the Japanese Ministry of Health, Labour and Welfare (MHLW) and the U.S. Department of Energy (DOE), the latter in part through DOE Award DE-HS0000031 to the National Academy of Sciences. The views of the authors do not necessarily reflect those of the two governments.

References

- Samet JM, Avila-Tang E, Boffetta P, Hannan LM, Olivo-Marston S, Thun MJ, et al. Lung cancer in never smokers: clinical epidemiology and environmental risk factors. ClinCancer Res. 2009; 15:5626–45.
- 2. Mitsudomi T, Kosaka T, Yatabe Y. Biological and clinical implications of EGFR mutations in lung cancer. IntJClinOncol. 2006; 11:190–8.
- Alavanja MC, Brownson RC, Lubin JH, Berger E, Chang J, Boice JD Jr. Residential radon exposure and lung cancer among nonsmoking women. Journal of the National Cancer Institute. 1994; 86:1829–37. [PubMed: 7990157]
- Vahakangas KH, Bennett WP, Castren K, Welsh JA, Khan MA, Blomeke B, et al. p53 and K-ras mutations in lung cancers from former and never-smoking women. Cancer Res. 2001; 61:4350–6. [PubMed: 11389059]
- Yang P, Wentzlaff KA, Katzmann JA, Marks RS, Allen MS, Lesnick TG, et al. Alpha1-Antitrypsin deficiency allele carriers among lung cancer patients. Cancer Epidemiology Biomarkers & Prevention. 1999; 8:461–5.
- 6. Marchetti A, Martella C, Felicioni L, Barassi F, Salvatore S, Chella A, et al. EGFR mutations in non-small-cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. Journal of Clinical Oncology. 2005; 23:857–65. [PubMed: 15681531]
- Lee YJ, Cho BC, Jee SH, Moon JW, Kim SK, Chang J, et al. Impact of Environmental Tobacco Smoke on the Incidence of Mutations in Epidermal Growth Factor Receptor Gene in Never-Smoker Patients With Non-Small-Cell Lung Cancer. Journal of Clinical Oncology. 2010; 28:487–92. [PubMed: 20008630]
- Kawaguchi T, Ando M, Kubo A, Takada M, Atagi S, Okishio K, et al. Long Exposure of Environmental Tobacco Smoke Associated with Activating EGFR Mutations in Never-Smokers with Non-Small Cell Lung Cancer. Clinical Cancer Research. 2011; 17:39–45. [PubMed: 21059816]

Table 1

NIH-PA Author Manuscript

EGFR Gene Mutations in Never and Former Smoking Lung Cancer Patients

Amino Acid Change

Glu>Asp Leu>Arg

Leu>Arg

Leu>Arg Leu>Arg Leu>Arg Leu>Arg Leu>Phe

Ala>Thr Leu>Leu Ala>Val

Patient ID	Histology	EGFRexon	Mutation Type	Codon(s)	Nucleotide Change
Missouri Women					
2	adenocarcinoma	19	Deletion	del Glu746-Ala750	
9	other/mixed	21	Point	858	CTG>CGG
48	small cell carcinoma	21	Point	866	GAG>GAT
54	adenocarcinoma	21	Point	858	CTG>CGG
56	adenocarcinoma	19	Deletion	del Glu746-Ala750	
57	adenocarcinoma	21	Point	858	CTG>CGG
60	adenocarcinoma	21	Point	858	CTG>CGG
69	adenocarcinoma	21	Point	858	CTG>CGG
71	adenocarcinoma	21	Point	858	CTG>CGG
72	adenocarcinoma	19	Deletion	del Glu746-Ala750	
74	adenocarcinoma	21	Point	833	TTG>TTT
76	adenocarcinoma	19	Deletion plus insertion	del Leu747-Pro753 (ins Ser) ^a	
78	adenocarcinoma	19	Deletion plus insertion	del Leu747-Ala750 (ins Pro) ^a	
81	adenocarcinoma	19	Point	743	GCT>ACT
88	adenocarcinoma	21	Point (silent)	858 (silent)	CTG>CTT
95	adenocarcinoma	19	Deletion	del Glu746-Ala750	
104	adenocarcinoma	21	Point	864	GCG>GTG
105	adenocarcinoma	19	Deletion	del Glu746-Ala750	
126	adenocarcinoma	19	Deletion	del Glu746-Ala750	
129	bronchioloalveolar carcinoma	19	Deletion	del Glu746-Ala750	
134	adenocarcinoma	21	Point	858	CTG>CGG
135	bronchioloalveolar carcinoma	19	Deletion plus insertion	del Glu746-Ser752 (ins Val) ^a	
136	adenocarcinoma	21	Point (silent)	848 (silent)	CCG>CCT
139	other/mixed	19	Deletion	del Ser752 -Ile759	
Mayo Clinic Study					

