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Abstract
This review is focused on aging-related changes in cells and extracellular matrix of the articular
cartilage. Major extracellular matrix changes are a reduced thickness of cartilage, proteolysis,
advanced glycation and calcification. The cellular changes include reduced cell density, cellular
senescence with abnormal secretory profiles, and impaired cellular defense mechanisms and
anabolic responses. The extracellular and cellular changes compound each other, leading to
biomechanical dysfunction and tissue destruction. The consequences of aging-related changes for
joint homeostasis and risk for osteoarthritis are discussed.
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Introduction
OA is the most prevalent joint disease and aging is among its main risk factors [1, 2]. OA is
rare among individuals younger than 45 years, even in those with OA risk factors, such as
obesity, joint trauma, joint malalignment or abnormal shape and leg length inequality [3, 4].
Such individuals are at a higher risk of developing OA at an earlier age and with increased
severity. The majority of cases develop OA after long time intervals of exposure to the
effects of risk factors and this is reflected by a close correlation between increasing age and
OA prevalence. While aging-related changes occur in joint tissues of all individuals, most
notably in articular cartilage, symptomatic, radiographic, macroscopic or microscopic OA
does not manifest in all individuals, even at advanced age [5, 6] (Figures 1, 2). This pattern
of joint aging and OA suggests that aging does not necessarily cause OA but that aging-
related changes provide a basis upon which OA can be initiated. Individuals with specific
OA risk factors may undergo an accelerated rate of changes that are similar to those
associated with aging. This notion is consistent with the general concept that aging is the
consequence of an imbalance between stressors that cause damage and mechanisms that
repair or protect against damage [7]. The aging process is systemic and affects all organs
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and tissues. However, specific changes at the organ, tissue and cellular level may exceed the
extent of normal aging and trigger the development of aging-related disease in a particular
organ.

OA is a disease of the joint as the functional unit or organ and affects all joint tissues. In a
similar fashion, joint aging affects all tissues. Post-mitotic cells are thought to be more
vulnerable to accumulation of aberrant proteins and metabolic waste [8]. This may explain
in part why articular cartilage, which is composed of cells with a very low rate of replication
during adulthood, is the joint tissue most affected by the aging process. Aging-related
changes have been characterized in detail in extracellular matrix (ECM) and cells of
articular cartilage (Table 1) and progress has been made in linking this to dysregulation of
mechanisms and signaling pathways that control cellular homeostasis, activation,
differentiation and survival. The influence of aging on other joint tissues, such as ligaments
[9] and menisci [10] has been examined at some level of detail but not much information is
available on synovial membrane and fluid. Aging-related changes in subchondral bone have
been described [11] but their relationship to cartilage aging and OA development remains to
be resolved [12]. Based on the more detailed information on aging-related changes in the
articular cartilage and their role in initiating OA, this review summarizes manifestations of
cartilage aging and discusses how these may set the stage for the development of OA.

Articular cartilage extracellular matrix changes in aging
The principal function of the articular cartilage is to adjust to the biomechanical forces it
experiences during joint movement, to absorb and distribute compressive load and to
withstand shear stress [13]. As these functions are mediated by the ECM, cartilage
homeostasis can functionally be defined as the condition where a normal cartilage ECM
composition deals with mechanical stress without structural or cellular damage.

Normal cartilage extracellular matrix
The normal cartilage ECM is composed of molecules that endow it with compressive
stiffness, elastic properties and lubrication at its surface. The cartilage ECM is produced and
maintained by the one cell type present in the tissue, the articular chondrocyte. Although it
does not directly absorb much of the load placed on the joint, the cartilage deforms during
joint loading and transmits the force to the underlying bone in a manner dependent on joint
shape and congruity. The resiliency of cartilage and the ability to withstand compressive
loads is primarily due to the large proteoglycan aggrecan. As the load is removed from the
joint, water that was squeezed out during loading is attracted back in by the highly
negatively charged, hydrophilic, proteoglycans. Collagen fibers, consisting primarily of type
II collagen, provide the tensile strength knee with normal activities [14]. The normal
articular surface is smooth with a very low coefficient of friction allowing for an efficient
gliding motion during joint use. A boundary layer of lubricants is present on the cartilage
surface consisting of lubricin and hyaluronic acid [15]. Lubricin was previously called
“superficial zone protein” because it was noted to be produced by the superficial zone
chondrocytes although it is also produced by synovial cells [16].

