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Abstract
Concussion (mild traumatic brain injury (mTBI)) is a significant pediatric public health concern.
Despite increased awareness, a comprehensive understanding of the acute and chronic effects of
concussion on central nervous system structure and function remains incomplete. Here we review
the definition, epidemiology, and sequelae of concussion within the developing brain, during
childhood and adolescence, with current data derived from studies of pathophysiology and
neuroimaging. These findings may contribute to a better understanding of the neurological
consequences of traumatic brain injuries, which in turn, may lead to the development of brain
biomarkers to improve identification, management and prognosis of pediatric patients suffering
from concussion.
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1. Introduction
No single definition of mild traumatic brain injury (mTBI) contains the entire spectrum of
diagnostic considerations involved in defining mTBI partly because there is no consensus of
objective criteria. Here we will use the definition conceptualized in 2009 (McCrory et al.,
2009): “Concussion is defined as a complex pathophysiological process affecting the brain,
induced by traumatic biomechanical forces. Several common features that incorporate
clinical, pathologic and biomechanical injury constructs that may be utilized in defining the
nature of a concussive head injury include: (1) Concussion may be caused either by a direct
blow to the head, face, neck or elsewhere on the body with an “impulsive” force transmitted
to the head. (2) Concussion typically results in the rapid onset of short-lived impairment of
neurologic function that resolves spontaneously. (3) Concussion may result in
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neuropathological changes but the acute clinical symptoms largely reflect a functional
disturbance rather than a structural injury; (4) Concussion results in a graded set of clinical
symptoms that may or may not involve loss of consciousness. Resolution of the clinical and
cognitive symptoms typically follows a sequential course, however, it is important to note
that in a small percentage of cases, post-concussion symptoms may be prolonged; (5) No
abnormality on standard structural neuroimaging studies is seen in concussion”. In children,
the issue includes mostly sports and recreational activity related injuries, shaken baby
syndrome and motor vehicle accidents with flexion-extension injuries. As noted below (see
Section 5) more recent imaging studies are changing the definition of mTBI and the
constructs on which it is based, as we begin to understand that early measures of change in
brain function and structure, including white matter integrity, are now available (e.g., see
(Henry et al., 2011; Sharp and Ham, 2011) and below), and that resolution of clinical and
subclinical neuropsychiatric impairment does not always follow a typical sequential course
of recovery. Alterations may indeed be permanent (De Beaumont et al., 2009; Nicholl and
LaFrance, 2009; Ponsford et al., 2011), although this risk still not well understood
(McCrory, 2011).

Symptoms following a concussion are highly variable and include mainly somatic,
vestibular, affective, and vegetative features (Figure 1). The symptoms may evolve over the
hours to days after a concussion; therefore, the severity of concussion cannot be determined
at the time of injury. Attitudes to concussion have changed dramatically in past years, and
parallel with our increased awareness and understanding of the condition (Kirkwood et al.,
2006). Recently the need for new research, guidelines, and treatment of this condition have
reached the highest levels of media, health and government institutions (CDC, 2010;
NINDS, 2012a, b; Schwarz, 2010). Current studies in concussion include the investigation
of underlying neurobiological mechanisms that affect brain function and structure. Even
subtle changes in neuronal function may be associated with persistent and profound clinical
disability, cognitive impairment, and behavioral alterations (Kirkwood et al., 2006; Konrad
et al., 2010; McAllister and Stein, 2010; Sroufe et al., 2010).

The pediatric population is of particular interest since the brain is still developing (Konrad et
al., 2010), with potential for more rapid changes in reorganization following trauma than the
adult brain. In addition, the consequences of mTBI may have crucial impact on lives of
children as they may experience behavioral changes of miss a lot of school days or activities
that may impact their normal intellectual and social development. As summarized in Figure
2, there are aspects of brain changes that may confer different levels of disease burden in
individuals suffering from concussion. The diagnosis and choice of appropriate and
efficacious treatment approach remains a significant challenge, there are no reliable, valid,
and cost-effective objective measures to evaluate concussion severity, the potential for long-
term neurological impairment, the point at which brain recovery has actually occurred, or
whether and when it is actually safe for the individual to return to activity. Unfortunately,
even simple and accepted recommendations such as a symptom-free waiting period are not
enforced and may result in premature return-to-activity decisions, while our treatments are
symptomatic and not disease modifying. Therefore long-term effects (symptomatic or non-
symptomatic) that are currently not well defined may be permanent and possibly contribute
to the development of neuropsychiatric disorders later in life (De Beaumont et al., 2009;
Nicholl and LaFrance, 2009; Ponsford et al., 2011), although this risk still not well
understood (McCrory, 2011).

1.1. The Developing Brain
The pediatric brain differs during development compared with the mature adult (reached at
around 21 years) (Paus, 2010; Perrin et al., 2008; Schmithorst and Yuan, 2010; Thompson et
al., 2005b). Neuronal systems develop at different rates during childhood and brain changes
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are dramatic with significant pruning of many connections or networks (Giedd and
Rapoport, 2010). Initially those areas involved in primary senses and motor skills are
developed by age 4 and areas for language develop through age 10, with further
development of specific areas involved in complex thinking (e.g., parietal lobes) and fine
motor skills. However areas involved in abstract processes, reasoning, judgment, and
emotion, including impulsivity, which are controlled principally by frontal areas, remain less
developed through the teenage years and into the early 20’s. The development of subcortical
systems, such as the hypothalamus, is even less well understood. Patient age and associated
brain maturation at the time of mTBI may influence prognosis. Specific neuronal systems
(frontal vs. parietal) are generally developed at specific ages, may be variably adaptive or
resilient post-concussion, and may be modulated by gender and pubertal changes (Lenroot
and Giedd, 2010).

1.2. Epidemiology of mTBI in Childhood
In the past ten years there has been a marked increase in awareness of concussion among
physicians and clinical researchers, evidenced by the increasing number of emergency
department visits related to concussion and by the number of published studies now
available in this field. The estimated incidence of concussions in young children is reported
to be 304 cases per 100,000 child-years (Koepsell et al., 2011). In this study, incidence was
highest in preschoolers and lowest in 5–9 years; most were mild in nature and boys suffered
at a higher rate than girls. For ages 0–19 years, 173,285 individuals are treated annually in
the US for non-fatal concussion related to sports, most mild in origin, and the numbers
increase if motor vehicle accidents, prevalent in ages 15–19, are added to the statistics
(CDC, 2010; Konrad et al., 2010). High school sports-related concussion involves
approximately 135,901 students in a school year among all sports, most of them related to
football, hockey, and soccer (Gessel et al., 2007). Rates seem to be on the increase. An
estimated 502,000 emergency department visits for concussion have been reported annually
in the US (Bakhos et al., 2010), an increase of 200% in ten years (1997–2007). Furthermore,
recent evidence demonstrates that up to 50% of high school football players experiencing
symptoms of concussion do not report them (McCrea et al., 2004). These provocative
statistics have made concussion a significant and urgent public health issue. There is still a
need for reliable statistics in younger than high school-age populations as well as better
study, documentation, and analysis of post-concussion sequelae.

In this review of mTBI in pediatric patients, discussion will focus on: underlying
pathophysiology of concussion in the section Pathophysiology mTBI that underscores
changes in brain systems that may provide a better understanding for evaluating brain
function; in the section on Brain Regions Affected by Concussion - Basis for Behavioral
Changes we discuss specific brain regions that may be affected in concussion and observed
behaviors related to these regional effects; a brief overview of Clinical Management,
suggesting that the lack of objective markers of brain dysfunction may limit our ability to
evaluate and treat these patients in an optimal manner; and that this may change as noted in
the section on Measuring Brain Changes. We suggest that imaging measures may provide
useful insights into immediate and long-term effects of concussion on the child’s brain (viz.,
diffuse axonal injury; persistence or improvement of functional deficits; and more
importantly an assay of how patients are doing, since sub-clinical measures as detected by
imaging may be significant regarding long term outcomes). While improvement is clear in
most children who suffer from a concussion, the issue of how far along the line of complete
improvement we really are, remains ill-defined.
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2. Pathophysiology of mTBI
The pathophysiology of concussion has been reviewed in detail elsewhere (Len and Neary,
2011; McCrory et al., 2001). During the childhood and adolescent periods, a critical increase
in gray and white matter occurs and, depending on activities or environment of the
individual, selective elimination of this overproduction of synapses occurs (Giedd et al.,
1999). Some of the skills critical to this time frame include motor dexterity, problem
solving, memory, language, abstract thinking, and social and emotional skills (Dahl, 2004).
An interruption during this critical period of learning could have significant consequences
(Cernak et al., 2010). A number of important changes occur in TBI, including effects of the
physical insult/trauma on the brain, increased propensity for decreased blood flow and
ischemia, and the consequences of axonal injury and neuroinflammation. In 2001, Giza and
Hovda suggested that following concussion there is a perturbation of brain physiology that
include neuronal depolarization, release of excitatory neurotransmitters, altered cerebral
blood flow, and altered axonal function and metabolic changes (e.g., glucose metabolism)
(Giza and Hovda, 2001) (Figure 3A). Some of these are discussed in detail below. Such a
notion has been further supported by more recent observation of magnetic resonance
spectroscopy (MRS) measures of brain metabolic imbalance (Vagnozzi et al., 2010;
Vagnozzi et al., 2008).

