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Abstract

In this paper, we give a short introduction to machine learning and survey its applications in
radiology. We focused on six categories of applications in radiology: medical image segmentation,
registration, computer aided detection and diagnosis, brain function or activity analysis and
neurological disease diagnosis from fMR images, content-based image retrieval systems for CT or
MRI images, and text analysis of radiology reports using natural language processing (NLP) and
natural language understanding (NLU). This survey shows that machine learning plays a key role
in many radiology applications. Machine learning identifies complex patterns automatically and
helps radiologists make intelligent decisions on radiology data such as conventional radiographs,
CT, MRI, and PET images and radiology reports. In many applications, the performance of
machine learning-based automatic detection and diagnosis systems has shown to be comparable to
that of a well-trained and experienced radiologist. Technology development in machine learning
and radiology will benefit from each other in the long run. Key contributions and common
characteristics of machine learning techniques in radiology are discussed. We also discuss the
problem of translating machine learning applications to the radiology clinical setting, including
advantages and potential barriers.
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1. Introduction
Radiologic imaging is of increasing importance in patient care. Both diagnostic and
therapeutic indications for radiologic imaging are expanding rapidly (Bhargavan et al.,
2009). The rapid expansion is a consequence of the need for more rapid, accurate, cost-
effective, and less invasive treatment. Technologic advancements in radiologic imaging
equipment have also fueled the utilization of imaging. Such technologic advancements
include the capability to acquire higher and higher resolution images, enabling visualization
of smaller anatomic structures and abnormalities. The higher resolution comes at the cost of
an ever increasing average number of images per patient. Radiologists need to interpret
these images and as the number of images increases, radiologists' workload increases as
well. The increasing number and complexity of the images threatens to overwhelm
radiologists' capacities to interpret them. In many real radiologic practices, automated and
intelligent image analysis and understanding are becoming an essential part or procedure,
such as image segmentation, registration, and computer-aided diagnosis and detection. In
addition, in the area of cancer prognosis and treatment, automated and intelligent algorithms
have a large market and are welcomed broadly, in areas such as radiation therapy planning
or automatic identification of imaging biomarkers from radiological images of certain
diseases, etc. Machine learning algorithms underpin the algorithms and software that make
computer-aided diagnosis/prognosis/treatment possible.

Radiology is a branch of medical science which uses imaging technology and radiation to
make diagnoses and treat disease. It has benefited greatly from the advances of physics,
electronic engineering, and computer science. Based on different detection and imaging
rationale, various modalities were developed in the past decades in the field of diagnostic
radiology. Today, the mainstream modalities which are widely used in hospitals and medical
centers include radiography, fluoroscopy, computed tomography (CT), ultrasound, magnetic
resonance imaging (MRI), and positron emission tomography (PET).

In the daily practice of radiology, medical images from different modalities are read and
interpreted by radiologists. Usually radiologists must analyze and evaluate these images
comprehensively in a short time. But with the advances in modern medical technologies, the
amount of imaging data is rapidly increasing. For example, CT examinations are being
performed with thinner slices than in the past. The reading and interpretation time of
radiologists will mount as the number of CT slices grows.

Machine learning provides an effective way to automate the analysis and diagnosis for
medical images. It can potentially reduce the burden on radiologists in the practice of
radiology. The applications of machine learning in radiology include medical image
segmentation (e.g., brain, spine, lung, liver, kidney, colon); medical image registration (e.g.,
organ image registration from different modalities or time series); computer-aided detection
and diagnosis systems for CT or MRI images (e.g., mammography, CT colonography, and
CT lung nodule CAD); brain function or activity analysis and neurological disease diagnosis
from fMR images; content based image retrieval systems for CT or MRI images; and text
analysis of radiology reports using natural language processing (NLP) and natural language
understanding (NLU).

Machine learning is the study of computer algorithms which can learn complex relationships
or patterns from empirical data and make accurate decisions (Bishop, 2006; Duda et al.,
2000; Mitchell, 1997). It is an interdisciplinary field that has close relationships with
artificial intelligence, pattern recognition, data mining, statistics, probability theory,
optimization, statistical physics, and theoretical computer science. Applications of machine
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learning include natural language processing, medical diagnosis, bioinformatics, video
surveillance, and financial data analysis.

Machine learning algorithms can be organized into different categories based on different
principles. For example, depending on the utilization of labels of training samples, they can
be categorized into supervised learning, semi-supervised learning, and unsupervised learning
algorithms.

In supervised learning, each sample contains two parts: one is input observations or features
and the other is output observations or labels (Alpaydin, 2004; Hastie et al., 2009). Usually
the input observations are causes and the output observations are effects. The purpose of
supervised learning is to deduce a functional relationship from training data that generalizes
well to testing data. The form of the relationship is a set of equations and numerical
coefficients or weights. Examples of supervised learning include classification, regression,
and reinforcement learning.

In unsupervised learning, we only have one set of observations and there is no label
information for each sample (Hastie et al., 2009). Usually these observations or features are
caused by a set of unobserved or latent variables. The main purpose of unsupervised
learning is to discover relationships between samples or reveal the latent variables behind
the observations. Examples of unsupervised learning include clustering, density estimation,
and blind source separation.

Semi-supervised learning falls between supervised and unsupervised learning (Chapelle et
al., 2006; Zhu, 2007). It utilizes both labeled data (usually a few) and unlabeled data
(usually many) during the training process. Semi-supervised learning algorithms were
developed mainly because the labeling of data is very expensive or impossible in some
applications. Examples of semi-supervised learning include semi-supervised classification
and information recommendation systems (Christakou et al., 2005).

Machine learning has many applications in real life. It is routinely used in banking (for
detecting fraudulent transactions (Dorronsoro et al., 1997)), in finance (to predict stock
prices (Huang et al., 2005a)), in marketing (to reveal patterns of consumer spending (Bose
and Mahapatra, 2001)), and on the Internet (as part of search engines (Basili, 2003)). In
biomedicine, MYCIN was proposed in the early 1970s at Stanford University. It is an expert
system with about 600 rules designed to identify bacteria and recommend antibiotics
(Swartout, 1985). Machine learning also showed capability in the field of drug design
(Burbidge et al., 2001).You may not be aware of the existence of machine learning, but its
applications are pervasive in our daily lives.

This review is structured as follows. In Sec. 2 we give a short introduction to machine
learning and related algorithms. In Sec. 3 we describe six representative applications of
machine learning in radiology. In Sec. 4 we discuss key contributions and common
characteristics of machine learning techniques in radiology. In Sec. 5 we cover issues on
translating machine learning techniques to clinical radiology practice. In Sec. 6 we review
current research status and discuss future directions.

2. Overview of machine learning
Because of the rapid development of machine learning, it is hard to introduce every aspect
of machine learning in one article. So in this section we will give a concise introduction to
the most important topics of machine learning (Bishop, 2006). These topics include linear
models, learning with kernels, probabilistic models, clustering analysis and dimensionality
reduction. Through this introduction, we hope readers may have a general idea about the
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content of machine learning research, what it is capable of, and what are the implications to
other research areas and real applications. The topics that will be introduced and their inter-
relationships are shown in Fig. 1.

In these topics of machine learning research, kernel learning and probabilistic models play
key roles in machine learning-based radiology applications. Kernel learning usually provides
the best classifier for computer-aided detection in radiology (El-Naqa et al., 2002; Malley et
al., 2003); probabilistic models provide a theoretical framework for medical image analysis,
such as image reconstruction (Levitan and Herman, 1987), segmentation (Zhang et al.,
2001), and registration (Ashburner et al., 1997; Maintz and Viergever, 1998). Linear
models, artificial neural networks, and ensemble learning provide other options for handling
classification and regression problems in radiology besides kernel learning (Jerebko et al.,
2003a; Yoshida and Nappi, 2001). Dimensionality reduction and feature selection is an
essential part of computer-aided detection (CAD) systems in radiology (Wang et al., 2008a).
Multiple instance learning addresses the common scenario in radiology CAD where a
patient may have few positive instances of disease (e.g., lesions) and many false positives
(Liang and Bi, 2007). Reinforcement learning is dedicated to accumulate domain experience
in sequential learning (Sahba et al., 2006). Clustering analysis could be applied in medical
images to identify similar lesions or meaningful findings (Chuang et al., 1999). Graph
matching is employed to handle medical image registration problems (Wang et al., 2010a).

2.1 Linear models for classification and regression
Linear models assume that there is a linear relationship between the input of the model and
the output of the model. Perhaps it is the simplest method for classification and regression. It
has been widely used in computer-aided classification. For example, Chan et al. employed
linear discriminant analysis (LDA) in texture feature space for classification of
mammographic masses and normal tissue (Chan et al., 1995b). In the work of Preul et al. on
accurate, noninvasive diagnosis of human brain tumors by proton magnetic resonance
spectroscopy, they used LDA for classification in the “leave-one-out” test paradigm (Preul
et al., 1996).

Given an input vector xεRd which describes features of objects we want to classify, a
decision function in linear models usually is defined as f(x)= wTx + w0 where w is the
weight vector and w0 is a constant and called threshold. Learning the optimal weight vector
w and threshold w0 is a key problem in linear models. Once w is learned from training data,
it can be applied to test cases and predicts the labels of them. For two-class classification
problems, Fisher proposed the following criterion to locate the optimal parameters (Fisher,

1936): , where SB=(m1−m2)(m1+m2)T is called the “between” scatter
matrix (mi is the mean of samples from class i,iε{1,2}), and Sw=S1+S2 is called the “within”
scatter matrix (S1=ΣxεDi(x−m1)(x−m1)T, Di is the collection of samples from class
i,iε{1,2}). This method is called linear discriminant analysis (LDA). The basic idea of LDA
is to try to find an optimal projection w which can maximize the distances between samples
from different classes and minimize the distances between samples from the same class. An
illustration of LDA is shown in Fig. 2. Once the 2D data are projected to one dimensional
line, threshold along the line will affect the classification error, as depicted by the 1-D
distributions in Fig. 2. For multiple classes problems, the above scatter matrices can be

extended to the following form: , where K is the
number of classes, mi is the mean vector of class i, pi is the priori probability,  is the
overall mean (Loog et al., 2001).
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Closely related to linear discriminant analysis, quadratic discriminant analysis tries to
capture the quadratic relationship between the independent and dependent variables (Hastie
et al., 2009). It provides more powerful discriminant ability compared with the linear
separation interface of two classes learned by LDA.