Aging-related changes in ECM and implications for biomechanical properties
With aging and OA, articular cartilage ECM changes in total amount, composition and
undergoes proteolysis and other posttranslational modifications [17]. The superficial zone is
where the earliest changes occur in human articular cartilage aging with superficial defects
and fibrillation being noted [5, 18, 19]. The superficial zone is also most susceptible to
mechanical injury [23, 24]. In the human knee these changes are most notable in the patella,
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then medial femoral condyle, followed by lateral femoral condyle [19]. These structural
changes correlate with biomechanical dysfunction in cartilage [20].

In OA, increased proteolytic activity in cartilage and synovial fluid cause cartilage matrix
changes [25], with an increase in degraded collagen molecules [26, 27]. This degradation is
accompanied by the loss of intrinsic cartilage fluorescence [28], especially around cells in
the superficial zone. In OA, there is also a decrease in fixed charge density (FCD), due to
degradation and loss of aggrecan [29]. The contents of total collagen (hydroxyproline/wet
weight) and pyridinoline do not change markedly with aging [30].

With normal aging, there is a marked increase in the formation of advanced glycation end-
products (AGEs), including pentosidine cross-links. AGEs are produced by the spontaneous
nonenzymatic glycation of proteins [31]. Although AGE formation is promoted by elevated
glucose levels in diabetes, the accumulation of AGEs in articular cartilage with aging can be
seen independent of diabetes and may be due in large part to the very slow turnover of
cartilage matrix components noted above [32–34]. The increased cross-linking of collagen
molecules that occurs as a result of AGE-formation can alter the biomechanical properties of
cartilage resulting in increased stiffness and an increased susceptibility to fatigue failure [35,
36].

In addition to altering the biomechanical properties of cartilage, AGEs may interact with cell
surface receptors including the Receptor for Advanced Glycation Endproducts (RAGE).
RAGE has been detected on articular chondrocytes and there is evidence for an increase in
RAGE levels in aging and OA [37]. Activation of chondrocyte RAGE by various ligands
including S100A4 and AGE-modified bovine serum albumin has been shown to stimulate
catabolic signaling pathways that result in upregulation of MMP expression and chondrocyte
hypertrophy [38–40]. Although a reduction in OA severity was not seen in RAGE knock-out
mice [41], the study used very young animals that were 8 weeks of age at the time OA was
induced through anterior cruciate ligament disruption. It is possible that RAGE activation
may play a more important role in OA as it develops in older adults where, unlike in the
young animals, AGE-formation in the cartilage would have had time to accumulate.

A highly prevalent change in aging cartilage is deposition of calcium containing crystals,
mainly calcium pyrophosphate (CPP) and basic calcium phosphate (BCP) [42]. In the
human knee this cartilage calcification is primarily an effect of aging rather than OA and
represents a precursor to increased fibrillation and OA rather than a result of OA [42]. In
cartilage from patients with end-stage OA, calcification correlated with increased disease
severity [43, 44]. CPP deposition is due to increased pyrophosphate production by
chondrocytes from aged cartilage [44]. The presence of calcium crystals produced by
chondrocytes or released into the joint space from other tissues such as the meniscus and
synovium may stimulate chondrocyte production of inflammatory mediators and ECM-
degrading enzymes and thus contribute to onset and progression of OA [45].

Aging-related cellular changes
Maintaining normal ECM depends on the presence of adequate numbers of functionally
competent cells that are capable of synthesizing appropriate amounts of ECM components
and lubricants. Cells perform these synthetic functions during normal molecular turnover,
and have to adapt during periods of increased joint use or following damage.

In regard to its cellular composition, articular cartilage is less complex as compared to other
tissues as it is not vascularized or innervated and does not contain tissue macrophages [13].
Although cartilage contains only cells of mesenchymal lineage, cells in adult cartilage are
heterogeneous. Cell subpopulations can be distinguished in the various cartilage zones, the
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superficial, mid and deep zone [13]. The cells differ in morphology and gene expression
[46]. The superficial zone cells are most unique and also include a large percentage of cells
with features of immature or progenitor cells [47]. This cellular heterogeneity has not been
systematically examined in the context of aging. In particular, most in vitro studies used
mixed cell populations isolated from full thickness cartilage and it is likely that changes that
are unique to any of these cell subsets have not yet been discovered.