2.1. Physics of Concussion
The biomechanics of the brain, the cerebrospinal fluid, and dural attachments to the cranial
bones contribute to our understanding as to how a blow to the head may result in
concussion. The density of the brain is less that of the CSF and on impact, the brain is
displaced within the skull. The physics of concussion have focused on a few changes
including (i) non-uniform compressive stress; (ii) brain lag and rotation (Dawson et al.,
1980); (iii) coup-contre-coup impact injury; and (iv) acceleration/deceleration (Barth et al.,
2001). These changes lead to complex alterations, including functional deafferentation of the
cortex (Shaw, 2002) and changes in the brainstem that seems key to loss of consciousness
(Browne et al., 2011). The immediate effects include neuronal swelling, sterile
inflammation, axonal disruption, as well as metabolic and autonomic changes (see below).
The biomechanics of adult and pediatric head injury have been modeled and scaled
(Ommaya et al., 2002), but equivalent measures of TBI in adults and children are obviously
difficult to determine. The biomechanics of brain injury may also be influenced by a still
immature musculoskeletal system, skull geometry, suture elasticity, cerebral blood volume
and level of myelination (Bauer and Fritz, 2004; Goldsmith and Plunkett, 2004; Shaw,
2002). However, the brain areas affected (see below) are directly related to the impact site
and its severity.

2.2. Diffuse Axonal Injury
Diffuse axonal injury (DAI) is damage to axons as a result of mechanical loading during
TBI and has been recently reviewed elsewhere (Johnson et al., 2012b; Len and Neary,
2011). DAI includes mechanical disruption of axonal cytoskeleton, altered axonal transport
(Tang-Schomer et al., 2012), axonal swelling (Hemphill et al., 2011) and other changes that
may include proteolysis, die-back disconnection and reorganization (Wang et al., 2011).
Damage to white matter tracts seems to affect unmyelinated fibers more than myelinated
fibers (Reeves et al., 2005; Staal and Vickers, 2011), and the damage in the former may be
more severe in terms of effects such as disconnection/interruption. Membrane disruption can
only account for a portion of injured neurons (Farkas et al., 2006; Kilinc et al., 2009), and
excitotoxicity due to alterations in ion channel homeostasis likely do not account for the
retraction of axons (Spaethling et al., 2008). Altered energy processing through
mitochondrial dysfunction (Buki et al., 1999), altered ionic flux (Wolf et al., 2001) and
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demyelination (Ng et al., 1994) may contribute to DAI. Figure 3B shows axonal changes in
human tissue following TBI (Johnson et al., 2012b). Differences in DAI reversal in younger
vs. older brains is not well studied. However, in studies of young rats and mice, mTBI is
associated with sustained cognitive changes (Creed et al., 2010; Prins et al., 2010), while
clinically in more severe cases of DAI, dysautonomia and other measures are observed
(Chelly et al., 2011). Thus, the behavioral consequences of mTBI relate in large part to DAI.

2.3. Altered Autoregulation of Blood Flow
Immediately after mTBI cerebral blood flow (CBF) decreases and can remain so for some
time in adults (Werner and Engelhard, 2007); in children and young adults, there may be a
delayed decrease in CBF (Becelewski and Pierzchala, 2003), this relative hypoxia can
further augment the excitotoxic damage (Choi and Rothman, 1990; DeLellis et al., 2009;
Packard and Ham, 1997). Decreases in CBF have been supported in animal studies (Golding
et al., 1999). The autoregulation of CBF is sensitive to trauma (Junger et al., 1997) and it
may be significantly impaired but gradually resolved in days and weeks following mTBI
(Rangel-Castilla et al., 2008). Altered autoregulation may be symptomatic of changes in
hypothalamic function via a number of mechanisms that include metabolic control
(Kalsbeek et al., 2010) and spinal projecting neurons that affect sympathetic tone (Nunn et
al., 2011). An uncoupling between the autonomic nervous system and the cardiovascular
system, following mTBI has been suggested (Gall et al., 2004a; Gall et al., 2004b; Goldstein
et al., 1998).

2.4. Neuroinflammation, the Immune Response
Currently little or no information regarding this topic is available in pediatric or adult
patients suffering from mTBI. Preclinical data indicates that inflammation may be observed
including increased microglia/macrophages and reactive astrogliosis (Kelley et al., 2007;
Shultz et al., 2012; Shultz et al., 2011). Evidence for a neuroinflammatory component to
TBI comes from preclinical work in a model of diffuse brain injury, showing increased pro-
inflammatory cytokines (production of the pro-inflammatory cytokines IL-6, IL-1beta and
TNF) (Yan et al., 2011). Neurioinflmmation may play a role in persistent neurocognitive
and neurobehavioral sequelae of mTBI (Whitney et al., 2009) as in some patients, even
months post incidence of the injury a neuroinflammatory response may be present (Mayer et
al., 2010). In addition, anti-inflammatory treatments including minocycline, (Siopi et al.,
2011) lithium (Yu et al., 2011) or N-acetylcysteine (NAC) (Chen et al., 2008) have shown
promising results in animal models in preventing, ameliorating and improving TBI
detrimental outcomes. Some of these effects involve complex regulation related to
neurotransmitter changes including altered glutamatergic tone (Dai et al., 2010).
Neuroinflammatory responses also differ with age of the developing brain (Claus et al.,
2010), and may become persistent as it’s described in other conditions (Banati et al., 2001).

3. Brain Regions Affected by Concussion - Basis for Behavioral Changes
Any part of the brain may be affected following concussion with some dominating the
clinical picture. Multiple regions may be affected in the individual patient (Figure 4). By
understanding the association of regional brain function with behavioral manifestations, the
approach to defining altered brain biology in mTBI including imaging biomarkers can be
further advanced. Below, we summarize many of these effects in specific brain regions.

3.1. Changes in Cortical Systems
3.1.1. Frontal Lobe in mTBI – Neurocognitive Changes—Due to the nature of many
head injuries, the frontal lobe is commonly affected. Problems with neurocognitive function
are the most disturbing consequences after mTBI and are almost universally present in the
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acute phase following the trauma. Such deficits have been identified through neurocognitive
and neuropsychological testing, proving to be a useful tool in identifying changes in cerebral
functions after mTBI. Neurocognitive testing in inpatient children (11–17 years) who had
sustained mTBI showed deficits in executive functioning (Nance et al., 2009). Studies in
older subjects (collegiate athletes) also reported similar patterns especially in cognitive
processing, speed, verbal fluency, and memory. These difficulties usually persist for a
limited period of time, and on average resolve by day seven (McCrea et al., 2003).

Neurocognitive testing is used to define acute cognitive dysfunction in mTBI patients
(Covassin et al., 2010; McCrea et al., 2003; Nance et al., 2009) (Figure 5) but long-term
effects are still under investigation. Past misconceptions about a benign course of recovery
without residual deficits (Carroll et al., 2004) are now being challenged. A study from the
United Kingdom reported that out of 2995 young people and adults who sustained mild TBI,
1400 subjects (47%) had disabilities after one year of the head injury (Thornhill et al.,
2000). Others have reported that high school athletes may require up to 21 days to recover
baseline levels of functioning, on measures such as reaction time, while other deficits such
as verbal memory and motor processing speed return to normal levels by 14 days post injury
(Covassin et al., 2010). Additional related changes (cognitive, emotional, somatic) have
been observed among children 10 to 17 years of age, persisting up to 5 weeks after injury
(Sroufe et al., 2010). Of note, subclinical changes may be present and may confer subtle
changes in an individual’s interactions with society and the environment. Examples include
impulsiveness, a normal behavior in teenagers owing to underdeveloped inhibitory controls
of frontal regions, which may become a persistent problem beyond those years following
mTBI (Boy et al., 2011). Subtle long term impairments of psychomotor speed and visual
spatial skills after mTBI in childhood and adolescence have been described (Beers, 1992)
persisting over 6 years after a concussion (Chuah et al., 2004; Konrad et al., 2010). These
findings contribute significantly in the identification and discrimination of mTBI groups and
the possible consequences of subtle cognitive impairments in daily life.