2.2 Artificial neural networks
Artificial neural networks (ANNs) are techniques that were inspired by the brain and the
way it learns and processes information. ANNs are frequently used to solve classification
and regression problems in real world applications. Neural networks are composed of nodes
and interconnections. Nodes usually have limited computation power. They simulate
neurons by behaving like a switch, just as neurons will be activated only when sufficient
neurotransmitter has accumulated. The density and complexity of the interconnections are
the real source of a neural network's computational power.

Neural networks can be classified by their structures. In 1957 Rosenblatt proposed the first
concrete neural network model, the perceptron (Rosenblatt, 1958). A perceptron has only
one layer; in essence it is a linear classifier. In 1960, Bryson and Ho proposed the multiple
neural network and introduced the fundamental backpropagation algorithm for training a
neural network (Bryson and Ho, 1969). In theory, a three layer neural network can learn any
complicated function. In 1982, the Hopfield network was proposed which has only one layer
and all neurons are fully connected with each other (Hopfield, 1982). Boltzmann machines
can be seen as the stochastic, generative version of Hopfield networks (Ackley et al., 1985).
Boltzmann machines are able to solve difficult combinatorial problems and learn internal
representations. The self-organizing map (SOM) was introduced around the same time
(Kohonen, 1982). It is a unique network which conducts unsupervised learning. Since the
final network topology learned by SOM can express certain characteristics of input signal, it
was widely used for dimension reduction, visualization of high dimensional data and
clustering. Cellular neural network (CNN) provides a parallel computing paradigm similar
to human vision perception (Chua and Yang, 1988a, 1988b). In CNN, the communication is
only allowed between neighboring nodes. Typical applications of CNN include image
processing, analyzing 3D surface, modeling biological vision, etc. Besides these neural
networks introduced above, other important neural networks include radial basis function
(RBF) (Moody and Darken, 1989), probabilistic neural (Specht, 1990) and cascading neural
networks (Fahlman and Lebiere, 1991).

Baker et al. showed that ANN could be used to categorize benign and malignant breast
lesions based on the standardized lexicon of the Breast Imaging Recording and Data System
(BIRADS) of the American College of Radiology (Baker et al., 1995). Tourassi et al.
showed an application of ANN in acute pulmonary embolism detection (Tourassi et al.,
1993). They found that the ANN significantly outperformed the physicians involved in this
study.

2.3 Learning with kernels
By applying traditional supervised and unsupervised learning methods in the feature space,
kernel methods provide powerful tools for data analysis and have been found to be
successful in a number of real applications. Support vector machines (SVMs) are a set of
kernel-based supervised learning methods used for classification and regression (Burges,
1998). Here kernel means a matrix which encodes similarities between samples (evaluated
by a certain kernel function which is a weighting function in the integral equation used to
calculate similarities between samples). SVMs try to minimize the empirical classification
error and maximize the geometric margin simultaneously on the training set which leads to
high generalization ability on the new samples. For a two-class classification problem, given
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training samples {(x1, y1),…,(xn, yn)}, yi ε{−1,+1}, the optimization problem for learning a

linear classifier in the feature space is defined as (hard margin): , subject to
yi(〈w,Φ(xi〉)+b)≥1i=1,…,n,, where Φ is the mapping from original space to feature space
and symbol <= means the inner product of two vectors. The matrix composed by inner
products of samples in feature space (after linear or non-linear mapping) is called the kernel
matrix which describes the similarities between samples and serves as evidence when we
maximize the margin between two classes of samples. The above problem is a quadratic
programming (QP) optimization problem and it is convex. The optimal (w*,b*) is a maximal
margin classifier with geometric margin γ =1/||w*||2 if it exists. It can be applied to classify
test samples once it is learned from the training set. The concept of the geometric margin
learned by the SVM is shown in Fig. 3 in which samples on the margin are called support
vectors.

In many real clinical applications, we can extract many features with the help of modern
medical test equipment, e.g., lab tests and radiology devices. Some features may not be
relevant to the labels of subjects tested. If we feed all the features to SVMs, it may be
affected by irrelevant and noisy features which can result in poor performance. In addition,
with hundreds (or thousands or more) of features from test equipments doctors may also
wonder which features are relevant or useful for the diagnosis of certain diseases so they can
give better interpretations of the clinical findings. In the work of Weston et al., they
proposed a method of feature selection for SVMs (Weston et al., 2001). The best features
are identified by minimizing bounds on the leave-one-out error.

In the basic optimization problems of SVMs introduced above, there is only one mapping
function Φ which maps input vector to feature space. In real applications, we often have
multiple information sources to describe the same object. A multiple kernel learning
approach provides a feasible way to solve real applications which involve multiple,
heterogeneous data sources (Chapelle et al., 2002; Lanckriet et al., 2004; Sonnenburg et al.,
2006). This so-called “multiple kernel learning” problem usually can be solved by

considering the convex combinations of K kernels, i.e., , with

βk ≥ 0 and , where each kernel Kk uses a group of features from one information
source and xi,xj are samples.

Typical applications of kernel-based learning methods in radiology are in CAD. SVMs
perform well in detection of microcalcifications on mammography CAD (El-Naqa et al.,
2002; Tang et al., 2009; Wei et al., 2005b). For computed tomographic colonography
(CTC), colonic polyps were detected using statistical features extracted from polyp
candidates and multiple kernel learning (Wang et al., 2010c).

2.4 Learning and inference in probabilistic models
Probabilistic models provide a concise representation of complicated real world phenomena
and enable predictions of future events from present observations. For example, in
radiology, dose control in clinical scanning is a critical issue. Giving a patient more dose
than he/she needed may cause potential damage to the issue or induce cancer. Mohan et al.
proposed a tumor control probability (TCP) model to predict the clinical consequences of
different radiation dose distributions and optimize 3-D conformal treatment plans (Mohan et
al., 1992). The model can be used to predict radiation effect on tissue for a given dose in
simulation prior to exposing the patient. Martel et al. estimated TCP model parameters from
3-D dose distributions of non-small cell lung cancer patients (Martel et al., 1999).
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The Naive Bayes classifier is a classifier based on probabilistic models with strong (naive)
independence assumptions. In spite of its oversimplified assumptions, naive Bayes
classifiers work well in many real life applications (Domingos and Pazzani, 1997). Assume
C is a class variable depending on n input features: X1,X2,…,Xn. The prediction of C can be
described by the following conditional model: p(C | X1,X2,…,Xn). By Bayes' theorem,

, where p (C) is the prior probability of C,
p(X1,X2,…,Xn | C is the conditional probability depending on C, and p(X1,X2,…,Xn) is the
probability of input features. Assume that each feature Xi is conditionally dependent and
observe that denominator p(X1,X2,…,Xn) does not depend on C which is actually a constant
when features are given, the conditional probability over the class variable C can be

expressed as  where Z is a normalization constant.
The above Naïve Bayes classifier can be trained based on the relative frequencies shown in
the training set to get an estimation of the class priors and feature probability distributions.
For a test sample, the decision rule will be picking the most probable hypothesis (value of C)
which is known as the maximum a posteriori (MAP) decision rule using the above model.

As an example of Naïve Bayesian classifier in radiology application, Prasad et al. tackled
the problem of lung parenchyma segmentation in the setting of pulmonary disease (Prasad et
al., 2008). They used curvature of ribs for the segmentation and used Naïve Bayesian
classifier to build the model to find the best-fitting lung boundary. The inputs of the Naïve
Bayesian classifier are features of lung and rib curvature. Probability of a matched curvature
can be obtained from the classifier.

Graph models (Jordan, 1998; Jordan et al., 1999) are perhaps the most popular probabilistic
models in which nodes represent random variables and links between nodes denote the
conditional independence structure between random variables. Bayesian networks and
Markov random fields are two typical graph models. Illustration of a Bayesian network on
bone fracture modeling is shown in Fig. 4.

The Bayesian network (Heckerman, 1996), also called a belief network or directed acyclic
graphical model, represents conditional independencies via a directed acyclic graph (DAG).
For example, in the area of medical diagnosis, the relationship between diseases and
symptoms can be modeled by a Bayesian network. The probability of a specific disease can
be calculated based on the presence of symptoms. Let G = (V,E) be a DAG (where G
represents the graphical model, V a set of variables, and E an encoding of the casual
relationships between variables) and X = (Xv)vεV be a set of random variables indexed by V.
The joint probability density function of X can be factorized as follows:

, where pa(v)are the parent nodes of v.

Learning of a Bayesian network includes parameter learning and structure learning.
Structure learning is more challenging than parameter learning because the network
structure is unknown and the solution space is much larger than that of parameter learning.
Maximum likelihood (Lecam, 1990) and expectation-maximization (EM) (Dempster et al.,
1977) are widely used in parameter learning of a Bayesian network and Markov chain
Monte Carlo (MCMC) provides a global search method for the learning of structure of a
Bayesian network.