Aging-associated cellular changes in articular cartilage include cell depletion due to
different forms of cell death, impaired responses to extracellular stimuli, resulting in
abnormal gene expression and cell differentiation. Molecular mechanisms accounting for
these phenotype alterations are cellular senescence due to alterations in chromatin and
mitochondria [48]. These are discussed in detail in the following sections.

Cell depletion: mature and progenitor cells
Chondrocytes are required for cartilage tissue homeostasis and cell loss or dysfunction could
be a primary factor leading to cartilage failure. Cartilage cellularity varies among species
and changes during skeletal development and aging [49–54]. The level of cartilage
cellularity determines the tissue volume that is being maintained by a single chondrocyte
and appears to have implications for cartilage repair. Only 19 cells per mm3 are present in
the cartilage of young adults [52, 55]. In full-thickness cartilage from a variety of human
joints, cell density is decreased with aging [50, 56–58]. In the articular cartilage of
macroscopically normal cartilage from human femoral condyles the density of chondrocytes
decreases most profoundly in the superficial zone by ~50% between age 20 and 90 [51, 53].

Cell populations in each zone of normal mature articular cartilage are characterized by
unique cell organization, cell shape and gene expression or differentiation markers [13]. In
contrast to cells in the other zones, SZ cells are not surrounded by an extensive pericellular
matrix and they express a series of unique cell surface markers and other proteins [46].
Among these proteins, the superficial zone protein or lubricin has received much attention as
an important mediator of cartilage surface lubrication and protection against damage cause
by mechanical shear and compression [59]. An important and unique feature of the SZ is
that it contains the highest concentration of progenitor cells that are characterized by the
expression of cell surface markers such as Stro-1 or Notch-1 [47]. When isolated and
cultured under appropriate conditions these cells can differentiated into adipocytes or
osteoblasts, indicating multilineage differentiation potential [60, 61].

Based on the importance of the superficial zone in cartilage function and integrity, and as
cell density decreases most significantly in the superficial zone, a search was performed for
genes that are unique to the superficial zone and show age-related changes and this
identified the High Mobility Group Protein 2 (HMGB2) [62]. Several prior observations
demonstrated aging-related changes in HMGB2. In liver tissue from old rats the
phosphorylation and ADP-ribosylation of HMGB2 decreased drastically [63]. In a
comparison of fibroblasts from young, middle-age, and old-age humans and humans with
progeria, HMGB2 was among 9 genes that were downregulated in cells from progeria
patients and old individuals [64]. As HMGB2 participates in chromosomal processing and
assembly, the loss of HMGB2 may cause chromosomal pathologies, which result in
misregulation of genes involved in tissue homeostasis and the aging process. In articular
cartilage HMGB2 expression is restricted to the superficial zone and an aging-related
decrease in HMGB2 expression is linked to chondrocyte death and cartilage destruction
[62]. The phenotype of Hmgb2 knock out mice includes reduced superficial zone cellularity
and early onset of OA-like changes [62]. The function of HMGB2 is to support survival of
superficial zone cells [65] and to maintain the immature differentiation status of
mesenchymal progenitor cells [66]. These observations are only beginning to characterize
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aging-related changes in the superficial zone. Additional studies are required to
systematically document aging-related changes in the SZ and other cartilage zones.

In OA-affected cartilage, chondrocyte proliferation in the form of “cell clusters” or
“cloning” has been observed in areas of fibrillation [4, 52, 67–69]. Cells in these clusters
express markers of progenitor cells and a wide spectrum of proteins associated with
abnormal chondrocyte activation and differentiation [70]. These finding raise the possibility
that this represents a tissue repair response of progenitor cells. However, this type of
chondrocyte does not contribute significantly to repair [71] and may in fact substantially
contribute to the abnormal gene expression pattern of OA cartilage [58]. The activation
pattern of the cluster cells also underscores the notion that aging does not uniformly affect
all cells in cartilage and that certain cell subsets in aging and OA-affected cartilage are
capable of proliferation and activation.