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2013 June 01.

Leu>Arg

Pro>Pro

Patient ID	Histology	EGFRexon	Mutation Type	Codon(s)	Nucleotide Change	Amino Acid Change
	adenosquamous					
921901995	carcinoma	21	Point	858	CTG>CGG	Leu>Arg
921901997	adenocarcinoma	21	Point	858	CTG>CGG	Leu>Arg
921902006	bronchioloal veolar carcinoma	21	Point	858	CTG>CGG	Leu>Arg
921902011	adenocarcinoma	19	Deletion	del Glu746-Ala750		
921902017	adenosquamous carcinoma	21	Point	858	CTG>CGG	Leu>Arg
921902018	adenocarcinoma bronchioloal veolar	19	Deletion	del Glu746-Ala750		
921902021	carcinoma	19	Deletion plus insertion	del Leu747-Pro753 (ins Ser) ^a		
921902023	adenocarcinoma	19	Deletion	del Glu746-Ala750		
921902024	adenocarcinoma	21	Point	858	CTG>CGG	Leu>Arg
921902032	adenocarcinoma	19	Deletion	del Glu746-Ala750		
921902033	adenosquamous carcinoma	19	Deletion	del Glu746-Ala750		
921902049	adenocarcinoma	19	Deletion	del Glu746-Ala750		
921902055	adenocarcinoma	21	Point	858	CTG>CGG	Leu>Arg
921902063	adenocarcinoma	19	Deletion plus insertion	del Leu747-Ala750 (ins Pro) ^a		
921902067	adenocarcinoma	19	Deletion	del Glu746-Ala750		
921902070	adenocarcinoma	19	Deletion	del Glu746-Ala750		
921902071	adenocarcinoma	19	Deletion plus insertion	del Glu746-Thr751 (ins Val) ^a		
921902084	adenocarcinoma	19	Deletion	del Glu746-Ala750		
921902086	bronchioloal veolar carcinoma	19	Deletion	del Glu746-Ala750		
921902118	adenosquamous carcinoma	21	Point	858	CTG>CGG	Leu>Arg
921902119	adenocarcinoma	21	Point	858	CTG>CGG	Leu>Arg
921902121	adenocarcinoma	19	Deletion	del Glu746-Ala750		
921902132	adenocarcinoma	19	Deletion	del Glu746-Ala750		
921902140	adenocarcinoma	19	Deletion	del Glu746-Ala750		
921902148	adenocarcinoma	19	Deletion	del Glu746-Ala750		

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2013 June 01.

Taga et al.

					Nucleotide	
Patient ID	Histology	EGFRexon	Mutation Type	Codon(s)	Change	Amino Acid Change
921902154	adenocarcinoma	19	Deletion	del Glu746-Ala750		
921902157	squamous cell carcinoma	19	Deletion	del Glu746-Ala750		
921902160	squamous cell carcinoma	19	Deletion	del Glu746-Ala750		
921902161	adenocarcinoma	21	Point	858	CTG>CGG	Leu>Arg
921902163	adenocarcinoma	19	Deletion plus insertion	del Leu747-Ala750 (ins Pro) ^a		
921902171	adenocarcinoma	21	Point	858	CTG>CGG	Leu>Arg
921902172	adenocarcinoma	21	Point	858	CTG>CGG	Leu>Arg
921902175	adenocarcinoma	21	Point	858	CTG>CGG	Leu>Arg
921902187	adenocarcinoma	19	Deletion	del Glu746-Ala750		

 a_{ins} , Insertion of Amino Acid in parentheses

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

NIH-PA Author Manuscript

Taga et al.