A number of factors influence cognitive function including age and multiple concussions.
Eleventh and 12th grade athletes perform better on information processing, motor dexterity,
and attention in neurocognitive tests compared with 9th grade athletes. An assessment of
baseline cognitive function in this age group which reflects a period of rapid cognitive
growth, may be of use for evaluating long term deficits individually and for the population
at large (Hunt and Ferrara, 2009). Multiple concussions and learning disabilities have been
noted as factors that negatively affect cognitive function (Collins et al., 1999); athletes with
history of 2 or more concussions and learning disabilities perform worse in neurocognitive
testing than athletes with concussions without preexisting learning disabilities. It has been
hypothesized that this altered recovery in patients with premorbid learning and behavioral
difficulties may reflect less brain reserve capacity, as well as limit a patient’s ability to learn
proper safety techniques, making it hard to assess actual concussion consequences (Collins
et al., 1999). Another aspect that is related to increased neurocognitive dysfunction is the
presence of post traumatic migraine, although this relationship is still not clear (Mihalik et
al., 2005). Patients that self report post-concussion symptoms display more cognitive decline
and longer time to recovery than asymptomatic patients (Lau et al., 2009), while the
presence and duration of loss of consciousness and posttraumatic amnesia were not
predictive of neurocognitive function after concussion (Collie et al., 2006; Sroufe et al.,
2010).

3.1.2. Temporal Lobe - Memory Disruption—Temporal lobe dysfunction should
always be considered as part of the initial assessment of the concussed patient. Temporal
lobe injury may result in significant disability and possible long-term deficits in memory and
language. During visual and verbal memory testing, PET and SPECT imaging have shown
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that up to 75% of patients after mTBI demonstrate medial temporal lobe abnormalities, the
majority of these being bilateral and significantly correlated with decreased memory (Umile
et al., 2002). Imaging studies following mild head injuries have shown significant
hypoperfusion within the temporal lobes (Abu-Judeh et al., 2000) and reduced medial
temporal functionality contributing to low memory performance after mTBI (Stulemeijer et
al., 2010). Morphological changes have also shown temporal lobe involvement: TBI
produces a disproportionate white matter loss and substantial hippocampal atrophy in
patients with severe memory impairment (Bigler et al., 2002).

Language deficits are pathologic features of temporal lobe lesions. In adults, involvement of
the left temporal lobe during concussion may produce aphasia (Junque, 1999). Data in the
pediatric population is not well described. One study showed that children with a history of
closed head injury 12 months previously had a significantly lower performance in speech/
language battery tests than children with no injury (Jordan et al., 1988). The same group of
children was reevaluated 12 months after the initial assessment, and even though the group
itself showed improvement, their performance was still worse when compared with the
control group (Jordan and Murdoch, 1990). Over time, language skills may normalize:
language/speech in children who had sustained closed head injury 10 years prior showed no
difference compared with the control group (Jordan et al., 1992).

3.1.3. Parietal Lobe – Complex Dysfunctions—Although information about specific
deficits of the parietal lobe following mTBI is more limited than other regions of the brain,
some of the potential sequelae following injury include anomia, apraxia, alexia, agraphia
and dyscalculia, all potentially consistent with significant disability (Garcia Pena and
Sanchez Cabezas, 2004). As with temporal lesions, hypoperfusion of the parietal lobes may
also be present (Abu-Judeh et al., 2000). A group of 20 mTBI patients performed
significantly lower than a control group in a naming object test (Kerr, 1995). Mild traumatic
brain injury could also cause parietal-parasagittal traumatic intracranial hemorrhage
resulting in more profound deterioration and possible coma, as compared with patients with
traumatic hemorrhage elsewhere in the brain (Kinoshita et al., 2003).

3.2. Changes in Subcortical Systems
3.2.1. Hypothalamus and Autonomic Dysregulation—The hypothalamus is
involved in a number of functions including autonomic (blood pressure, temperature
regulation), endocrine, analgesic and circadian (Benarroch, 1993; Middleton et al., 2010;
Nishino et al., 2000; Samuels, 2007). Hypothalamic pituitary dysfunction after mTBI is a
well recognized complication by now (Acerini et al., 2006; Agha et al., 2004; Behan et al.,
2008; Chou et al., 2009; Su et al., 2005; Tsagarakis et al., 2005; Yoshida et al., 1990), often
related to damage to the hypothalamic-pituitary stalk due to shearing forces (Behan et al.,
2008). While little is known about the specifics of hypothalamic-pituitary damage, a number
of well-defined changes are observed that may persist for years (Kempf et al., 2010).
Benarroch and colleagues described a central autonomic network, identifying the
hypothalamus and its interconnections to structures such as the insula, amygdala, and
medulla as important components of dysregulation of the autonomic nervous system (ANS)
in various neurologic conditions including head trauma (Benarroch, 1993; Samuels, 2007).
Most hypothalamic changes seem to follow temporo-parietal impact, middle fossa fractures
and, of note, more frequently present in a younger population (Crompton, 1971). Delayed
clinical intervention may account for the unrecognized early changes in ANS, especially
with mTBI, resulting in an underreporting of autonomic dysfunction (<10% incidence of
autonomic dysregulation in one comprehensive public health report on TBI) (Baguley et al.,
2007). Autonomic dysregulation can occur in any form of TBI, but a correlation has been
described between the severity of the insult, represented by the Glascow Coma Scale (GCS),
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and the degree of autonomic dysregulation. As the GCS score decreases, symptoms such as
tachycardia, diaphoresis, hyperpyrexia and dystonia are more prominent (Baguley et al.,
2009; Hilz et al., 2011; Thorley et al., 2001). Middleton and colleagues reported persistent
neurocognitive symptoms and autonomic dysfunction described as an absence of late phase
rise in blood pressure, in a patient with two previous concussions and early return to
practice. Concussed athletes have reduced heart rate variability during exercise (Middleton
et al., 2010). Kanjwal and colleagues studied a small group of patients who had sustained a
previous TBI, and subsequently reported a number of nonspecific symptoms, such as
fatigue, lightheadedness, palpitations, and presyncope. They were ultimately diagnosed to
postural orthostatic tachycardia syndrome, defined as orthostatic intolerance with a heart
rate increase of at least 30beats/min that occurs within the 10 minutes of head upright tilt
table testing (Kanjwal et al., 2010).

Altered Sleep-Wake Cycles/Circadian Rhythm: Sleep disturbances following head
trauma have by now been identified as a direct consequence of TBI in children (Milroy et
al., 2008), and range from insomnia and hypersomnia to an uncategorized decrease in sleep
quality. Significant numbers of patients (92.7%) perceive onset of sleep difficulties
following concussion (Ouellet et al., 2004). After 1 month post concussion 55% patients
recognized one or more sleep problems, and at one year 27% could still identify some
difficulty with sleep (Watson et al., 2007). Objective measures of sleep, such as
polysomnographic (PSG) and multiple sleep latency test (MSLT), do not correlate with the
patient’s perceptions but still may be useful for diagnosis. Many studies show sleep wake
cycle disturbances of up to 68% with prolonged hospital stays, including prolonged sleep
initiation (Fichtenberg et al., 2002), circadian rhythm disorders with stage 2 non-rapid eye
movement (NREM) sleep higher than rapid eye movement (REM) in mTBI patients
(Makley et al., 2008) . Long-term sleep difficulties (28 months post injury) have also been
found, patients had shorter REM onset latencies and longer sleep onset latencies than
controls (Williams et al., 2008). Factors that affect sleep disturbances and its duration
following concussion include: (i) the injury itself may damage sleep centers; (ii) sleep
changes may increase concurrent levels of anxiety and depression (Gosselin and Tellier,
2010; Parcell et al., 2006); (iii) cognitive changes, such as inattention, that may potentiate
insomnia (Bloomfield et al., 2010); (iv) symptomatic medication used to treat post-
concussion symptoms (e.g. amitriptyline for headache); and (v) insomnia may be enhanced
due to alterations in hypothalamic hormones including hypocretin (Baumann et al., 2005;
Baumann et al., 2007) and melatonin (Shekleton et al., 2010) often released following
concussion.