Cell density appears to be a determinant of cartilage tissue integrity and repair capacity.
Articular cartilage in the developing skeleton during childhood and adolescence appears to
have an increased potential to undergo successful repair. More direct evidence is provided
by observations that areas with reduced cellularity on the human femoral head were
characterized by an increased frequency of cartilage fibrillation [58]. Studies on human
cartilage aging indicate that individuals over 90 years of age with intact knee articular
cartilage surfaces are distinguished by a significantly increased number of chondrocytes per
tissue volume [51]. These reports suggest an association between viable chondrocyte cell
density and maintenance of healthy ECM.

There is further evidence that chondrocyte death and proteoglycan depletion are
anatomically linked and may be mechanistically related. Cartilage areas containing apoptotic
cells showed proteoglycan depletion [4] and the presence of apoptotic cells also significantly
correlated with nitrite production and grade of OA [72, 73].

The absence of phagocytic cells in cartilage implies that remnants of dead cells may persist
in cartilage matrix and can potentially affect matrix structure and function. Chondrocyte-
derived apoptotic bodies accumulate within and in the vicinity of the chondrocyte lacunae
[74]. Functional analysis showed that apoptotic bodies produce pyrophosphate, contain
alkaline phosphatase, and NTP pyrophosphohydrolase activities, and can precipitate
calcium. These findings link apoptosis with calcification of extracellular matrix [74, 75].
Therefore, chondrocyte-derived apoptotic bodies may contribute to pathologic cartilage
calcification and to the altered remodeling of the subchondral bone observed in aging and
OA. This raises the possibility that apoptosis, in addition to reducing cartilage viability, may
progressively contribute to its remodeling and degradation.

The type and mechanisms of cell death continue to be investigated. Several studies reported
increased apoptosis in aging and OA-affected cartilage [4, 72, 75, 76]. However, there has
been discussion concerning limitations of certain methods resulting in detection of a very
high rate of apoptotic cells [77]. In addition, other forms of cell death have been described
[78]. It remains to be determined which forms of cell death and signaling pathways are
involved in the reduction in cartilage cellularity with aging. Possibilities include death
receptor-mediated apoptosis, apoptosis related to endoplasmic reticulum or mitochondrial
dysfunction and excessive ROS production. Chondrocyte death can also occur as part of
hypertrophic or terminal differentiation. A recently described cell death by autophagy may
occur in cells that have accumulated large numbers of dysfunctional organelles to a level
that can no longer be restored [8].
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Reduced growth factor response
With increasing age, chondrocytes become less responsive to the proliferative and anabolic
effects of growth factors, which may contribute to an imbalance in anabolic and catabolic
activity (Table 1). Human articular chondrocytes from older tissue donors were found to
proliferate less than those from younger donors when treated with serum, TGFβ, bFGF,
PDGF or IGF-1 [79]. The anabolic response to IGF-1, measured as proteoglycan or collagen
synthesis, declines with increasing age [80–82] as do the responses to TGFβ [83] and
BMP-6 [84]. There is also evidence for an age-related reduction in expression of TGFβ2 and
TGFβ3 [83, 85] and BMP-7 (OP-1) [86]. The age-related decrease in expression of BMP-7
may be related to increased DNA methylation at the OP-1 promoter [87].

Altered cell signaling in response to growth factors may also account for the reduced
anabolic response with age. Reduced IGF-1 signaling has been noted in aging rat cartilage
[82] and in aged equine chondrocytes [88, 89]. IGF-1 activation of the signaling protein Akt
is important for IGF-1 to promote chondrocyte survival and matrix synthesis but this
activation has been found to be reduced in OA chondrocytes or in normal chondrocytes
under conditions of oxidative stress [90]. Studies of TGFβ signaling have noted a change in
receptors such that with age and in OA there is an increase in the ALK1 to ALK5 ratio [91].
Activation of ALK5 appears to mediate the anabolic effects of TGFβ through
phosphorylation of Smad 2,3 while ALK1 promotes MMP-13 expression through Smad
1,5,8. Further evidence for promotion of catabolic signaling with aging comes from studies
of chondrocytes treated with either fibronectin fragments or IL-1β. Both catabolic factors
were found to stimulate more MMP-13 production in chondrocytes from older compared to
younger human tissue donors [92].