Association of EGFR mutations with Patient Charactersitics

		Missour	i Wome				Mavo Cli	nic Stı	vbr	
		EG	FR				ÈEG	FR	,	
	N-	Iutation N=46	N +	futation N=24		IM− N	ıtation ∣=39	N 1M+	itation =34	
	z	%	z	%	p-value					p-value
Histological Subtype										
Adenocarcinoma ^a	34	74	19	80	$q^{86.0}$	28	72	29	85	0.28^{b}
Bronchioloalveolar carcinoma	4	6	2	8		4	10	3	9	
Squamous cell carcinoma	2	4	0	0		3	8	2	6	
Small cell carcinoma	1	2	1	4		0	0	0	0	
Other	5	11	2	8		4	10	0	0	
Age (years)										
median, IQR	76	64-79	99	61-78	$0.24^{\mathcal{C}}$	68	57-75	72	67-79	$0.06^{\mathcal{C}}$
missing	3		1							
Passive-Smoke										
No exposure	21	47	17	<i>†1</i>	0.04^{b}	10	32	4	15	0.22^{b}
Any exposure	24	53	9	26		21	68	22	85	
Missing	1		1			8		8		
Passive-Smoke (Pack-years)										
No exposure	21	14	17	<i>†1</i>	$q^{80.0}$	ри		рu		
< 21	10	22	3	13						
21-52	11	74	1	4						
>52	3	2	2	6						
Missing	1		1							
Passive-Smoke (Adult Exposure)										
No exposure	pu		pu			11	35	8	31	0.78^{b}
Any exposure						20	65	18	69	

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2013 June 01.

_
_
_
U
-
-
I>
-
-
-
_
-
\mathbf{n}
\mathbf{U}
_
_
_
2
Ξ
S
M
Ma
Mai
r Man
Man
r Manu
r Manu
r Manus
r Manus
r Manus
r Manusc
r Manusc
r Manuscr
r Manuscri
r Manuscrij
r Manuscrip
r Manuscrip
r Manuscript

z

NIH-PA	
Author	
Manusci	
ript	

		Missouri EG	Wome FR	u		2	Mayo Cli EG	nic Stu FR	ıdy	
	M-	lutation N=46	[M+	lutation N=24		-M-	ıtation ∣=39	nM+ N	itation =34	
	Z	%	Z	%	p-value					p-value
Missing						8		8		
Passive-Smoke (Child Exposure)										
No exposure	pu		pu			22	12	13	50	$_{0.17}^{b}$
Any exposure						6	29	13	50	
Missing						8		8		
Radon Exposure (Bq/m ³)										
4.8 - 33.3	13	$\partial \mathcal{E}$	5	23	0.01^{b}	pu		pu		
35.2 - 55.5	5	11	6	41						
56.2 - 82.7	6	20	6	27						
> 82.7	17	6E	2	6						
missing	2		2							
Radon Exposure (Bq/m ³)										
median, IQR	63.7	30.5-94.1	46.5	37.0-57.4	$0.16^{\mathcal{C}}$	pu		pu		
missing			2							

nd, not determined

 $^{2}\mathrm{Five}$ of the adenocarcinomas in the Mayo Clinic Study were adenos quamous histology.

 $b_{\rm Fisher's\ Exact\ test}$

cWilcoxon two-sample test

Taga et al.

Cancer Epidemiol Biomarkers Prev. Author manuscript; available in PMC 2013 June 01.