A Markov random field (MRF), Markov network, or undirected graphical model, is a
graphical model in which a set of random variables are connected by undirected links. These
models have the so-called Markov property in which a random variable will only be affected
by its direct neighbor variables. MRFs have wide applications in computer vision and image
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processing (Held et al., 1997; Li, 1994; Panjwani and Healey, 1995; Zhang et al., 2001). For
example, Lei and Sewchand applied MRFs to CT image segmentation (Lei and Sewchand,
1992). They used an MRF to model CT images and segment them using a Bayesian
classifier.

2.5 Ensemble learning
Learning by an ensemble of classifiers is a very effective learning mechanism and was paid
much attention in recent years (Dietterich, 1997). Ensemble learning refers to a collection of
methods that learn a target function by training a number of individual learners and
combining their predictions together. The Bagging algorithm (Bootstrap aggregating)
(Breiman, 1996) uses bootstrap samples to build base classifiers. Each bootstrap sample is
formed by uniformly sampling from the training set with replacement. The accuracy can be
improved through building multiple versions of the base classifier when unstable learning
algorithms (e.g., neural networks, decision trees) are used. The AdaBoost algorithm (Freund
and Schapire, 1995) calls a given base learning algorithm repeatedly and maintains a
distribution of weights over the training set in a series of rounds t = 1, …, T . During the
training process, the weights of incorrectly classified examples are increased so that the
weak learner is forced to focus on the hard examples in the training set.

Exemplar applications of ensemble learning in medicine include lung cancer cell
identification based on ANN ensembles (Zhou et al., 2002), colonic polyp detection using
SVM ensembles (Jerebko et al., 2005), and automated classification of lung bronchovascular
anatomy in CT using AdaBoost (Ochs et al., 2007).

2.6 Cluster analysis
Natural data usually show clustering properties: samples belonging to the same cluster are
more similar , or have closer distance, under certain distance metrics than samples from
different clusters. Analysis of the clustering properties of the data will help us understand
the nature of the data and potential real applications. It has broad applications in radiology,
such as medical image segmentation and diagnosis. Famous clustering algorithms include k
-means clustering (Pena et al., 1999), hierarchical clustering (Hastie et al., 2009), DBSCAN
(Ester et al., 1996), normalized cut (Shi and Malik, 2000), and mixtures of Gaussians
(Bilmes, 1998).

The key idea of k -means clustering is assigning each sample or point to the cluster with the
nearest center (also called centroid, the mean of all samples belonging to this cluster). The
optimization of clustering is done by iteratively re-assigning labels (markers of clusters) and
re-computing the centroids. k -means clustering has the advantage of simplicity and speed
but is prone to local minima as there is no guarantee of a global minimum of intra-cluster
variance. k -means clustering assigns a hard label to each sample. Fuzzy c-means clustering,
a variant of k- means clustering, incorporates fuzzy logic to show the degree to which a
sample belongs to each cluster.

Hierarchical clustering adopts a top-down or bottom-up strategy for clustering. It builds a
tree structure (called a dendrogram) based on sample distance. For the top-down strategy,
hierarchical clustering starts from one cluster as root. Then it splits the cluster successively
till a desired number of clusters are derived. Agglomerative hierarchical clustering operates
in the reverse direction by merging leaves or sub-clusters together step-by-step based on
various similarity or distance measures. DBSCAN is a density-based clustering algorithm. It
starts from a randomly selected and unlabeled point. Then it expands the cluster from the
initial points based on the sample density around that point. All unvisited points near a point
in the cluster which are density-reachable (i.e., density around the point is higher than a
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certain threshold) will be included in the cluster. DBSCAN has an overall runtime
complexity of O(n log n) and usually is faster than k -means clustering (O(ndk+1 log n)
where n is the number of samples, d is the dimension of samples and K is the number of
clusters).

Gaussians mixture model (GMM) (Bilmes, 1998) is among the most statistically mature
methods for clustering. Assume that we have a data set X composed of N samples generated
by k components. Each component generates data from a d -dimension Gaussian distribution
N (μi, Σi with mean μi and covariance Σi. The mixture model is expressed as follows:

 with parameters 
where x represents observed data and  are the mixture coefficients. The
incomplete-data log-likelihood expression for the mixture density from the data X is

. Let us assume that a
hidden variable z is attached to each observation which indicates from which component the
sample was generated, . With the help of hidden variables, the
incomplete-data log-likelihood shown above can be optimized by using the EM algorithm
(Dempster et al., 1977) in which the latent variables or unobserved data z1,…, zN) can be
estimated in the E-step and the parameters for each Gaussian distribution can be estimated in
the M-step (Amari, 1995).

Clustering analysis has many applications in medical image segmentation. For example,
Chen et al. proposed a robust algorithm for 3D image segmentation by combining adaptive
k-means clustering and knowledge-based morphological operations together (Chen et al.,
1998). They applied the proposed method to cardiac CT volumetric images to segment the
volumes of the left ventricle chambers. Yao et al. applied fuzzy clustering and deformable
models to colonic polyp segmentation in CT colonography (Yao et al., 2009).

2.7 Dimensionality reduction and feature selection
With the rapid development of modern measurement and detection instruments, we are able
to sample more and more data (regarding both dimension and size of the sample) from real
applications. For example, in radiology achievable image resolution has increased
significantly compared with ten years ago. Higher resolution means more voxels in an image
which corresponds to more input features if we feed a classifier with all voxels. The increase
in dimensionality (number of voxels in radiology images or number of features in feature
space that can be extracted from original images) is a significant obstacle to solving
optimization problems. This, in turn, complicates machine learning because of the
optimization tasks involved in the learning stage. Dimensionality reduction is dedicated to
solve this problem by extracting or selecting useful information from the feature space.
Classical techniques for dimensionality reduction, such as Principal Components Analysis
(PCA), are designed for data whose submanifold is embedded linearly or almost linearly in
the observation space (Jolliffe, 2002). Submanifold is a subset of a manifold in space and
has its own structure. Because many data from real applications, such as visual perception
(Tenenbaum et al., 2000), have nonlinear submanifold structures, there has been a surge in
research on nonlinear dimensionality reduction (NLDR) in recent years. The representative
methods of NLDR include local approaches such as Locally Linear Embedding (LLE)
(Roweis and Saul, 2000) and Laplacian Eigenmaps (Belkin and Niyogi, 2003), and global
approaches such as ISOMAP (Tenenbaum et al., 2000) and Diffusion Map (Coifman et al.,
2005a, 2005b). In these nonlinear methods, local methods try to preserve the local geometry
of the data in low-dimensional space; global approaches tend to give a more faithful
representation of the data's global structure. Applications of NLDR in radiology include
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showing data structure and distribution in low dimensional space (which cannot be observed
in the original high dimensional space), and classification (Wang et al., 2008b).

Similar to PCA, independent component analysis (ICA) looks for a linear transformation
which can convert the original data to a new linear space (Comon, 1994). The difference is
that for ICA the transformation matrix is designed to minimize the statistical dependence
between its components; whereas in PCA the transformation matrix is to retain the
components with maximal variance or energy.

By employing dimensionality reduction algorithms, we can extract useful information and
build compact representations from the original data. Such benefits can also be obtained by
feature selection. Feature selection is a machine learning technology which selects a subset
of features based on various optimization criteria (Guyon and Elisseeff, 2003).

Feature selection methods can be classified into two types- filter and wrapper- depending on
the integration of feature selection and the problem to be solved (Liu and Yu, 2005). For
filter methods, the best features are selected according to a specific criterion (such as
Pearson correlation and mutual information between features). The employed criterion is
independent of the real problem. For wrapper methods, feature selection is embedded into
the real problem to be solved and the optimal subset will be determined during iterative
optimization. The optimization is based on a final criterion related to the real problem. For
example, in a classification task, a wrapper method for feature selection tests a subset of the
features on the classification problem. The subset of the features evolves depending on the
classification results. Sequential forward selection and sequential backward selection are
common wrapper methods for feature selection. In the sequential feature selection methods,
an objective function or criterion will be defined first. Then a sequential search algorithm
will be introduced to add or remove features from candidate subsets based on the evaluation
results of the criterion.

In 2005, a method called minimal-redundancy-maximal-relevance (mRMR) feature
selection was proposed by Peng et al. (Peng et al., 2005). In mRMR feature selection, the
optimization criteria are affected by two factors: one is relevance between features and
target classes and one is redundancy between features. Peng et al. proposed a heuristic
framework to minimize redundancy and maximize relevance at the same time. mRMR
showed better performance in many real applications compared with traditional feature
selection methods. But as every learning algorithm has its own assumptions and conditions,
depending on the specific feature selection problem to be solved, we might find other
algorithms which are superior to the mRMR algorithm.

Applications of feature selection in radiology focus on selecting the best features for
computer-aided detection and diagnosis systems. For example, Li et al. proposed an efficient
feature selection algorithm based on piecewise linear network and orthonormal least square
procedure for computer-aided polyp detection in CT colonography (Li et al., 2006).
Mougiakakou et al. applied feature selection in conjunction with texture features and
ensemble classifiers to the problem of differential diagnosis of CT focal liver lesions
(Mougiakakou et al., 2007).

2.8 Reinforcement learning
Reinforcement learning studies how agents respond to the change of environment and
maximize long-term reward (Barto and Sutton, 1999). It has broad applications in robot
control (Schaal and Atkeson, 1994) and game playing (Schraudolph et al., 1994). In
reinforcement learning the agent continuously updates her strategy through iterative
interactions with the environment in order to develop an optimal strategy. Q-learning is a
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typical on-line, model-free reinforcement learning algorithm, where Q summarizes in a
single number all the information needed by the agent in order to determine her discounted
cumulative future reward (Watkins and Dayan, 1992). By using Q-learning, an agent can
develop the optimal strategy in a Markovian decision process through a sequence of actions
following a Boltzmann distribution strategy. It has been proven that Q-learning converges to
the optimum action-values with a probability of 1 so long as all actions are repeatedly
sampled in all states and the action-values are represented discretely.