Cellular senescence
Cellular senescence classically refers to the limited proliferative capacity of normal
differentiated cells resulting in growth arrest which, as described by Hayflick, generally
occurs after 30–40 population doublings [93]. This is often referred to as replicative
senescence, which has been associated with features of a senescent phenotype including
enlarged flattened cells in culture, expression of the senescence-associated β-galactosidase
(SA-βgal), and the presence of markers of DNA damage [94]. Another feature of senescence
is shortening of the ends of chromosomes, called telomeres, which occurs with each cycle of
cell division in normal somatic cells that lack the enzyme telomerase. Although
chondrocytes have been shown to exhibit telomere shortening with age [95], it would seem
unlikely that this is due to multiple rounds of cell division since chondrocytes in normal
adult articular cartilage appear to be well differentiated post-mitotic cells. It is rare to find
evidence of cell division in normal articular cartilage [96, 97]. However, chondrocyte
proliferation is a feature seen in OA tissue and both telomere shortening and the presence of
SA-βgal have been observed in chondrocytes in OA lesions [98].

Besides replicative senescence, telomere shortening can be seen as a result of extrinsic or
“stress-induced” senescence [99, 100]. This form of cell senescence can be promoted by the
chronic effects of oxidative damage and inflammation that result in DNA damage that
includes damage to the telomeres. In a pig model of spontaneous cartilage degeneration,
there was increased DNA damage in the OA-affected tissue and similar damage was caused
by IL-1 induced nitric oxide production [101].

In vitro experiments using peroxide to induce oxidative stress [102] and IL-1 as a form of
chronic inflammation have been shown to induce markers of senescence in chondrocytes
[103]. In the study by Dai et al, the induction of senescence required expression of the
membrane protein caveolin that has been associated with senescence in other cell types
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[103]. Injurious mechanical loading may be a stimulus for excessive ROS production in
cartilage [104, 105] and could thus contribute to stress-induced chondrocyte senescence and
OA. Stress induced chondrocyte senescence has also been observed when chondrocytes
were treated with oxidized low-density lipoprotein (LDL) that could form when LDL
present in synovial fluid reacts with ROS [106].

Senescent chondrocytes could contribute to the pro-inflammatory state and excessive
production of MMPs observed in OA cartilage by assuming the senescence-associated
secretory phenotype (SASP), which has been observed in other types of senescent cells
[107]. Many of the “SASP factors” such as IL-1, IL-6, IL-7, IL-8, GROα, MCP-2, and
MMP-3 are also produced by OA chondrocytes. In a study of human OA cartilage, RNA
levels of MMP-1, -8, -13, and TIMP-1 were altered in cells isolated from lesion sites, where
telomere shortening and SA-βgal were observed, but also in sites distal to the lesions where
a lower number of cells exhibited the senescent changes [98]. Although a direct link
between the SASP and chondrocyte senescence was not made, the tissues studied were from
end-stage disease and only RNA levels of a limited number of factors were studied,
suggesting future studies should examine earlier stages of disease and measure levels of the
secreted proteins.

Mitochondria
The mitochondrial theory of aging is the most extensively studied and implies that
accumulation of mitochondrial DNA (mtDNA) mutations, lead to reduced ATP production
and increased ROS production [7]. It has also been proposed that aging can be caused by an
alteration of the redox homeostasis, since mitochondria regulate the relative levels of
NADH/NAD+, NADPH/NADP+, and GSH/GSSG [108]. Despite the critical role of
mitochondria in various aspects of cellular aging, there is very limited information on
specific changes in aging cartilage. Chondrocytes from endstage OA cartilage showed more
mtDNA damage than cells from normal tissue and this was accompanied by reduced
mtDNA repair capacity, and increased apoptosis in OA chondrocytes following exposure to
oxygen radicals [109]. In OA chondrocytes, the activity of respiratory complexes I, II and III
is reduced, resulting in a decreased mitochondrial bioenergetic reserve [110]. Protection of
human chondrocytes from mtDNA damage by the mitochondria-targeted DNA repair
enzyme hOGG1 rescued mtDNA integrity, preserved ATP levels, reestablished
mitochondrial transcription, and significantly diminished apoptosis following IL-1β and
TNF-β exposure [111].