Altered Appetite: Appetite and food control is a multifaceted process regulated not only by
hormones such as insulin, glucagon, leptin, ghrelin and somatostatin, but is also influenced
by physical and psychological factors (Rowell and Faruqui, 2010). Hypothalamic obesity is
a term that has been used to express several secondary causes of obesity found after trauma,
in post-operative excision of hypothalamic and pituitary tumors as well as in monogenic
syndromes of morbid obesity due to mutations in genes expressed in the hypothalamus
(Hochberg and Hochberg, 2010). Preclinical data support lesions in the ventro-medial
hypothalamus (VMH) involved in hyperphagia and obesity (Hochberg and Hochberg, 2010;
King, 2006; Morrison, 1968; Nakao et al., 2007). Gastroparesis, another potential
contributing factor, in patients with closed head injury has been correlated with GCS scores
(Thor et al., 2003). Obesity itself may also be a side effect of medications (e.g., amitriptyline
for headache) (Ness-Abramof and Apovian, 2005; Taylor, 2008).

Thermoregulation: Abnormal of temperature regulation is quite common after mTBI,
including both hypothermia and hyperthermia (De Tanti et al., 2005). Animal models using
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a technique with fluid percussion have shown a decrease in temperature in the first 24 hours,
followed by a period of hyperthermia. These findings were related pathologically with
inflammation, particularly in the periventricular hypothalamus (Thompson et al., 2005a).

Diabetes Insipidus: Among the hypothalamic disorders that may develop after mTBI,
diabetes insipidus (DI) is one of the most critical, as water and electrolyte imbalance could
exacerbate patient morbidity post-trauma (Tsagarakis et al., 2005). In some reports,
following acute trauma, up to 26% of patients have been reported to have acute DI, and
approximately 7% are predicted to develop chronic DI (Agha et al., 2005; Agha et al.,
2004). There is a significant correlation between post-concussion symptoms and water
metabolism disorders (Bohnen et al., 1993). It is worth mentioning that based on
postmortem studies of patients with severe TBI, anterior hypothalamic damage is a
consistent finding (Acerini et al., 2006; Crompton, 1971). However, in mild TBI DI usually
resolves quickly or is controlled with desmopressin acetate (DDAVP) treatment (Chou et al.,
2009). Rarely the condition may persist for years (Hadani et al., 1985).

Sexual Dysfunction after mTBI: Sexual dysfunction after mTBI has been another well-
defined but often neglected consequence of brain injury. Dysfunction includes not only
specific physiologic problems but also behavioral issues, including impulsiveness and
inappropriateness, global emotional sexual difficulties, changes in libido, and sexual
frequency (Elliott and Biever, 1996). In adults after TBI, more than 50% of subjects report
reduced sex drive, inability to satisfy their partner, along with less enjoyment and capacity
to reach climax. It was also noted that the importance of sexuality in their lives was also
reduced, reflected by decreased frequency of engaging in sexual activities (Ponsford, 2003).
Erectile dysfunction and poor self-image have also been reported, with subjects who identify
themselves as having a decline in sex appeal, less confidence, depression, and impaired
communication levels with their partner (Kreutzer and Zasler, 1989; Ponsford, 2003).
Information on sexual dysfunction in older children is not well documented. However, other
related features has been identified in children including precocious puberty (Blendonohy
and Philip, 1991). Additional studies regarding sexual dysfunction in adolescents with mTBI
would be an important contribution.

3.2.2. Trigeminal System – Headache and Facial Pain Syndromes—Within the
spectrum of post-concussion symptomatology, migraine, and headache in general, are
prominent an often significantly contribute to patient disability. Although this symptom
complex predominantly affects subcortical functioning and the trigemino-vascular system, it
also is associated with neuronal changes in multiple brain regions. Descriptions of post-
traumatic headache in the recent literature date from 1898 to the present (Haas and Lourie,
1988). Symptoms have been described in isolation, where trauma may be the only causative
event (Solomon, 1998), or as part of the post-concussion syndrome which encompasses
somatic, emotional/behavioral and cognitive symptoms (Kirkwood et al., 2006).

The prevalence of posttraumatic headache in children ranges from 2.3% to 6.8% (Barlow et
al., 2010; Kirk et al., 2008), a low estimate when compared with the adult literature. In
military populations, estimates reach 78%, with most headaches classified as migraine
without aura and tension type headaches (Theeler and Erickson, 2009; Theeler et al., 2010).
In the civilian population, the incidence and prevalence is varied, ranging from 22.5 – 71%
(Bettucci et al., 1998; Hoffman et al., 2011). The features of posttraumatic headache are
many and varied, and differ regarding severity, pain characteristics (tension type, occipital,
migraine cluster, supraorbital), location, and occurrence in time (Gilkey et al., 1997; Seifert
and Evans, 2010). With post-traumatic migraine, trauma could be the actual trigger in a
susceptible person, such as an individual with a family history of migraine (Haas and
Lourie, 1988) or with previous precursors of migraine, including cyclic vomiting, motion
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sickness, and recurrent abdominal pain. Prior history of tension type headache and female
gender are associated with a higher rate of posttraumatic headache (Hoffman et al., 2011;
Theeler and Erickson, 2009). One study suggests that less severe head injury is related to a
higher risk of developing posttraumatic daily headache than is severe TBI, although the
explanation for this relationship is unclear (Couch and Bearss, 2001). The specific
pathophysiology of post-traumatic headache and its clinical implications are yet to be
defined.

Figure 6 is a conceptual figure of a particular symptom in concussion using, the example of
post-concussion headache. The figure attempts to make two points (i) that a symptom may
spontaneously resolve or persist and (ii) that a variety of stimuli may provoke headaches
following mTBI. Of these, concentration is commonly observed clinically, but its
mechanism of inducing or increasing headache is unknown. One plausible explanation may
be increased activation in frontal areas (seen as increased blood flow on imaging studies)
that activates a system that diminishes endogenous pain modulation.

Although the pathogenesis of post-traumatic headache is yet to be defined, current theories
include; (i) a similar process to migraine (Packard and Ham, 1997) but provoked by damage
to the trigemino-vascular system (viz., structures such as the circle of Willis, extracranial
cephalic blood vessels, basilar artery, vessels of the dura and pia matter that receive
innervation from the trigeminal ganglion) (Sakas and Whitwell, 1997); (ii) ‘fragility’ of the
cranium in children whereby the skull is more malleable and dural damage thus more likely
because the dura is tightly adherent to the cranium (Sakas and Whitwell, 1997); (iii) tearing
of extracranial dural afferents (Levy et al., 2009; Zhang et al., 2010b); (iv) increased
propensity to cortical spreading depression (Ayata, ; Leao, 1947; Oka et al., 1977; Sakas and
Whitwell, 1997); and (iv) involvement of upper cervical trauma that affects the area of
spinal nerves C1–C3 (Grgic, 2007). Of note whiplash associated disorder (WAD) patients
report similar symptoms to those observed in mTBI including headache, cognitive
disturbances such as impaired memory, poor concentration, mental fatigue, sleep
impairment, sensory sensitivity, visual disturbances and vertigo, possibly linked to perfusion
abnormalities (Linnman et al., 2009; Otte et al., 1998), but see also Evans (Evans, 2010).

Even though there is a pattern in the origin of headache, there is no clear explanation for the
perpetuation of headache and its chronicity. There is some evidence that cerebral blood flow
alterations can be found even after 6–18 month of the original insult, with regional and
hemispheric asymmetries (Gilkey et al., 1997; Seifert and Evans, 2010) and predominance
of dysfunction within the frontal lobes (Lyczak and Lyczak-Rucinska, 2005). Whether this
alteration in CBF plays a primary role in the pathogenesis of posttraumatic headache or
reflects alteration in cortical and subcortical networks is unclear. However, long-term
structural gray matter changes in structures such as the anterior cingulate cortex (ACC) and
the dorsolateral prefrontal cortex (DLPFC), may later the function of descending
antinociceptive networks and increase the transmission of afferent signals from
trigeminovascular and dural afferents. These changes were present after 3 months in patients
with persistent injury. While other morphological and chemical changes in cortical and
subcortical structures are noted in migraineurs (Maleki et al., 2011; Prescot et al., 2009)
such data is not currently available for headache following mTBI.