Reinforcement learning has potential applications in radiology. For example, current
medical CAD systems for radiology are typically trained on a fixed training set. An
alternative approach is to incrementally enlarge the training set as new patient data becomes
available. Reinforcement learning could be used to incorporate the knowledge gained from
the new patients into the CAD systems. Sahba et al. have shown high potential of applying
reinforcement learning in medical image segmentation (Sahba et al., 2006).

2.9 Multiple instance learning
All supervised machine learning methods introduced in previous sections are single-instance
learning methods. In single-instance learning, each instance or sample has a label. But in
reality, we may have single instances without labels but groups of instances with labels.
Methods developed to handle such cases are called multiple-instance learning (MIL).
Multiple-instance learning is currently a hot topic in machine learning (Dietterich et al.,
1997; Maron and Lozano-Ṕerez, 1998). In multiple-instance learning, samples (also called
instances) are wrapped in bags. A bag is defined as an ensemble of instances. The learner
(computer learning algorithm) only knows the labels of bags and has no idea about the labels
of instances. A bag is labeled negative if all the instances in it are negative; a bag is labeled
positive if there is at least one instance in it which is positive. For example, in a radiology
CAD application, a patient can be viewed as a bag and all the detections given by the CAD
system can be treated as instances which include true lesions and false positives.

The axis-parallel rectangles (APR) method proposed by Dietterich is the first MIL algorithm
(Dietterich et al., 1997). The idea behind APR is very simple: find an axis-parallel rectangle
(APR) in the feature space to represent the target concept. APR should contain at least one
instance from each positive bag and should not contain any instances from any negative
bags. Experiments on drug activity prediction problems indicate that the APR method is
superior to traditional supervised methods based on single instance learning such as
backpropagation neural network and C4.5 decision tree.

Maron and Lozano-Ṕerez (Maron and Lozano-Ṕerez, 1998) proposed another MIL
algorithm called diversity density (DD) algorithm which tries to search for a point in the
feature space with the maximum diverse density. Diverse density measures the intersection
of positive bags, excluding the union of negative bags. This algorithm was improved by
incorporating expectation maximization (EM) to estimate which instance(s) in a bag is
responsible for the assigned class label (Zhang and Goldman, 2001). As a natural extension
of the classical k-nearest neighbor (k-NN) classifier, citation-kNN was proposed by Wang
and Zucker (Wang and Zucker, 2000), in which a Hausdorff distance is used to measure the
distance between bags, and both “citers” and “references” are considered in calculating
neighbors.

MIL has many potential applications in radiology, particularly when we are interested in
patient-level diagnoses rather than lesion-level diagnoses. For example, in CT pulmonary
angiography, we may wish to know whether the patient has pulmonary emboli. The number
of pulmonary emboli may be of secondary priority. MIL has been successfully applied to CT
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pulmonary angiography to detect pulmonary emboli (Liang and Bi, 2007). MIL has also
shown promising results in CT colonography to detect colonic polyps (Fung et al., 2007).

2.10 Graph Matching
Learning how to match two objects is a basic problem in computer vision and machine
learning. Graph matching provides an elegant way to present and match objects. It can be
applied to medical image registration.

In graph matching, an object usually is represented by a graph consisting of nodes and links
that connect the nodes. The nodes represent key points of the object with obvious visual
features or clues, i.e., anatomical landmarks. The links represent the spatial neighbor
relationship between different nodes. Given two similar graphs, graph matching studies how
to match nodes from one graph to the other graph accurately under various considerations
and constraints. The graph matching problem has interested researchers for decades and
many approaches have been developed. For example, Luo & Hancock treated matching
matrix or assignment matrix which defines the correspondence between two vertex sets as
hidden variable and proposed an integrative expectation-maximization (EM) algorithm to
solve this problem (Luo and Hancock, 2001). Gold and Rangarajan proposed a graduated
assignment graph matching algorithm (Gold and Rangarajan, 1996). A control parameter
was introduced in the algorithm to gradually impose matching constraints during the
iterative optimization process. Leordeanu and Hebert employed spectral technique to
decompose the affinity matrix Q of all possible assignments (Leordeanu and Hebert, 2005).
The principle eigenvector of Q is trimmed by imposing the mapping constraints required by
the overall correspondence mapping (one-to-one or one-to-many). For more about graph
matching, readers are referred to a review paper on this topic by Conte et al. (Conte et al.,
2004).

Graph matching has many applications in medical image diagnosis. For example, in content-
based image retrieval in medical applications, Lehmann et al. employed graph matching to
abstract medical images by hierarchical partitioning and corresponding blobs (Lehmann et
al., 2004). Blobs are sub-regions of an image which usually are part of an anatomical
structure. Fig. 5 shows an example of hierarchical blobs and graph representation. The
authors used a database with 10,000 radiology images (CT, MRI) which were categorized by
imaging modality, orientation, body region, and biological system. With the help of a graph
representation, the distance or similarity of query image and database entry can be
transformed into a graph matching problem. Wang et al. used graph matching to register
supine and prone computed tomographic colonography scans (Wang et al., 2010a). After
formulating 3D colon registration as a graph matching problem, the authors found an
optimal solution by applying mean field theory to what was in essence a quadratic integer
programming problem.

2.11 Training and testing of a learning algorithm
Training and testing play important roles in the evaluation of a machine learning algorithm.
Usually a machine learning algorithm will be trained on a training set and tested on a test
set. A good training strategy can help to find the optimal parameters for a computer-aided
detection (CADe) or computer-aided diagnosis (CADx) system. Grid search is the simplest
way to train an algorithm. In grid search, the parameter space of a learning algorithm will be
divided into hyper-cubes of equal volume. The learning algorithm will be tested on each
vertex of each hyper-cube. The vertex in the parameter space with the best performance
(evaluated by the training set or validation set) will be selected as the optimal solution.
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Grid search is computationally expensive and may be impossible for some large scale data.
A recent approach to address this difficulty is called hyperparameter learning (Bengio, 2000;
Duan et al., 2003). Hyperparameter learning tries to find the optimal parameters of a prior
distribution based on different model selection criterion. Model selection criterion defines
how to select the best parameters in a model. Typical strategies for hyperparameter learning
include gradient-based optimization and maximum likelihood methods.

To evaluate machine learning algorithms on a particular dataset, one often partitions the
dataset in different ways. Popular partition strategies include K-fold cross-validation, leave-
one-out, and random sampling. In K-fold cross-validation, the whole data set is partitioned
into K subsets. A learning algorithm is trained on K-1 of the subsets and tested on the
remaining one. This procedure is conducted K times until all K subsets have been tested.
Leave-one-out is similar to K-fold cross-validation but each subset consists of only a single
sample from the dataset. Each time a sample will be held aside for testing and the learning
algorithm is trained on the other samples. This process is repeated N times where N is
number of samples in the dataset (each sample will be tested exactly once). For random
sampling, the data subsets are formed by random sampling of the data without replacement
as training samples and the remaining data serves as test data. Bootstrapping method (Efron
and Tibshirani, 1986) can be viewed as a special case of random sampling with replacement
during the test.

Different evaluating methods will affect the generalization ability of machine learning
algorithms. An estimation method with low bias and low variance will be ideal to estimate
the final accuracy of a classifier. Recent theoretical studies and experimental results on real-
world datasets showed that ten-fold cross-validation is better than the more computationally
expensive leave-one-out cross-validation for model selection (select a good classifier from a
set of classifiers) (Kohavi, 1995). For random sampling, when the ratio between testing and
training is high, it tends to give estimations with high bias and high variance due to
insufficient training samples. The advantage of random sampling is that for small size
datasets it can test a classifier's capability in a thorough way by varying the training set
multiple times.

In many real radiology applications, detection and diagnostic decision-making play import
roles in clinical practice. Receiver operating characteristic (ROC) analysis provides a
practical tool for model selection. An ROC curve is a 1D curve which shows the trade-off in
sensitivity versus false positive rate as the threshold is varied for the decision variable for a
binary classifier (Zweig and Campbell, 1993). Cost/benefit factors which are import in
diagnostic decision making can be directly and naturally embedded in the ROC analysis.

3. Applications of machine learning in radiology
In this section, we will introduce some typical applications of machine learning in radiology.

3.1 Medical image segmentation
Medical images contain many structures including normal structures such as organs, bones,
muscles, fat, and abnormal structures such as tumors and fractures. Segmentation is the
process of identifying structures, both normal and abnormal, in the images. It is fundamental
to the interpretation of medical images. Learning how to segment anatomic structures is a
critical part of medical image segmentation. Segmenting structures from medical images is
not trivial due to the complexity and variability of the region-of-interest. Examples of
problems that complicate medical image segmentation include normal anatomic variation,
post-surgical anatomic variation, vague and incomplete boundaries, inadequate contrast,
artifacts and noise.
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The concept of the graph provides an elegant way to abstract image information that is
useful for segmentation. Graph cuts are segmentation methods which are based on graphs
and utilize flows between source and sink nodes on the graph (Greig et al., 1989). Shi and
Malik proposed a graph partitioning method called “normalized cut” that performs image
segmentation (Shi and Malik, 2000). In graph theoretic language, given a graph G = (V, E),
where V represents a set of vertices and E a set of edges, a cut between two disjoint sets of

G is defined as  where w is the weight of the edge or link
connecting two nodes in subsets A and B. The cut can be used to depict the dissimilarity
between the two subsets. Minimizing the cut value usually will lead to the optimal
bipartitioning of a graph. For real-world data, however, the minimum cut criterion favors
cutting the graph into small sets of isolated nodes. To solve this problem, Shi and Malik
proposed the measure called normalized cut (Ncut). Ncut penalizes partitions containing
small isolated points and gives more balanced partitions compared with ordinary cut.