Anti-oxidant defense
Given that excessive levels of ROS can contribute to aging in many tissues including
cartilage, it is important to determine if reduced levels of anti-oxidants occur with aging in
cartilage. A study of rat articular cartilage noted an age-related decrease in catalase but not
superoxide dismutase or glutathione peroxidase [112] while a proteomic analysis of
mitochondrial proteins in human chondrocytes revealed an age-related decrease in the
mitochondrial superoxide dismutase (SOD2) [113]. SOD2 has also been noted to be
decreased in OA chondrocytes and this was associated with an increase in promoter
methylation [114]. Extracellular superoxide dismutase has also been shown to be decreased
in human OA cartilage [115] and a gene microarray study revealed decreased expression of
SOD2 and SOD3 as well as glutathione peroxidase 3 in human OA cartilage [116].
Glutathione is an important intracellular anti-oxidant and a study of normal human ankle
cartilage from tissue donors found an age-related decrease in the amount of reduced relative
to oxidized glutathione, which compromised the anti-oxidant defense system demonstrated
by increased susceptibility to oxidant-mediated chondrocyte death [117].
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Mechanisms for removal of altered proteins and organelles
Mechanisms that are responsible for removal of misfolded proteins and dysfunctional
organelles are essential to maintain normal cell function and survival. Aging-related
deficiencies in these mechanisms have been observed in model organisms and several
human tissues and can contribute to the development of disease [118, 119].

Autophagy is a central homeostasis mechanism to eliminate damaged organelles, long-lived
or aberrant proteins and superfluous portions of the cytoplasm [120]. Substrates are enclosed
in a double membrane, the autophagosome, which fuses with lysosomes, allowing
enzymatic substrate degradation. Cleavage products are recycled for use in biosynthesis or
as energy sources [121].

Cartilage aging in humans or mice is associated with reduced expression of autophagy
regulators, which is most profound in the superficial zone in the weightbearing areas of
cartilage. Cartilage that is deficient in autophagy has reduced cellularity and extracellular
matrix damage [122]. Mechanical injury to cartilage explants also suppresses autophagy
regulators [123].

The protein kinase mammalian target of rapamycin (mTOR), as part of the complex
mTORC1 is a key regulator and suppressor of autophagy. Excess mTOR activation has been
linked to aging on the basis of results from genetic and pharmacological studies [118].
Major effects of mTOR are the inhibition of autophagy and the stimulation of protein
synthesis. Chronic mTOR activation thus can potentially lead to increased accumulation of
aggregation-prone proteins [124]. Senescent cells are enlarged or hypertrophic and this as
well as the abnormal gene expression can be reversed by the mTOR inhibitor rapamycin
[125],

Recently, abnormal mTOR signaling has been associated with autophagy to promote the
secretory phenotype of senescent cells and the release of factors known to contribute to
defective renewal and dysfunction of aging tissues [126]. In a model of cellular senescence a
new cell compartment was discovered, the TORC autophagy secretory colocalization
compartment, (TASCC) where TORC dependent synthesis of senescence-associated
proteins, including proinflammatory mediators occurs.

Pharmacologic inhibition of mTORC-1 by rapamycin activates autophagy in chondrocytes
and has protective effects against mechanical injury induced ECM damage and cell death in
cartilage explants [123]. In experimental OA, rapamycin also reduced the severity of
cartilage degradation and this was associated with a preservation of cartilage cellularity and
reduction in inflammatory mediators [127].

The unfolded protein response (UPR) is a related homeostasis mechanism that is activated in
response to disturbances in the protein-folding capacity of the endoplasmic reticulum or ER
stress [128]. The UPR can restore ER function, while failure to adapt to ER stress or
irreversible ER stress can lead to cell death and elimination of damaged cells. Defective
UPR is linked with aging-related diseases and mediated by oxidative stress and
accumulation of misfolded proteins [129]. ER stress can be triggered in chondrocytes by
mutated type X collagen and contributes to the pathology of chondrodysplasia [130]. Site-1
protease regulates components of UPR pathways. Cartilage specific deletions results in
abnormal growth plate development due to intracellular accumulation of type II collagen
and chondrocyte apoptosis[131].
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In advanced OA there is evidence for upregulation of ER stress markers [132] but aging-
related changes in the ER stress response that precede the manifestation of overt OA remain
to be investigated.