Unfortunately, there has not been a single randomized placebo-controlled trial evaluating
any modality for the treatment of post-traumatic headache. Post traumatic headache
treatment has been best treated with a multifactorial approach, using multiple and combined
modalities, including, biofeedback, psychotherapy, and chiropractic therapy as well as
NSAIDS, ergotamine, triptans, opioids, SSRIS and muscle relaxants (Meehan, 2011;
Sheftell et al., 2007). Current treatment is mainly symptomatic, and more effective therapy
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awaits improved understanding of pathophysiologic mechanisms, and proper, rigorous
controlled clinical trials.

3.2.3. Cerebellum in Concussion – Disorders of Balance—Because of its location,
and especially in coup-contre coup injuries, the potential for cerebellar involvement should
be considered (Potts et al., 2009). A particular vulnerability of the cerebellum during TBI
has also been documented. Purkinje cells of the cerebellum appear to be selectively
susceptible, as significant Purkinje neuronal loss is observed within a 24-hour period after
injury. Purkinje synapse connections with parallel fibers, consisting of glutamate input,
make potential exitotoxic damage likely (Park et al., 2007; Potts et al., 2009). Clinical
manifestations of cerebellar concussion (Fumeya and Hideshima, 1994) following head
injury include those commonly defined for non-specific cerebellar dysfunction, including a
positive Rhomberg test, finger-nose intention tremor, incoordination, dysdiadochokinesia,
and even stuttering (Yeoh et al., 2006). Many of these cerebellar abnormalities may be better
defined through imaging. Approximately 33% of patients with TBI may experience severe
ataxia, positively correlated with post-traumatic amnesia, and up to 11% these patients also
have normal CT scans (Mysiw et al., 1990).

Perhaps the main issue relates to imbalance within neuronal systems, and the potential for
this network’s dysfunction to contribute to further ‘accidents’ that may affect the brain.
Through static and dynamic balance testing and analysis of center of pressure fluctuations, it
has been explained that patients that have suffered mTBI show reduced postural control in
both components (Geurts et al., 1999). In addition to these tests, Cavanaugh, et al, used
approximate entropy and identified concussed athletes that, despite demonstrating normal
stability, displayed subtle changes in their postural control (Cavanaugh et al., 2005), which
could remain altered even after 48 to 96 hours post injury (Cavanaugh et al., 2006). Lesions
of the cerebellum in children and correlations with TBI have been identified. White matter
degeneration within the cerebellum and its projections to the dorsolateral prefrontal cortex,
thalamus, and pons has been found in children with TBI (Spanos et al., 2007). It has also
been reported that the degree of white matter deterioration in the cerebellum, posterior
thalamic radiation and corticospinal tract was highly associated with balance deficits among
a group of children and adolescents with TBI (Caeyenberghs et al., 2010a). The evidence
suggests that postural control and stability should be tested routinely in patients after mTBI,
at baseline and after the injury. In the case of young athletes, it should be done at the
sidelines in the setting in which the insult occurred (Onate et al., 2007).

3.2.4. Basal ganglia Injury – Altered integration of motor-sensory-cognitive
functions—Basal ganglia injury after concussion is one of the many understudied and
underreported consequences, possibly due to its low and imprecise incidence, currently
reported in approximately 2 to 3 % (Macpherson et al., 1986; Shaffer et al., 2003).
Symptoms referable to basal ganglia dysfunction are usually reported in case studies with
few patients. However, even though such symptoms are rare, they are often quite disturbing
for patients and families. The concept of basal ganglia injury after traumatic events has been
described in a number of studies in severe TBI where obvious dysfunction was present. In
one report, 3 post-adolescent patients, after recovering of severe brain injury presented with
choreoathetotic movements of the upper limbs, attributed to lesions in the basal ganglia
(Drake et al., 1986). In another report of twenty one pediatric patients that sustained high
velocity trauma and falls, 52% had an isolated basal ganglia lesion and an inverse
correlation between the GCS and the patient’s outcome (Kurwale et al., 2010). More subtle
alterations in basal ganglia function may nevertheless be present in mTBI.

Landi describes a 10-month old patient that after a minor head trauma developed a right
facio-brachio-crural hemiparesis, with evidence of a left lenticular nucleus ischemic lesion
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after mTBI (Landi et al., 2011). Numerous other case reports show basal ganglia
involvement following mTBI (Kieslich et al., 2002; Landi et al., 2011; Sobani and Ali,
2011; Yilmaz et al., 2011). The mechanism underlying damage to the basal ganglia is
thought to be provoked by stretching, distortion, and even rupture of the lenticulostriate
branches of the middle cerebral artery as well as a decreased cerebral blood flow (Kieslich et
al., 2002; Yilmaz et al., 2011). Most reports suggest a good prognosis with no apparent
permanent damage, but there are currently no studies with long-term follow-up.

4. Clinical Management
Clinical management has been reviewed by a number of authors (Grubenhoff et al., 2011;
Kirkwood et al., 2008; Meehan et al., 2011; Vos et al., 2002) and is not the focus of this
review. Briefly, clinical management has been empirical focused on (1) Immediate care
(Kamerling et al., 2003); (2) restorative processes e.g., rest and cognitive training
(Cozzarelli, 2010); motor improvement (Bland et al., 2011); (3) symptom management e.g.,
treating symptoms such as headache (Lucas, 2011). The most common symptoms include
symptoms are headache, dizziness, decreased concentration, memory problems, irritability,
fatigue, visual disturbances, sensitivity to noise, judgment problems, depression, and anxiety
(Ryan and Warden, 2003). To date, there are no randomized controlled trials that have
compared strategies of treatment for any symptom to placebo or against each other.
Moreover, there are no well established rehabilitation techniques which have been shown to
hasten or lead to a more complete recovery, from either a symptom or objective marker
standpoint. At this time we do not fully understand factors (premorbid state and injury
related), that place some children with mild traumatic brain injuries at risk for post-
concussive symptoms that even in mTBI may last for over a year (Fay et al., 2009; Ryan and
Warden, 2003) and (4) preventive measures (Franklin and Weiss, 2012).

One of the vexing issues in the clinical treatment is that of “return to play” following a
concussion. Return to play or school (cognitive demands) and protocols have been suggested
to implement these guidelines (Kissick and Johnston, 2005). However, evidence exists that
children and adolescents take longer to recover than adults after a concussion (Guskiewicz
and Valovich McLeod, 2011). Reliance on the self-report of the athlete is inadequate.
Objective indices would help with this issue. Baseline and post-concussion cognitive
assessments can be helpful, but their sensitivity and specificity is incomplete, and clinicians
must be aware that head trauma may result in a wide array of clinical signs and symptoms,
that may not be evident on these computerized cognitive assessment tests (Standaert et al.,
2007). Clearly while clinical measures have their role, given the lag between the resolution
of clinical symptoms and the metabolic recovery of the brain, more objective measures
would help clinicians by providing a more accurate and objective assessment of when there
has been metabolic and structural brain recovery, the window of vulnerability to a repeat
concussion has passed, and when there is cumulative damage or impairment that should
preclude the child or adolescent’s return to contact sports, for example.

The problem we face is to understand the mechanism(s) by which mTBI in children may
lead to long term neurological consequences and the discovery of clinical, imaging, or other
biomarkers that identify the child that is at risk (Lee, 2007). Indeed, “Intervention by a
qualified rehabilitation team does not appear to impact on the long-term outcome for persons
with symptoms related to mild traumatic brain injuries” (Anderson et al., 2011). Recent
studies suggest that TBI may induce long-term neurodegenerative processes. Some of these
may be clinical (e.g., chronic traumatic encephalopathy from repetitive concussion (Stern et
al., 2011)) or subclinical involving more subtle changes resulting from progressive axonal
pathology and neurodegenerative changes. Sustained perturbation of axonal function, even
with recovery as shown in animal experiments (Creed et al., 2010) for up to 1-year post
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injury (Bramlett and Dietrich, 2002). The issue relates to how the asymptomatic status is
defined. Simple disappearance of symptoms, while clearly a good outcome, does not take
into account that the brain is highly susceptible to subsequent concussions, suggesting that
abnormalities are not fully recovered. Such data implicate underlying anatomical and
physiological alterations that can increase the brain's vulnerability to repeat injury and long-
term disability (Barkhoudarian et al., 2011). Indeed, this debate of whether mTBI can cause
permanent brain changes is ongoing (McHugh et al., 2006; Ruff, 2011). However, the issues
is clearly complex as noted in a comparison of mild moderate and severe TBI where post
concussion symptoms were reported to a greater degree in persons with mild TBI at 3
months post-injury but at 1 year after injury, no differences were found between TBI groups
on the presence of post-concussion syndrome (Sigurdardottir et al., 2009). Furthermore, in
adults at least, certain premorbid conditions are predictors of persistent post-concussion
syndrome; e.g. anxiety in women (Dischinger et al., 2009).