Graph cuts have many applications in medical image segmentation including interactive
organ segmentation for 3D CT and MRI images (Boykov and Jolly, 2000), multiple sclerosis
lesion segmentation in MRI (García-Lorenzo et al., 2009), segmentation of the left
myocardium in four-dimensional (3D space + time) cardiac MRI data (Kedenburg et al.,
2006), and lung segmentation from volumetric low-dose CT scans (Ali and Farag, 2008).
Some of these applications are fully-automated.

As introduced in Sec. 2, Markov random fields (MRFs) have wide applications in medical
image segmentation (Held et al., 1997; Towhidkhah et al., 2008; Zhang et al., 2001). The
graph model of Markov random fields has a natural representation of the voxels in a 2D/3D
medical image and their spatial relationship. Based on Bayes theory, given observed images
I, the posterior probability of segmentation p(S|I) can be inferred from prior distribution p(S)
of label S and conditional distribution p(I|S). The Markov model could be solved by using
maximum a posterior (MAP) criterion. In MRF models, parameters controlling the spatial
interactions have significant influence on the smoothness of segmentation results (Pham et
al., 2000). In practice, usually we need to balance the smoothness and important structural
details. In addition, MRF models usually are computationally hard to solve.

Although cluster analysis developed in machine learning and pattern recognition area was
not designed for medical segmentation problems originally, many clustering algorithms can
be applied directly to medical image segmentation problems because the objectives of
clustering algorithms and image segmentation problems are highly overlapped. Examples
include applying fuzzy c-means clustering algorithm to brain MR image segmentation (Chen
et al., 2007), segmentation of thalamic nuclei from DTI using spectral clustering (Ziyan et
al., 2006), and 3D cardiac CT data set segmentation using random walks (Grady, 2006).

In medical image segmentation, flexibility is often required to adapt the segmentation to the
variability of biological structures over time and across different individuals (McInerney and
Terzopoulos, 1996). Deformable models can sometimes help deal with such variability.
Deformable models can be contours (known as snake or active contours) for 2D images and
surfaces for 3D images. Deformable models combine elements from geometry, physics,
approximation theory, and machine learning. Geometry provides a way to represent the
object boundary. Constraints are imposed on the geometric representation of the object to
limit the way it can evolve. The constraints often incorporate physical principles such as
force and elasticity. Approximation theory and machine learning help fit the model to the
data and learn the best parameters of the model and the deformation. For detailed
information on how deformable models describe object shapes in a compact and analytical
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way, and incorporate anatomic constraints, readers are referred to a review paper on this
topic (McInerney and Terzopoulos, 1996).

In many radiology images, objects to be segmented have irregular shapes and complicated
topologies. Level set-based segmentation methods provide a natural and flexible way to
handle those complicated objects (Cremers et al., 2007; Malladi et al., 1995). In level set, the
boundary is defined as the zero value of a hypersurface. By casting the segmentation
problem into a higher dimensional space, the motion of the hypersurface under the control of
a speed function will cause the initial boundary to move. By utilizing image information,
e.g., edges and grey value, the evolution of the hypersurface can be stopped at the object
boundary (Malladi et al., 1995). Level set has been widely used in medical image
segmentation, such as brain (Baillard et al., 2001; Ciofolo and Barillot, 2005; Yang et al.,
2003), heart (Lin et al., 2003; Paragios, 2003; Yang et al., 2003), liver (Lee et al., 2007;
Smeets et al., 2010), and colon (Franaszek et al., 2006; Konukoglu et al., 2007; Uitert and
Summers, 2007).

For a machine learning algorithm, how to make full use of a training set is a key point of its
success on the test set. In deformable models and level set-based segmentation methods,
training information is incorporated into the segmentation method in an implicit way
(through parameter learning). On the contrary, active shape models (ASMs) tries to utilize
training shape information in a more explicit way by building a shape model from training
images and adapting the model to a new test image through an alternative optimization way
(Cootes et al., 1995). Later, Cootes et al. extended ASMs to active appearance models
(AAMs) by incorporating appearance information of objects in an image (Cootes et al.,
2001). Applications of AAMs and ASMs in radiology include cardiac MR and ultrasound
images (Mitchell et al., 2002), prostate segmentation (Shen et al., 2003), and segmenting
thrombus in abdominal aortic aneurysms (de Bruijne et al., 2003). More discussions on
statistical shape models for 3D medical image segmentation can be found in a review paper
(Heimann and Meinzer, 2009).

In recent years, joint categorization and segmentation (JCaS) has become a hot topic in
computer vision (Ladicky et al., 2010; Singaraju and Vidal, 2011). In JCaS, interested
objects in a 2D image are categorized and segmented simultaneously. Each pixel in the
image is assigned an object category label. In JCaS, MRF was widely used to model the
image and corresponding segmentation. To model the local properties of each node, and
interactions among nodes in the MRF, we usually define some potential functions (known as
“potentials”). Unary and pairwise potentials are typical choices used in 2D image
segmentation. Given images, the MRF could be solved using maximum a-posteriori learning
and expectation-maximization. Compared with traditional MRF for image segmentation,
JCaS incorporates higher order potentials that encode the classification cost of statistical
features extracted from objects in an image. Usually it is done by encoding the output of a
classifier in a potential function which is able to capture global or higher order interactions
of the objects-of-interest. Since in many radiological applications, segmentation and
categorization of various organs are fundamental tasks, we expect that JCaS will have wide
applications in radiology in the near future.

3.2 Medical image registration
Image registration is an application of machine learning. During a medical examination, a
patient may be scanned by different imaging modalities (Studholme et al., 1996), or scanned
by the same modality at different positions, times, or situations (with or without contrast
agents). These images are usually complementary and in combination may lead to more
accurate diagnosis. In order to integrate all the information, a first step is to align these
images spatially, a procedure referred to as registration or matching (Hill et al., 2001; Lester
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and Arridge, 1999; Maintz and Viergever, 1998). Machine learning plays a key role in the
medical image registration problem by learning the best registration or parameters under
different matching criteria.

Mutual information provides a good measure on the interdependence of two images. Thus
registration based on mutual information has drawn a lot of attention in recent years and
served as the basis of many medical image registration methods (Pluim et al., 2003). Given
two images (2D or 3D) to be registered, let us define one of the two image as the reference
image u and the other one as the test image v. The registration problem can be formulated as

follows: , where x are the coordinates of a voxel, T is a
transformation from the coordinate system of reference image to that of the test image,I is
the mutual information between u and v. I(u(x),v(T(x))) ≡ h(u(x)) + h(v(T(x))) −

h(u(x),v(T(x))) where  and  is the
joint probability of x and y which could be obtained using Parzen windowing (Pluim et al.,
2003). The registration methods based on mutual information can be classified into different
categories based on the transformation and optimization method employed. For example, the
transformation can be used including rigid (Holden et al., 2000), affine (Radau et al., 2001),
perspective, and curved (Chui and Rangarajan, 2003; Meyer et al., 1999) transformation.
The optimization methods which are widely used include gradient-based (Maes et al., 1999)
(steepest gradient descent, conjugate-gradient methods, quasi-Newton methods, least-
squares methods) and non-gradient-based optimization methods (interpolation (Zhu and
Cochoff, 2002), probability distribution estimation (pdf) estimation (Shekhar and
Zagrodsky, 2002), optimization and acceleration (Studholme et al., 1997)). In addition,
mutual information based on intensity information only may not be adequate. In the work of
Papademetris et al., they combine point-feature and intensity information together for non-
rigid registration (Papademetris et al., 2004).

Wang et al. proposed a graph matching method based on mean field theory for computed
tomographic colonography (CTC) scan registration (Wang et al., 2010b). They first
formulated colon registration as a graph matching problem. Then a matching algorithm was
proposed based on mean field theory. During the iterative optimization process, one-to-one
matching constraints were added to the system step by step. Prominent matching pairs found
in previous iterations are used to guide subsequent mean field calculation. Graph also
provides a concise and efficient representation of the medical objects.

The thin-plate spline (TPS) is an important tool for medical image registration (Bookstein,
1991). TPS can be considered to be a natural non-rigid extension of the affine map through
minimizing a bending energy based on the second derivative of the spatial mapping
(Bookstein, 1991). Chui et al. developed an algorithm which combines TPS and robust point
matching (RPM) together where TPS provides the parameterization of the non-rigid spatial
mapping and RPM solves the correspondence problem (Chui and Rangarajan, 2003).
Combining mutual information and TPS is a very interesting topic. Interested readers can
find such work in Meyer et al. (Meyer et al., 1997) by. Readers who are interested in brain
registration problems could read reference (Klein et al., 2009) in which the authors
evaluated and ranked 14 nonlinear deformation algorithms for human brain MRI
registration.

Diffeomorphic Registration is also another type of widely used registration method in
medical image analysis. It seeks an invertible function which is smooth and maps one
differentiable manifold (image) to another. In ideal situation, the composition of the
mapping function and its inverse should be close to the identity transform. Ashburner
proposed a fast diffeomorphic registration framework called DARTEL which utilized
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Levenberg-Marquardt strategy to optimize the registration problem (Ashburner, 2007).
Rueckert et al. used B-spines in diffeomorphic registration which serve as a way to
parameterize a deformation field (Rueckert et al., 2006). Vercauteren et al. conducted
research on non-parametric diffeomorphic image registration by adapting Thirion's demons
algorithm to the space of diffeomorphic transformations (Vercauteren et al., 2007). Avants
et al. tackled the problem from the viewpoint of cross-correlation within the space of
diffeomorphic maps and developed a symmetric registration method (Avants et al., 2008).