Conclusions
A growing body of evidence documents aging-associated changes in cartilage ECM and
cells. Changes in these two compartments presumably aggravate each other since altered
ECM may lead to increased mechanical stress to the cells while cell loss or dysfunction
leads to deficient ECM synthesis and increased degradation.

Survival and normal function of postmitotic cells like mature articular chondrocytes depends
on their ability to cope with stress [8]. Conceptually, age-related pathologies originate from
limitations in the maintenance and repair mechanisms of DNA, by anomalies in the
antioxidant mechanisms that contribute to the detoxification of reactive oxygen species or
by abnormalities in mechanisms for removal of abnormal proteins and organelles. As
summarized above, these mechanisms have been at least partially investigated in cartilage
and there is evidence for deficits in some of these cellular homeostasis mechanisms.

Although useful information has been generated, there are limitations in previous studies of
cartilage or chondrocyte aging. A clear distinction between aging and OA has not always
been provided so that it can be difficult to differentiate primary aging-related changes from
those that are part of the OA process. Future studies require more detailed consideration of
cartilage heterogeneity within a joint such as areas exposed to different levels of load
bearing. It will also be important to address how aging affects cell subpopulations in the
different zones of cartilage. A need and opportunity exists to study basic mechanisms of
aging that have been discovered in model organisms or other tissues for their role in
cartilage aging. Furthermore, it is necessary to integrate existing and future information on
individual mechanisms of aging into networks that allow understanding of interactions and
hierarchies of changes.

The most important cellular changes that have been documented in aging cartilage are
reduced cellularity and abnormal cell activation and differentiation. These changes provide a
basis upon which the cartilage remodeling and destruction process is triggered that
ultimately manifests as OA. The potential clinical significance of studies of cartilage aging
is in the discovery of approaches that slow or reverse aging-associated changes and thus
prevent the onset of OA. Given the limited success in developing effective treatments for
established OA [133] maintaining joint health to delay tissue aging is an even more
important objective.
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Fig. 1. Macroscopic images of human femoral condyles
Images represent normal young (left, age 40), normal aging (center, age 76) OA (right, age
88) tissue. The old normal condyle shows intact cartilage with yellow discoloration, which is
in part due to the formation of advanced glycation end products. The OA sample features
large areas with complete loss of articular cartilage (dashed line on the left femoral condyle),
osteophytes at the joint margins (red arrowheads) and the intercondylar notch (blue
arrowheads). M=medial; L=lateral
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Fig. 2. Safranin O stained sections of human femoral condyles
Images show young normal (left, age 40), old normal (center, age 76) and OA donors (right,
age 88). The old normal sample has reduced tissue height, reduced safranin O staining in the
superficial zone but no structural defects at the surface. The OA sample shows loss the
superficial and part of the mid zone, fibrillations extending into the deep zone, areas with
low cell density and cell clusters and duplication of the tidemark. All images are shown at
2.5x magnification.
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TABLE 1

Aging-related changes in chondrocytes

Growth factor response and production

TGFβ ↓proliferation [79]; ↓GAG synthesis [134]; ↑pyrophosphate [44]; ↓IL-1 inhibition [135]; ↑MMP-13 [136] altered
Alk1/5ratio [136]

IGF1 ↓GAG synthesis [80, 81]; ↓collagen II synthesis [82]; ↑IGF-BP [80]

BMP7 ↓synthesis [86]; ↑promoter methylation [87]

Mitochondria ↑mtDNA damage[109]
↓activity of respiratory complexes I, II and III [110]
↓mitochondrial superoxide dismutase [113]

Cytoprotective Mechanisms ↓antioxidant defense[137]
↓autophagy [122]
↓HMGB2 [62]

Senescence ↑SAβ gal, telomere erosion [95]
↑GADD45β, ↑C/EBPβ, ↑p21 [138]
↓SIRT1 [139]
↑Caveolin [103]
Senescence-associated secretory phenotype [48, 98]
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