Significant clinical issues do relate to prevention of potential long-term process such as
chronic traumatic encephalopathy and the susceptibility of second impact syndrome. Second
impact syndrome is a potentially lethal condition in which an individual who has had blunt
cranio-cerebral trauma and whose symptoms have not subsided, sustains a second head
injury (Cantu, 1998b; McCrory, 2001). It is believed, thanks to forensic studies, that the
second blow has a synergistic effect on the initial pathology which itself may have
predisposed the brain to an increased injury response, causing diffuse cerebral swelling and
brainstem herniation, leading to death (Byard and Vink, 2009; McCrory, 2001; Wetjen et al.,
2010). Even though it is a reality, the virtually nonexistent statistics, the yet-to-be validated
inclusion and exclusion criteria, with predisposing factors being difficult, if not impossible
to evaluate, make this disorder a matter of continuous debate (Byard and Vink, 2009;
McCrory et al., 2012; Wetjen et al., 2010). Though new return to play guidelines have been
established in order to protect the athlete (Cantu, 1998a; Kissick and Johnston, 2005), the
extent of injury and the consequences of a second hit, even after months of the first impact,
need to undergo further study with more objective measures that include imaging studies.

5. Measuring Brain Changes
Alterations in brain function underlie behavioral changes observed following concussion.
Evaluations have predominantly been through clinical measures, the use of specific
concussion related measures (e.g., GCS), evaluation using pre and post concussion
questionnaires now more commonly available at schools (McCrea et al., 1997; Sarmiento et
al., 2010; Tsushima et al., 2008), and psychological testing for components such as
cognitive changes (Johnson et al., 2011b; Lau et al., 2011; Pontifex et al., 2009). Newer
neuroimaging measures of alteration of brain function and structure are now being used both
in the clinic (e.g., measures of white matter connections) and in research programs to define
objective indices of altered brain function. It is of note that most of the imaging studies are
in adolescents, presumably because imaging can be more easily obtained. The entire age
range of mTBI patients awaits further scrutiny.

Non-invasive imaging is completely changing our understanding of the process, offering
new insights into morphological, functional, and chemical changes in the brain. For
example, MacKenzie and colleagues demonstrated whole brain atrophy is present at 11
months after injury (MacKenzie et al., 2002). As such the development of true biomarkers of
the condition may be integrated with current tools used for assessment and treatments for the
constellation of brain-induced behavioral and physiological changes. Clearly there are 3
diagnostic domains that imaging facilitates (i) initial assessment of the severity of the
concussion; (ii) temporal window of metabolic brain vulnerability and early prognostic
changes; (iii) long term evaluations. These measures are destined to change our approaches
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to treating children who suffer from or who have suffered from mTBI. Rehabilitation
attitudes may take the form of specific drivers related to specific brain function (e.g.,
cognitive therapy (Limond and Leeke, 2005)), to non-invasive activation of brain systems
(e.g., TMS (Demirtas-Tatlidede et al., 2011)) or processes that allow enhancing
normalization of systems, including exercise (Leddy et al., 2011). New findings will,
hopefully, lead to improvements in neurorehabilitation and understanding of neuroplasticity
(Chen et al., 2002; Dancause and Nudo, 2011). Given that the pediatric brain is more
‘plastic’ than that in the adult, one concern to consider is whether changes are more adaptive
or deleterious over time. The development of imaging biomarkers may contribute to
improved understanding and thus the development of specific and effective therapies.

5.1. Current approaches
5.1.1. Computerized Tomography (CT) and standard Magnetic Resonance
Imaging (MRI)—In the past decades, CT scan has become readily available in most
healthcare facilities, making it the method of choice to detect acute changes in the brain,
such as hemorrhage, uncommon in mTBI, as well as significant contusions and external
fractures. However, CT has continually failed to show structural changes in the brain after
injury (Fiser et al., 1998; Suskauer and Huisman, 2009). MRI has equal sensitivity in
detecting these acute changes, and better sensitivity than CT in detecting some anomalies,
such as cerebral edema, hemosiderin deposition, and minor cerebral contusion (Lee et al.,
2008), and avoids the substantial radiation exposure that accompanies CT scanning – an
important factor in children and adolescents.

5.2. Enhanced Neuroimaging Approaches
5.2.1. Magnetic Resonance Imaging – Functional, Morphological, and
Chemical Measures of mTBI—Multimodal MRI, in which several techniques are used
to determine abnormalities in function and structure, are being used concurrently to
characterize brain changes. Specifically:

Functional Magnetic Resonance Imaging (fMRI): Brain changes in evoked responses
in mTBI: fMRI, evaluates measures of brain function based on changes in blood flow in
capillary beds in the brain (Raichle and Mintun, 2006). In particular, the Blood Oxygenation
Level Dependent (BOLD) technique is highly utilized in neuroimaging. A number of studies
have utilized fMRI in concussion. For example, Chen and colleagues evaluated regional
brain activations associated with a working memory task from a group of concussed athletes
and matched control subjects; athletes had weaker BOLD changes within the right mid-
dorsolateral prefrontal cortex, a crucial area for monitoring information in working memory
(Chen et al., 2004). Other fMRI BOLD studies, again in concussed athletes, showed that
such individuals, while performing visual and spatial memory tasks, had a significantly
higher activation at the parietal cortex, right dorsolateral prefrontal cortex, and right
hippocampus, all findings that were not seen in healthy controls (Slobounov et al., 2010).
Such results suggest that the concussed brain ‘compensates’ for disrupted areas by activating
different ones, possibly reflecting chronic changes in brain networks. Figure 7 is an example
of utilizing fMRI to evaluate changes in brain function. Such data provides insights into
specific brain regions that may be functionally deregulated or abnormal and can be
monitored and evaluated over time. Table 1A lists examples of other fMRI studies in
concussion in the pediatric population.

Resting State Networks-Measures of mBTI alterations in brain basal state: Recently,
there has been increasing interest in the concept of understanding brain networks in a default
functional activity without stimulation (Raichle and Mintun, 2006; Raichle and Snyder,
2007). Resting state networks (RSNs) have been identified in healthy children and are
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similar to those observed in adults. A core group of networks have been identified and
associated with functions such as self-monitoring, emotional processing, interoception and
exteroception. Several studies have demonstrated that disease states, such as depression, and
chronic pain alter several of the resting state networks (Balenzuela et al., 2010; Jin et al.,
2011). Mayer et al and Tang et al have depicted abnormal resting state networks in patients
with mild TBI that correlate with cognitive symptoms (Mayer et al., 2009; Tang et al.,
2011). A combination of evoked cognitive tasks with resting state analysis could help
identify structures associated with functional deficits. Figure 8A and 8B show an example of
differentiating changes in mTBI using this approach. See Table 1B, for studies utilizing
RSN’s.

Perfusion Imaging- Assessing physiological brain changes: Arterial Spin Labeling (ASL)
perfusion MRI is a newer technique that measures cerebral perfusion using arterial blood
water as an endogenous contrast agent, discarding the need for contrast agents. Although not
commonly used in children with mTBI, it has been used in adults with moderate to severe
TBI showing global, regional and diffuse cerebral blood flow (CBF) reductions in the TBI
subjects, demonstrating a potential use in the wide spectrum of TBI. Most notably
hypoperfusion was found in the posterior cingulate cortices, the thalamus, and frontal cortex
(Kim et al., 2010). Such findings may reflect and contribute to neurocognitive changes.
Further studies of mild TBI studies using ASL should be encouraged.