3.3 Computer-aided detection and diagnosis systems for CT or MRI images
To assist doctors in the interpretation of medical images, computer-aided detection (CADe)
and computer-aided diagnosis (CADx) provide an effective way to reduce reading time,
increase detection sensitivity, and improve diagnosis accuracy. CADe and CADx are young
interdisciplinary technologies combining elements of digital image processing, machine
learning, pattern recognition, and domain knowledge of medicine together (Doi, 2005, 2007;
Kononenko, 2001; Sajda, 2006).

The top leading cause of cancer related deaths in men and women is lung cancer in the
United States. According to cancer statistics, 221,130 new cases of lung cancer and 156,940
deaths were reported in the United States in 2011
(http://www.cancer.gov/cancertopics/types/lung). In current lung cancer diagnosis,
computed tomography (CT) screening is a standard procedure which is superior to
traditional chest radiography in the detection of lung nodules (potential lung cancers)
(Kaneko et al., 1996; Swensen et al., 2002).

An essential initial component of image interpretation and diagnosis is the identification of
normal anatomical structures in the image. Since the lung has very complicated structures,
developing a fully automated approach to distinguish normal lung structures will improve
the utility of a lung CAD system. Ochs et al. (Ochs et al., 2007) employed AdaBoost to train
a set of ensemble classifiers. The training CT images were labeled by radiologists with the
following categories: airways (trachea and bronchi to 6th generation), major and minor lobar
fissures, nodules, vessels (hilum to peripheral), and normal lung parenchyma.

Usually a CAD system is designed and optimized for detecting a specific disease, i.e.,
single-task learning. However, different diseases may share similar characteristics (for
example, lung nodule and ground glass opacity), hence training a classifier to do multiple
tasks may improve its performance and utility. Multi-task machine learning has been
proposed (Caruana, 1997). These related problems may share the same representation. A
typical example of a multi-task CAD system can be found in the work of Bi et al. (Bi et al.,
2008). The multi-task learning algorithms they proposed can eliminate irrelevant features
and identify discriminative features for each sub-task. They showed promising results on
predicting lung cancer prognosis and heart wall motion analysis.

Pulmonary embolism (PE) is a blockage of the main artery of the lung or one of its branches
by a substance (usually a blood clot) that has travelled to the lung through the bloodstream
from another part of the body (Fig. 6). Since pulmonary embolism can be life-threatening,
early diagnosis can improve survival rate. Computed tomography angiography (CTA)
provides an accurate diagnostic tool for PE when it is combined with a CADx system
(Schoepf and Costello, 2004; Schoepf et al., 2007). In (Liang and Bi, 2007), Liang et al.
proposed a fast, effective approach for PE diagnosis. Segmentation of emboli in CTA is a
very challenging task due to partial volume effects around the vessel boundaries that make
PE voxels and vessel boundaries indistinguishable. Liang et al. proposed an algorithm called
concentration-oriented tobogganing to solve this problem. They extracted 116 features from
initial PE candidates. To reduce false positives, they applied multiple-instance classification
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to make the final diagnosis. This PE CAD system reported 80% sensitivity at 4 false
positives per patient on a CTA dataset of 177 cases. Fung et al. also employed multiple-
instance learning for diagnosis of PE (Fung et al., 2007). Their work focused on learning a
convex hull representation of multiple instances. This representation enabled their algorithm
to be significantly faster than existing multiple-instance learning algorithms. More
information on PE CAD systems can be found in a review paper (Chan et al., 2008).

Colon cancer is the second leading cause of cancer-related death in the United States.
Computed tomographic colonography (CTC), also known as virtual colonoscopy (VC) when
a fly-through viewing mode is used, provides a less-invasive alternative to optical
colonoscopy in screening patients for colonic polyps. Computer-aided polyp detection
software has improved rapidly and is highly accurate (Summers, 2010; Yoshida and
Dachman, 2006).

CAD systems for detection of polyps on CTC have been under investigation over the past
decade. Feature extraction and classification are two critical procedures in a successful CTC
CAD system. CAD systems first extract multiple features from the images, such as
curvature, shape index, curvedness, surface normal overlap, and texture. Summers et al.
(Summers et al., 2005) employed curvature-related features to find polyp candidates.
Yoshida and Nappi (Yoshida and Nappi, 2001) applied the shape index and curvedness
measures to describe polyp candidates. Paik et al. (Paik et al., 2004) developed a method
called surface normal overlap that can capture the shape of polyp candidates. Wang et al.
(Wang et al., 2005) proposed a polyp detection method which employs geometrical,
morphological, and textural features inside polyp candidates.

A well-functioning classifier is a critical component of a practical CTC CAD system.
Example classifiers for CTC CAD systems include neural networks and binary classification
trees (Jerebko et al., 2003b), committees of SVMs (Malley et al., 2003), quadratic
discriminant analysis (Yoshida and Nappi, 2001), massive-training artificial neural networks
(MTANNs) (Suzuki et al., 2008), and logistic regression (van Ravesteijn et al., 2010). To
extract more useful information from noisy and high dimensional features, Wang et al.
introduced dimensionality reduction and multiple kernel learning to CTC CAD and showed
promising results (Wang et al., 2008a)(Wang et al., 2010c).

CADe and CADx have also been widely applied in breast tumor detection and diagnosis
(Cheng et al., 2003). Breast cancer is the second leading cause of cancer death in U.S.
women. In the United States, the lifetime risk for breast cancer is 12.5% with a 3% chance
of death (http://www.cancer.org/Cancer/BreastCancer/index). The most widely used
diagnostic and screening tool for breast cancer is mammography which uses low-dose X-
rays for imaging the human breast (Kerlikowske et al., 1995). For practical breast tumor
CADx system, differentiating benign tumor and normal tissue from malignant tumor is the
top priority. Chan et al. analyzed texture features of microcalcifications (Chan et al., 1995a;
Sahiner et al., 1998). El-Naqa et al. first showed that it is feasible to detect
microcalcifications from digital mammograms using support vector machines (El-Naqa et
al., 2002). Later, Wei et al. (Wei et al., 2005a) investigated several state-of-the-art machine
learning methods for automated classification of clustered microcalcifications (MCs). The
methods tested include support vector machine (SVM), kernel Fisher discriminant (KFD),
relevance vector machine (RVM), and committee machines (ensemble averaging and
AdaBoost).
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3.4. Brain function or activity analysis and neurological disease diagnosis from fMR
images

Brain function and activity analysis play important roles in research in cognition,
psychology, and brain disease diagnosis. Functional magnetic resonance imaging (fMRI)
provides a noninvasive and effective way to assess brain activity. Because of the complexity
of the human brain and variations of brain activity, fMR images usually show complicated
patterns and the interpretation of them usually requires significant computerized analysis. In
recent years, machine learning algorithms have been used more and more to decode from
fMRI the stimuli, mental states, behaviors, and other variables of interest (Pereira et al.,
2009). After feature extraction, we can train a classifier, such as SVM, LDA, and neural
network, to differentiate brain activity patterns. Developing automatic ways to learn the
patterns from fMR images is challenging because the data are extremely high dimensional
and noisy with small size (tens of training samples).

In early work, T. Mitchell et al., tried to decode cognitive states from brain images (Mitchell
et al., 2004). They showed a human subject a picture or a sentence or asked the subject to
read a word describing different concepts (food, people, building, etc.). The goal was to
activate different patterns of brain activity that would be detected by fMRI. They explored
several classifiers for analyzing the fMRI data including Gaussian naïve Bayes, SVMs, and
k Nearest Neighbor (kNN). Their results showed that it was feasible to distinguish a variety
of cognitive states of the brain by using machine learning algorithms. Then they conducted
further research on human cognition to try to predict brain behavior under different
stimulations (Mitchell et al., 2008). Previous research had shown that spatial patterns of
neural activation are related with thinking about different objects and concepts. In this paper,
they presented a computational model (Fig. 7) that is able to predict the neural patterns
associated with words whose fMRI data have not been utilized by the training process. A
striking finding was that their model could make accurate predictions for thousands of nouns
in a text corpus based only on the fMRI data of 60 nouns.

As a practical application of machine learning in spatial patterns of brain activity analysis,
Davatzikos et al. proposed a new method for lie detection from fMR images (Davatzikos et
al., 2005). After image acquisition and preprocessing, such as filtering and registration, they
converted the original MR images into parameter estimate images (PEIs). Then, by
subdividing the PEIs into 560 cubes (16mm × 16mm × 16mm), they extracted one feature
from each cube. Average value of the PEI of each event was employed as the feature. In the
last step, an SVM with Gaussian kernel was employed for classification. Experimental
results showed that the proposed high-dimensional non-linear pattern recognition method
can distinguish different brain activities associated with lying and truth-telling with high
accuracy.

Alzheimer's disease (AD) is the most common form of dementia and will cause cognition
disturbance gradually as it progresses. A study showed that it is feasible to predict whether
persons are in the prodromal phase of AD using structural magnetic resonance imaging
(Killiany et al., 2000). In brain MR images, mild cognitive impairment (MCI), which is a
prodromal phase of AD, has certain patterns. Davatzikos et al. developed an automatic
method to detect these patterns via high-dimensional image warping, robust feature
extraction, and SVM (Davatzikos et al., 2008; Fan et al., 2005). Later, Kloppel et al. used
linear SVM to classify pathologically proven AD patients and cognitively normal persons
using T1-weighted MR scans from two centers and different scanners (Kloppel et al., 2008).
They also showed that for dementia diagnosis, well-trained neuroradiologists were
comparable to SVMs, which encourages deployment of computerized diagnostic methods in
clinical practice (Stonnington et al., 2009). Other efforts on using machine learning
algorithms for AD classification problems include linear programming boosting (Hinrichs et
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al., 2009a), multi-kernel learning (Hinrichs et al., 2009b), and relevance vector regression
(Wang et al., 2010d).