5.2.2. Magnetic Resonance Spectroscopy (MRS)-Measuring changes at the
chemical level—Proton MR spectroscopy has been used to identify concentration of
neurometabolites that can be markers of brain injury, such as lactate, in order to visualize
structures that have sustained damage (Suskauer and Huisman, 2009). Figure 9 shows and
example of MRS in mTBI. Kirov, using this method, encountered minimum metabolite
concentration changes (N-acetylaspartate (NAA), choline (Cho) and creatine (Cr)) in the
thalamus between patients with mTBI and healthy controls, making this region of particular
interest in the definition of mTBI (Kirov et al., 2007) (See Table 1D). It may also be
potentially used to evaluate chemical changes in response to treatments. Proton magnetic
resonance spectroscopy (1H-MRS) may provide an objective biomarker for complete
resolution of concussion induced metabolic derangements, and may be significantly more
reliable than resolution of clinical symptoms or deficits on cognitive testing. In a recent
study of 13 concussed non-professional adult athletes, substantial neurochemical alterations
is present in the injured brain and detectable by measuring NAA, despite the complete
resolution of symptoms and normal routine brain MR imaging (Vagnozzi et al., 2008). Such
an objective biomarker in the days to weeks after concussion could facilitate safe return-to-
activity decisions. The extent to which this may prevent early repeat concussions and long-
term sequelae is an important area for future research.

5.2.3 Magnetic Resonance Elastography (MRE)—MRE synchronizes mechanical
excitations with a phase contrast imaging pulse sequence to noninvasively register shear
wave propagation, from which local values of tissue viscoelastic properties can be deduced.
MRE has been proposed as a potentially useful marker of TBI since concussion and other
types of TBI may involve significant compression of brain tissue, brain edema, and possibly
tissue out of its elastic range, the mechanical behavior of brain tissue may be altered. In
animal models, MRE signal has been found to be affected by TBI, with significantly
reduced shear stiffness in injured brain regions, suggesting that shear stiffness may be used
as a marker of TBI and MRE may play an increasing role in the diagnosis and
prognostication of TBI (Boulet et al., 2011).
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5.2.4. Morphometric Imaging – Measures of Gray matter and White matter
integrity
Diffusion weighted imaging (DWI): DWI is an imaging technique that can be used to
measure white matter integrity. Given the nature of concussion affects on axonal injury, the
use of this technique has become more frequently used even as a standard of care. The
technique shows apparent probability of the direction of movement of water molecules in
the brain, and it has helped differentiate cytotoxic edema from vascular edema with the
potential benefit of monitoring outcome after brain injury. Susceptibility weighted imaging
(SWI), as its name implies, it uses the magnetic susceptibilities of extracellular and
extravascular blood products in the brain. It detects lesions by the finding the products
associated with shearing injuries such as diffuse axonal injury and can be correlated with
neurocognitive outcomes of TBI (Suskauer, 2009; Suskauer and Huisman, 2009). This
approach has demonstrated small alterations in white matter within the brains of patients
suffering concussion (Park et al., 2009). It is assumed that such abnormalities alter effective
functional communication between brain regions and diminish overall brain function in
patients. Measure of how these alterations resolve over time will contribute to better
understanding of treatments. For example, membrane stabilizers (including Imipramine and
Amitriptyline that have a sodium channel blocking function (Gerner et al., 2003; Yang and
Kuo, 2002)) may provide benefit by stabilizing activity in these damaged regions. Table 1F
lists examples of studies utilizing DWI in concussion studies.

Wilde et al., discovered through diffusion tensor imaging (DTI) that despite normal
computer tomographic (CT) findings, unremarkable conventional MRI findings in all but
one patient, and a GCS score of 15, adolescents who sustained MTBI had increased
Fractional Anisotropy (FA) and decreased diffusivity in the Corpus Callosum (CC) within 6
days post-injury. Cognitive, affective, and somatic post-concussion symptoms were all
related to DTI indices of CC integrity including fractional anisotropy. DTI indices are
sensitive to pathologic processes of mTBI that may correlate with the post-concussion
symptom severity of patients (Wilde et al., 2008). In another study, using DTI, measures of
white matter (WM) fiber tract integrity was assessed in varsity level college athletes with
sports related concussion without loss of consciousness, who experienced symptoms for at
least 1 month after injury. Notable abnormalities in structural integrity were present in
subjects after sustaining concussion. The main structures affected where the left temporal
lobe, the retrolenticular part of the internal capsule, and the posterior thalamic radiation,
which contain fibers that connect the frontal and occipital lobes as well as the temporal and
occipital lobes. Brain-injured subjects tended to have increased Mean Diffusivity (MD)
compared to controls and a decreased FA compared to controls. The authors propose that
MD may be more sensitive at detecting mild injury, whereas FA captures more severe
injuries (Cubon et al., 2011). Similar results were reported in another study of concussed
athletes, both acute (1–6 days post injury) and chronic (6 months) changes were measured.
FA was increased in dorsal regions of both corticospinal tracts and the corpus callosum at
both scanning sessions, while MD was decreased in the same regions at both time points
(Henry et al., 2011). Such data support the use of DTI in detecting subtle changes in the
brain. Figure 10 is an example of DTI measures in an mTBI patient.

The correlation of severity of post-concussive symptoms with changes in white matter
integrity are becoming a focus in a number of DTI studies: the severity of post-concussive
symptoms after minor head injury is significantly correlated with a reduction of white matter
integrity, as manifested by increases in diffusivity and reduced anisotropic diffusion (Smits
et al., 2011); widespread primary changes in the acute stage and secondary changes after 6
months in the white matter can be detected on DTI, even when conventional imaging
appears normal and correlate significantly with the results of some of the
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neuropsychological tests (Kumar et al., 2009); similarly, Chu et al, also reported significant
alteration in DTI metrics in a group of patients with mTBI in several brain regions, such as
the corpus callosum, the thalamus, where white matter tracts were significantly affected and
these changes were highly correlated with postconcussive symptom severity and emotional
distress (Chu et al., 2010); and in DTI studies of mTBI in 10 adolescents (14 to 19 years of
age) with mTBI 1 to 6 days post-injury with Glasgow Coma Scale score of 15 and negative
CT, increased FA and decreased apparent diffusion coefficient (ADC) and radial diffusivity
(RD), were correlated with intense post-concussion symptoms and emotional distress
compared to the control group and also correlated with severity of post-concussion
symptoms in the mTBI group (Mayer et al., 2010). Table 1C summarizes prior studies of
DTI in concussed patients.

Volumetric Changes Indices of Gray Matter Alterations: High-resolution structural
images couple with sophisticated analysis processes permit the determination of volumetric
change in subcortical structures as well as determination of cortical thickness alterations. As
previously mentioned whole brain atrophy can be evident after 11 months post trauma
(MacKenzie et al., 2002), and it has been found that in the entire range of TBI (mild to
severe), patients show decreased grey matter concentration in the frontal and temporal
cortices, subcortical grey matter, cingulate gyrus, and the cerebellum. These findings being
correlated with reduced attention and lower GCS (Gale et al., 2005). In children with TBI,
it’s been reported that significant cortical thinning occurs which is also related to deficits in
working memory (Merkley et al., 2008).

6. Future directions
The recognition of mTBI and its significance has evolved throughout the years, and for this
reason, the means to diagnose this condition must evolve as well. In spite of the increased
awareness of the problem, there is still some evidence that, clinically, mTBI is under-
recognized by emergency department staff, even when patients reported findings consistent
with such lesion (Powell et al., 2008). The main issues that need to be addressed are the
ability to diagnose and treat the initial brain changes following concussion, to measure the
effectiveness of these treatments (neurocognitive training, pharmacotherapy, TMS, etc.), and
to provide a predictive and measurable outcome of the long term changes following
concussion. Clearly, objective methods that can determine a unambiguous diagnosis and
guidelines for recovery would be enormously useful (d'Hemecourt, 2011). In addition, we
know relatively little about the neurobiology of concussion and the optimal therapeutic
treatments. Current treatment recommendations include cognitive rest and pharmacological
treatments for symptoms such as headache.

The use of brain imaging biomarkers for mTBI is provocative given the nature of the injury
and the ability to now measure subclinical consequences of the disease (De Beaumont et al.,
2011; Theriault et al., 2009). Figure 11 summarizes the use of imaging across three main
domains – neural systems biology, diagnostics (biomarker) and the implications of potential
biomarkers evaluate therapeutic measures. It is worrisome that abnormal changes in brain
function may be identified in athletes with no previous diagnosis of concussion (Talavage et
al., 2010) (see Figure 12) or in athletes with no deficits in behavioral performance (Jantzen
et al., 2004). Recent studies have utilized fMRI and neurocognitive testing; both have
proven to be useful in identifying brain adaptability to injury and potential recognition of
long-term markers of persistent neurological sequelae (Schutze et al., 2008).

Like other CNS conditions, the emergence of imaging as a modality in concussion to
identify the underlying anatomy and biology of disease and as a biomarker of recovery and
long-term neurological sequelae (Ellemberg et al., 2009) (Suskauer and Huisman, 2009)
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holds great promise for advancing our understanding of this public health crisis and
developing more informed and specific strategies for treatment and rehabilitation
(McCullough and Jarvik, 2011) (Borsook et al., 2011a, b) (Figure 13).

The absence of any pathological findings in standard imaging methods is part of the
diagnostic criteria of concussion. Novel methods of imaging could change the entire
classification of mTBI with increased sensitivity to microstructural disruptions seen in
Diffuse Axonal Injury (DAI). Of the emerging MR imaging techniques, Diffusion Tensor
Imaging (DTI; tractography), holds promise for improving understanding of more specific
brain-behavior relationships after pediatric TBI and for refining prognostic evaluation. Early
evidence also suggests that these techniques may be useful for understanding mechanisms of
recovery after pediatric TBI, though further longitudinal work is needed to understand the
interaction between development, injury, and recovery in children with TBI (Suskauer and
Huisman, 2009).

Specifically, there are 4 main areas that imaging may contribute to improving our
understanding and treatment of mTBI in children:

(1) Establishing neuroimaging correlates for neurocognitive and neurobehavioral sequelae
of mTBI

Estabishing such correlates will serve two purposes: First, it will provide means to
understand where in the brain is responsible for a specific neurocognitive and
neurobehavioral sequelae of mTBI. Second it will help to assess the success of interventions
or treatment approaches and see if any improvement has been achieved. The benefit of this
approach could be that the treatment responses (changes in the levels of neurotransmitters or
inflammatory factors as measured by MRS for instance) could be recorded and serve as an
index for recovery even before clinical symptoms are detected.

(2) mTBI and normal brain development
mTBI in children is more serious issue compared to adults, as the brain has not yet matured
and it is still developing. The rate of the changes in the developing brain is not steady and it
is age-dependant Therefore studying mTBI in children should be done in the context of
development in order to determine how alteration in the brain as a result of mTBI could
interfere with normal development or change the course or direction of it. There is a wealth
of information in the literature on the application of neuroimaging techniques in studying
developing brain in health and disease. Therefore the same neuroimaging approaches could
be applied to image children with mTBI and compare the findings to normal children to see
how the developing trajectories may vary. As such age-dependent treatment approaches may
emerge which may be more efficacious.

(3) Reversibility of the damages post injury
How does the brain recover post injury? Are the damages resulting from mTBI reversible?
While in mTBI there is less evidence to answer these questions, in chronic pain conditions
(such as chronic migraine), neuroimaging studies have shown changes in the functional and
structural plasticity as a consequence of chronic pain (Rodriguez-Raecke et al., 2009) that is
reversible once the pain is adequately treated.

(4) Age-dependent individualized and optimized treatment approaches
There are inherent individual differences in the brain function and structure so as differences
in brain development. Neuroimaging can provide an objective way of determining the status
of the brain (e.g., by measuring myelination level using MRI techniques) and hence
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optimizing the intervention. The type of treatment will depend on the stage of the recovery
for instance if the injury is new, the treatment should focus on neuroprotection.

7. Conclusions
Mild TBI is not a benign event and may have persistent effects on brain function and
structure. This review describes the impact of mTBI and its potential effect upon brain
regions and connectivity. A current paradox exists in which many studies show the extent
and severity of the consequences with an increased incidence and prevalence of acute as
well as chronic problems, while statistics indicate that the disease burden seems to decrease
over time. The child and adolescent brain provides a challenge in this type of injury and
highlights the need for specific management of the developing central nervous system.
Emerging neuroimaging techniques may identify markers of severity and long-term
disability and aid in delineating more precise treatments for the neurologic sequelae of
mTBI.

Highlights

• Concussion is a significant pediatric public health concern.

• Concussion affects several cortical and subcortical regions and systems.

• The extent and chronicity of disability is yet to be elucidated in children.

• Using new imaging techniques, subclinical changes are found in the concussed
brain.

• Neuroimaging techniques may identify markers of severity and long-term
disability.
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Figure 1.
Post-concussive signs and symptoms. Physical, cognitive, emotional and sleep signs and
symptoms potentially present after sustaining a concussion.
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Figure 2.
Temporal Consequences of Concussion. The figure shows the current understanding of the
implications of mTBI and its chronologic burden.

Toledo et al. Page 35

Neurosci Biobehav Rev. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3.
Metabolic and Anatomical Changes. A: Neuronal Changes. Schematic depiction of the
process that lead to neuronal cell injury after a concussion(Adapted from (Giza and Hovda,
2001)). B: Axonal Changes. Postmortem APP immunohistochemistry of the corpus
callosum after TBI showing axonal bulb formation, and points of interruption (a–d). From
(Johnson et al., 2012b); permission pending.
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Figure 4.
Brain-Related Behavioral Changes. Conceptualized regional brain involvement and the
potential consequences of concussion.
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Figure 5.
Acute and chronic consequences of different grades of severity of Concussion. Notice that
even though mTBI seems to recover quickly, it continues to present cognitive problems
along time (from http://www.publichealth.va.gov/docs/vhi/traumatic-brain-injury-vhi.pdf;
permission pending).
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Figure 6.
Temporal changes following Concussion. Onset and persistency of post-concussive
headache due to different mechanisms involving anatomical and blood flow changes.

Toledo et al. Page 39

Neurosci Biobehav Rev. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 7.
Functional Imaging - fMRI (Evoked Measures): Functional MRI image showing brain
activation during a verbal working memory task in healthy controls, mTBI patients with low
post concussive symptoms (PCS) and moderate PCS. The image shows additional activation
in the posterior brain regions, and less activation in the frontal regions, when patients had
low and moderate post concussive symptoms (PCS), compared to control subjects. These
changes depict poorer brain activation in frontal areas in patients with PCS while performing
neurocognitive testing. (From (Chen et al., 2007); permission pending).
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Figure 8.
A: Functional Imaging - fMRI (Resting State). Functional MRI comparing healthy controls
with patients with traumatic brain injury: Patients showed increased posterior cingulate
cortex and precuneus functional connectivity activation than controls. The results
hypothesize that such variations are a direct reflection of brain injury and also a
representation of adaptive response to cognitive impairment. (From (Sharp et al., 2011);
permission pending).
B: Functional connectivity. Functional MRI showing comparing resting state networks of
normal volunteer vs. mTBI patients. The figure indicates the differences between shared
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(red) and non-shared (yellow) connections from left and right parietal lobes. (From (Johnson
et al., 2012a); permission pending).
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Figure 9.
Magnetic Resonance Spectroscopy. MRS image comparing the right and left parieto
occipital regions, (a and b, c and d respectively) between a mTBI patient and a healthy
control: N-acetyl aspartate (NAA) and total choline (Cho) are significantly altered in b1
compared to the control subject at c1 and d1. (From (Govind et al., 2010); permission
pending).
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Figure 10.
Morphometric Imaging in Concussion. Top. DTI fiber tractography showing track fiber
pattern to the left DLPFC in healthy controls and mTBI patients: 15 student-athletes (mean
age 20.8 ± 1.7 years) who suffered from sport-related mTBI (collegiate rugby, ice hockey
and soccer players). Statistical analysis demonstrated that these different patterns involved
significant variations in diffusivity between these two groups; the mTBI group had
decreased diffusivity. (From (Zhang et al., 2010a); permission pending).
Bottom. DTI fiber tractography detail of a mTBI patient at the level of the right semiovale
center: Mild TBI patients possessed a GCS of 13–15 after a traffic accident, blow to the
head or fall. Note the discontinuous characteristics of the fibers, hypothesized to be caused
by trauma. (From (Rutgers et al., 2008); permission pending).
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Figure 11.
Imaging uses. The figure shows the broad range of current potential uses of imaging in this
field, with physiological, diagnostic and therapeutic implications.
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Figure 12.
Brain alterations shown on functional imaging without behavioral changes. fMRI image of
highschool football players without clinically diagnosed concussion, performing
neurocognitive testing before football season and during football season: Even in the
absence of concussion [in 8 out of 21 athletes], fMRI shows significantly different changes
in the athletes brain, such changes are correlated with a poorer performance in
neurocognitive testing. (From (Talavage et al., 2010); permission pending).
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Figure 13.
Chart depicting how a new approach for concussion can be reached with imaging and how it
can change the field. Imaging encloses different and specific aspects of this pathology,
which makes it a precise and sensitive tool in TBI diagnosis, pathophysiology and treatment.
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