Schizophrenia is another type of common neurological disease which affects about 1% of
the general population (Shenton et al., 2001). MRI provides a good opportunity to evaluate
brain abnormalities in schizophrenia. MRI structural findings in schizophrenia include
ventricular enlargement, medial temporal lobe, superior temporal gyrus, parietal lobe, and
subcortical brain region involvements (Shenton et al., 2001). Since schizophrenia MRI
shows complex patterns and is hard to diagnose, machine learning based methods are
preferred to identify psychiatric disorders from high dimensional imaging data. Caan et al.
applied principal component analysis and linear discriminant analysis to diffusion tensor
brain images of schizophrenia and controls (Caan et al., 2006). In (Demirci et al., 2008),
Demirci et al. proposed a projection pursuit algorithm to classify schizophrenia using fMRI
data. Their method also focuses on dimensionality reduction involving ICA and PCA in
order to find a low dimensional embedding of the original data which was designed to
classify schizophrenia and healthy control groups. Kim et al. proposed a hybrid machine
learning framework for schizophrenia classification (Kim et al., 2008). They first used ICA
to reduce the noise. Then a discrete dynamic Bayesian network was used to distinguish
patients with schizophrenia from healthy controls.

In brain fMRI analysis, statistical parametric mapping (SPM) is a widely used statistical
technique to test hypotheses on whether a certain region of the brain has some specific
effects (Friston et al., 1995). SPM is based on the general linear model and the theory of
Gaussian fields. The hypotheses are tested in a voxel-based way. The final parametric
mapping image can be viewed as a compression image of original MR or PET image
sequence across different time points or from different tasks which is very helpful to
understanding brain activity. Applications of SPM in neurological disease diagnosis include
Alzheimer's disease (Bookheimer et al., 2000; Scahill et al., 2002), schizophrenia (Sowell et
al., 2000; Wilke et al., 2001; Wright et al., 1995), and obsessive-compulsive disorder (Kim
et al., 2001; Saxena et al., 2001).

3.5 Content-based image retrieval systems for CT or MRI images
Content-based image retrieval (CBIR) aims to search digital images in large databases based
on the contents of the image, such as colors, shapes, and textures, etc. CBIR can help
radiologists in disease diagnosis by retrieving images with similar features or previously-
confirmed cases with the same diagnosis. It can also help to train radiologists by creating
teaching collections of similar images. CBIR is the application of computer vision to the
image retrieval problem. In recent years, with the rapid development of machine learning,
many machine learning algorithms have been embedded in CBIR systems to improve the
query accuracy and efficiency. In the medical area, with the expanding role and quantity of
digital imaging for diagnosis and therapy, there are many potential applications for CBIR
systems (Tagare et al., 1997). For example, in the Radiology Department of the University
Hospital of Geneva, 12,000 images were produced daily in 2002 (Muller et al., 2004).
Searching target images in such a huge medical image database would be impossible
without a CBIR system.

A practical and effective CBIR system has three key components: a feature extractor, a
content comparator, and a query engine. For example, El-Naqa et al. (El-Naqa et al., 2004)
studied content comparison for digital mammography CBIR. They proposed a two-stage
supervised learning network to learn the similarity function which will assign a similarity
coefficient (SC) to each pair of a query image and database entry. In the first stage, a linear
classifier is employed to identify database entries which are sufficiently similar to the query
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image. In the second stage, they considered SVM regression and a general regression neural
network to learn the optimal similarity function.

The idea of human interaction in CBIR has been explored by Brodley et al. (Brodley et al.,
1999). For medical images, extraction of global information or feature to characterize the
images usually will not help much for the CBIR because the clinically useful information is
often localized. Brodley et al. proposed an approach called “Physician-in-the-Loop” in
which a physician delineates the “pathology-bearing regions” (PBR). These PBRs are often
difficult to segment using fully-automated techniques. The authors described their CBIR
system as a synergy of human interaction, machine learning, and computer vision.

Global image descriptors based on color, texture, or shape often do not exhibit sufficient
semantics for medical applications. Combining global and local features together is a key
point for a successful CBIR system. Keysers et al. (Keysers et al., 2003) proposed a
statistical framework for model-based image retrieval in medical applications. Their multi-
step approach included image categorization based on global features, image registration (in
geometry and contrast), feature extraction (using local features), feature selection, indexing
(multiscale blob representation), identification (incorporating prior knowledge), and
retrieval (on abstract blob level). They used global features such as image modality, body
orientation, anatomic region, and biological system to classify and register images first.
Then the query was done based on local features extracted from anatomic region.

3.6 Text analysis of radiology reports using NLP/NLU
Another application of machine learning in radiology is the processing of radiology text
reports. The accumulated reports from daily radiology practice fill huge text databases.
Exploiting these radiology report databases by using modern information processing
technologies may improve report search and retrieval and help radiologists in diagnosis.
Compared with search reports using keywords, natural language processing (NLP) and
natural language understanding (NLU) provide a more efficient way to organize and retrieve
relevant information hidden in the radiology reports. An advantage of NLP/NLU is that they
can handle large scale data and extract meaningful information in a way that is not feasible
by human readers. Natural language processing and natural language understanding are
important subsets of machine learning and provide a feasible way for text analysis of
radiology report databases (Dreyer et al., 2005; Friedman and Hripcsak, 1999). NLP/NLU
can extract useful information from human language and organize them into more formal
representations such as parse trees or first-order logic (Bates, 1995). These formal
representations enable more efficient computer processing compared with handling human
language directly.

The MedLEE system is the first NLP system deployed in patient care (Bakken et al., 2004;
Friedman et al., 1994; Friedman and Hripcsak, 1998, 1999). The main purpose of MedLEE
is to identify clinical information in narrative reports and build structured representation
about the diagnosis and analysis. There are three major steps in the system. The first step
parses the text report based on grammar and identifies the main structures of sentences in the
text. The second step regularizes the phrases; similar expressions (regarding semantics) are
transformed into standardized forms reducing stylistic variations in natural language. The
last step is the encoding phase which maps extracted and standardized items from the text to
concepts in a controlled vocabulary. Experiments on a collection of 230 radiology reports
showed high precision and recall in text retrieval (Friedman et al., 1994). Interested readers
can try a demo of MedLEE at http://zellig.cpmc.columbia.edu/medlee/demo/ which shows
examples of structured output for mammography reports. Huang et al. (Huang et al., 2005b)
studied the improvement of noun phrase identification in radiology reports. They first
employed maximum entropy modeling for sentence boundary detection. Then they used the
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Stanford parser (Klein and Manning, 2002) to parse each sentence. The last module is noun
phrase identification. A Unified Medical Language System (UMLS) (Humphreys et al.,
1998) specialist lexicon was integrated into the parser to improve the noun phrase
identification performance.

In addition to text retrieval, text classification has important applications in radiologic
diagnosis. In (Chapman et al., 2003), Chapman et al. proposed an automatic detection
system which was applied to radiology reports to identify patients with mediastinal findings
consistent with inhalational anthrax. The Identify Patient Sets model (Cooper et al., 1998)
was utilized to create a classifier based on keywords extracted from clinical chest radiograph
reports.

Dang et al. employed NLP/NLU technologies to find trends in a large radiology practice
(Dang et al., 2009). Experimental results showed that NLP/NLU technologies could help to
analyze yield of different radiology exams from a large radiology report database based on
presence of positive/negative radiology findings.

4. Key contributions and common characteristics of machine learning
techniques in radiology

In the previous section, we showed that machine learning has many applications in
radiology. These applications vary from each other and may have very different forms
regarding problems to be solved, input data, output data, anatomical constraints, prior
knowledge, and hidden variables. Also machine learning methods utilized to solve these
problems seem complicated and many of them have strict assumptions. At first glance, it
seems difficult for a researcher in radiology to decide whether to employ machine learning
techniques and which ones to use for a real radiology problem. In this section, we identify
key contributions and common characteristics of machine learning techniques in radiology
area.

As we introduced above, machine learning studies the design and development of algorithms
which make computers recognize complex patterns or make intelligent decisions based on
empirical data. The most significant contribution of machine learning to radiology is that it
provides an automatic way to generalize (human) knowledge obtained from training data to
future unknown test data. For example, in a mammography CAD system, we could teach a
computer to describe (feature extraction) and make decisions (classification) on masses and/
or microcalcifications of the human breast. In this way, we are actually transferring the
knowledge of radiologists on mammography diagnosis to computers. As general guidance,
given empirical data from a radiology application, first we need to identify the input data,
objective, and related constraints. For example, for medical image segmentation, the input
data would be original CT/MRI/PET/US images, the objective would be segmentation of an
object-of-interest in the image (e.g., organ, bone, vessels), the related constraints would be
anatomical structure of the patient and prior knowledge (e.g., shape, density, texture) of the
object-of-interest. The second step would be extracting useful features, identifying or
designing an appropriate objective function, and solution of the objective function. For
example, if we can extract some anatomical key points from original medical images and
extract related features from these key points, then probably we could utilize graph cut-
based method and use cut between two clusters as the optimization objective. Meanwhile
different constraints could be added to the objective function in order to fit the anatomical
structures of the target. The last step would be to train the algorithm and find the best
parameters for the graph cut model. The trained machine learning segmentation algorithm
would then be applied to new scans.
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In the machine learning techniques introduced in Sec. 2, classification techniques are the
most widely used machine learning techniques in radiology. That is because in clinical
practice, many applications of radiology can be formulated as a classification problem.
Especially for many CADx applications in radiology, such as lung, breast, and colon CAD,
intelligent classification of lesions is a central task for these computerized systems (Doi,
2005, 2007; Giger et al., 2001). Classification techniques employed in these applications
range from simple classification techniques, such as linear classifier, LDA, and neural
networks to more complicated and modern techniques, e.g., SVMs, multiple-instance
learning and ensemble learning.

For radiology applications focusing on segmentation and statistical analysis of image
content, probabilistic models play an import role in solving these problems (Bromiley et al.,
2003). Typical probability modeling includes following procedures: independent and
dependent variables identification, probability density function design or assignment
between variables, and integration or marginalization of complete probability model to get
distributions on target variable or objective function. For example, Zhang et al. utilized a
hidden Markov random field model and the expectation-maximization algorithm to solve the
segmentation problem of brain MR images (Zhang et al., 2001). In their work, they used
hidden Markov random field to model the relationship between observations and unknown
cluster labels under spatial constraints. The emission probability of latent variable is
designed as a Gaussian distribution. Expectation-maximization algorithm was used to solve
the MRF - MAP estimation problem.

Given a probability model, maximum likelihood (ML) and MAP were widely used to obtain
a point estimation in parametric space (Bishop, 2006). Suppose we have empirical data
composed by N independent and identically distributed (IID) observations. These data were
sampled from an unknown distribution p(x∣θ) parameterized by θ, and that the likelihood of

θ is defined as . The ML estimation will be

. MAP is also designed for point estimation of unobserved

variable based on empirical data. It is close to ML estimation. 
where g(θ) is a prior distribution over θ. MAP estimation could be viewed as a
regularization of ML estimation where the prior distribution g(θ) serves as a regularization
term.

To solve ML and MAP estimation problems, gradient-based methods were most widely used
to find optimal solutions. In real applications, when the probabilistic models are too
complicated and there are also unobserved latent variables involved, it may be very hard to
use gradient-based methods due to the complexity of gradient calculation and they may fail
to find the optimal solution. For such complicated statistical models, expectation-
maximization (EM) algorithm is widely used to find ML or MAP estimations of parameters
(Dempster et al., 1977). EM is an iterative method which performs an expectation (E) step
and a maximization (M) step alternatively to get the estimations of latent variables and
model parameters, respectively.

Besides probability models, optimization is also an important aspect of machine learning.
Many medical image processing problems can be formulated as optimization problems.
Chan et al. (Chan et al., 2006) showed how to convert some non-convex minimization
problems from image processing and computer vision into convex ones. After the
conversion it is then feasible to find global minimizers for image segmentation models such
as the Mumford-Shah model using standard convex minimization methods. Optimization
based on regularization of variables to be optimized is also a widely used technology. Yan et
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al. proposed a new regularization model based on the boundary element method to recover
the left ventricular deformation (Yan et al., 2007).

5. The translation from machine learning to clinical practice
In the previous section we illustrated six representative domains in radiology where machine
learning could contribute. In this section, we will discuss advantages of utilizing machine
learning in radiology and potential barriers which could hinder the deployment of machine
learning in clinical practice.

The major advantages of applying machine learning in radiology will be labor saving and
accurate diagnostic results. Many radiology practices are very time consuming for human
labor. For example, in medical image segmentation, e.g., brain white matter and liver
segmentation, it requires a long time and high attention for radiologists and technologists to
delineate the boundary of the object in 3D images. Such segmentation tasks could be done
quickly by computers once a segmentation algorithm is well designed and trained. For
another example, in CTC practice, it would be time consuming to identify all potential
colonic polyp candidates. Radiologists need to go through the whole CT scan and check
suspicious spots segment by segment (in 3D fly-through mode) or slice-by-slice (on original
2D CT slices). In CTC CAD, an initial filtering task could be done rapidly by calculating
curvatures of the inner colon surface in a brute force way (voxel-by-voxel). With the help of
machine learning algorithms that deal with low-level and time-consuming image analysis
problems such as these, radiologists could focus on high-level diagnostic issues.

The second major advantage of machine learning technologies is comparable performance to
humans. In many radiology applications, e.g. mammography and colon CAD, computerized
CADx systems have shown comparable, or even higher, performance compared with well-
trained and experienced radiologists and technologists (Cheng et al., 2003; Doi, 2005, 2007;
Giger et al., 2001). In addition, a good machine learning predictor usually will give
predictions with low bias and variance at any time and any place. On the contrary,
radiologists' performance may be affected by various factors: fatigue, emotion, reading time,
and environment, etc. In principle, machine learning-based computer systems will perform
more consistently than human beings.

Although machine learning has shown its power in many radiology applications, there are
still some barriers to the translation of machine learning techniques to radiology clinical
practice. The first issue is about data size. In the radiology, many studies were done using
relatively small data sets. The proposed machine learning methods to solve radiology
problems may not generalize well from small data sets to large data sets. For example, the
distribution of features in a large data set may differ from that of a small data set. So a
machine learning algorithm trained based on a small data set may have lower performance
on a large data set (Raudys and Jain, 1991). To solve the problem, re-training the algorithm
will be necessary, but it requires intervention of knowledgeable experts which hinders the
deployment of machine learning based systems in hospitals or medical centers. One possible
solution would be utilizing incremental learning and adjust the computerized systems in an
automatic way (Li et al., 2007). In addition, increased large scale data may bring
computational issues to radiology applications. Machine learning techniques employed in
these applications may not scale well as training data increases. For example, many machine
learning techniques are based on quadratic optimization. It is well known that the training
time for quadratic optimization problems will increase exponentially as input variables and
samples increase. Converting the batch learning mode to online learning mode would solve
this problem to some extent but may result in performance degeneration.
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The second issue is about complexity which arises from both sides (machine learning and
radiology) (Abu-Mostafa, 1989; Bialek et al., 2001; Kearns, 1990; Madabhushi et al., 2005).
Some machine learning methods are too complicated to apply to real radiology problems.
They may have strict assumptions on the problems to be solved and many variables which
make it hard to apply to radiology problems directly. So currently simple and robust
machine learning techniques, e.q. linear classifier, PCA, and SVMs, are widely used in
clinical practice.

From the viewpoint of radiology application, there are also issues about complexity. Some
applications are so complicated that there are no known machine learning methods that
could solve them. For example, in interventional radiology, human-guided operation is still
the mainstream way. A fully automatic interventional procedure, which requires knowledge
of human anatomy, real-time tracking of needles or catheters through blood vessels, and
treatment of lesions is still too complicated for current machine learning techniques. In
addition, in real radiology applications, there may be many complex variables involved that
may change over time, e.g., scanning protocols. So machine learning algorithms trained on
previous data sets may not adapt well to new or evolving situations.

The third issue is about psychology. Although machine learning showed many advantages in
many areas, many people in clinical practice still believe in human decisions or diagnostic
results by radiologists. They doubt the helpfulness or accuracy of the computerized medical
systems. In other words, people usually place more trust in human decisions than machine
decisions. Such psychological issues make it hard to fully benefit from machine learning in
daily radiology practice. So in current clinical practice, computerized medical systems are
mainly viewed or treated as an aid or helper in a secondary position, not a problem solver or
a necessary part of the whole medical system.

6. Discussion and conclusion
In this paper, we have presented a short introduction to machine learning and surveyed its
applications in radiology. We focused on six applications in radiology: image segmentation,
image registration, computer-aided detection and diagnosis, brain function or activity
analysis and neurological disease diagnosis from fMR images, content-based image
retrieval, and text analysis of radiology reports using NLP/NLU. This survey shows that
machine learning plays a key role in many radiology applications. Machine learning helps
the computer identify complex patterns in diverse types of radiology data.

In many applications, the performance of the machine learning-based systems is comparable
to that of experienced radiologists. The application of machine learning may benefit patients
either by reducing costs, improving accuracy, or disseminating expertise that is in short
supply.

Statistical approaches are playing an expanding role in machine learning. In many radiology
applications, data are in high dimensional spaces. The data may be corrupted by noise and
variables generating the data may have complicated relationships. Statistical methods based
on probability models provide practical tools to model these complicated relationships.
Probability inferences based on these statistical models can usually provide the optimal
solution under specific settings. Research on statistical approaches will be a major direction
in the future of machine learning in radiology.

The use of machine learning in radiology is still evolving. As machine learning research
progresses, we expect there to be more applications to radiology. Machine learning will be a
critical component of advanced software systems for radiology and is likely to have wider
and wider application in the near future.
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Highlights

Mainstream machine learning techniques relevant for radiology are introduced.

Six major applications of machine learning in radiology are surveyed.

Central themes of machine learning research in radiology are described.

Factors impacting translation of machine learning to radiology are discussed.
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Fig. 1.
Connections between different areas of machine learning.
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Fig. 2.
Best projection direction (purple arrow) found by LDA. Two different classes of data with
“Gaussian-like” distributions are shown in different markers and ellipses. 1-D distributions
of the two-classes after projection are also shown along the line perpendicular to the
projection direction.
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Fig. 3.
Illustration of margin learned by SVM. Black line is the best hyperplane which can separate
the two classes of data with maximum margin. Support vectors are shown in circles.
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Fig. 4.
Modeling of bone fractures using a Bayesian network in which the bone fracture variable is
caused by the states of the weather (e.g., snowing) and car accidents on the road. Each table
in the figure shows the probabilities of the corresponding variables given states of father
nodes (indentified by arrows). Snow is an independent variable and we show its a priori
probabilities in the adjacent table.
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Fig. 5.
A hierarchical blob representation of a brain image. Right figure shows corresponding graph
constructed from the blob image. Reproduced with permission from Ref. (Lehmann et al.,
2004).

Wang and Summers Page 42

Med Image Anal. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 6.
Pulmonary embolism (shown in yellow circle) in the artery of a 52-year old male patient.
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Fig. 7.
Form of the model for predicting fMRI activation for arbitrary noun stimuli. fMRI activation
is predicted in a two-step process. The first step encodes the meaning of the input stimulus
word in terms of intermediate semantic features whose values are extracted from a large
corpus of text exhibiting typical word use. The second step predicts the fMRI image as a
linear combination of the fMRI signatures associated with each of these intermediate
semantic features. Reproduced with permission from Ref. (Mitchell et al., 2008)
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