
T regulatory cells in B-cell malignancy – tumour support or kiss of
death?

Introduction

The immune system plays an important role in tumour

transformation and progression as chronic inflammation

generates reactive oxygen species (ROS), which increase

DNA damage and thereby cause genomic instability and

accumulation of mutations.1 However, the adaptive

responses may instead detect and destroy tumour cells

because of their aberrant expression of various tumour-

associated, or tumour-specific, proteins. Indeed, there is a

positive correlation between the number of infiltrating T

cells and patient survival in many solid cancers.2 Never-

theless, immune cells in the tumour area are often aner-

gized by the presence of immunosuppressive cells and

cytokines. In haematological cancers, the tumour cell

itself is an immune cell that complicates the cell interac-

tions in the tumour microenvironment. The T regulatory

(Treg) cells, for example, restrain unwanted immune

responses (autoimmunity, post-infection inflammation).

These cells increase during cancer progression and have

been correlated to a worse prognosis in many malignan-

cies.3–5 However, the role of Treg cells in haematological

tumours is debated. Contradicting results in B-cell malig-

nancies demonstrate that Treg cells can be associated with

both poor prognosis and increased survival.6–13 As immu-

nosuppressors, Treg cells may act against the attacking

effector lymphocytes as well as against the B-cell-derived

tumour. In this review, we will discuss Treg cells and

their complex role in haematological tumours.

The birth of T regulatory cells

The suppressive capacity of lymphocytes has been known

to man for decades. As early as the 1970s, Gershon and

Kondo14,15 discovered that T cells pre-treated with high

doses of antigen became tolerant and that tolerance could

be passed on to surrounding T and B cells. Subsequent

studies aimed at characterizing these cells were under-

taken but no specific markers were available and the exis-

tence of the cells was hard to prove.16 It was not until

1995, when Sakaguchi et al.17 suggested that murine sup-

pressive T cells could be identified by their high expres-

sion of CD25 [interleukin-2 receptor a (IL-2Ra)], that

the interest in this subset resurfaced. They demonstrated

that mice developed autoimmune diseases upon depletion

of CD25+ cells. Further, these mice reacted strongly to

skin transplants and this reaction could be hampered by

the reinfusion of CD4+ CD25+ cells.17 During the follow-

ing years suppressive T cells were rebranded as regulatory

T cells.16
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Summary

It is well established that T regulatory (Treg) cells counteract tumour

immunity. However, conflicting results describing the role of Treg cells in

haematological tumours warrant further investigations to clarify the inter-

actions between Treg cells and the tumour. B-cell malignancy derives

from different stages of B-cell development and differentiation in which T

cells play a profound role. The transformed B cell may still be in need of

T-cell help to thrive but simultaneously they may be recognized and

destroyed by cytotoxic lymphocytes. Recent reports demonstrate that Treg

cells can suppress and even kill B cells as part of their normal function to

rescue the body from autoimmunity. An emerging body of evidence

points out that Treg cells not only inhibit tumour-specific T cells but may

also have a role in suppressing the progression of the B-cell tumour. In

this review, we discuss the origin and function of Treg cells and their role

in patients with B-cell tumours.
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Treg cell-associated markers

Discrepancies in the results from published studies evaluat-

ing Treg cells in B-cell malignancies as well as in other

studies may be the result of the difficulty of finding one

good marker for identification of the cells. CD4+ CD25+

cells were identified as Treg cells in humans a couple of

years after Sakaguchi’s milestone paper.17–21 However, as

CD25 is also up-regulated on activated T cells, it is not a

specific marker.22 Even so, because of the lack of a more

unique cell surface marker, CD25 has been used extensively

to sort Treg cells for experimental evaluation. Most Treg

cells express CD25 (70–80%23) but the existence of CD25-

negative Treg cells has been reported by us and others.24–26

Other markers are needed to encompass all or certain pop-

ulations of Treg cells. Additional markers expressed by

Treg cells are cytotoxic T-lymphocyte-associated antigen 4

(CTLA-4),27,28 glucocorticoid-induced tumour necrosis

factor receptor29 and lymphocyte-activation gene 3.30

These markers are constitutively or highly expressed on

Treg cells but suffer the same fate as CD25 by being up-

regulated on conventional T cells upon activation.26,27

The transcription factor Forkhead box P3 (FoxP3) is

considered the most specific marker for Treg cells.31–33

FoxP3 acts both as a repressor and an activator of gene

transcription and binds over 700 genes.34 It is known to

repress the gene expression of IL-2, CD127 (IL7R), tumour

necrosis factor-a and interferon-c, and to enhance the

expression of CD25 and CTLA-4.31–33,35–38 Given the fact

that CD127 is a cell surface marker it can be used to distin-

guish the CD25high CD127low Treg cells from the CD25high

CD127high activated T cells.39 This may be crucial because

some studies have shown that FoxP3 can be transiently up-

regulated in human effector T cells that do not exhibit reg-

ulatory functions.40–43 However, as several of these studies

were performed with an antibody of questioned specificity

(PCH101, eBiosciences, San Diego, CA) it is hard to inter-

pret these results.40,42–44 Whether the transient FoxP3

expression confers transient regulatory functions on T cells

is still a matter of debate and may be difficult to investigate

because of the short timespan of FoxP3 expression.

Treg cell development and subtypes

Natural Treg cells originate in the thymus but Treg cells

can be induced from naive T cells in the periphery as well.

These two cell populations have been hard to distinguish

from one another because they are very similar, both phe-

notypically and functionally. However, recent studies iden-

tified Helios, a zinc finger transcription factor, as being

highly expressed in the natural Treg cells but not in

peripherally induced Treg cells.45,46 Natural Treg cells are

selected in the thymus in the same way as conventional T

cells. They can be either CD4+ or CD8+ but the CD4+ sub-

class dominates. Their T-cell receptors have high affinity

for self antigens, meaning that these are in the border of

thymic elimination.47 Because they are reactive with auto-

peptides they are likely to have a role in preventing au-

toimmunity. Nevertheless, considering the thymic involu-

tion and the fact that Treg cells do not decrease with age,

inducible Treg cells must also be an important source of

Treg cells in adults. Although natural Treg cells are impor-

tant in protection against autoimmunity, inducible Treg

cells are thought to protect the surrounding tissues in an

ongoing immune response. If the B-cell tumour is produc-

ing antibodies that react to autoantigens, natural Treg cells

may play an important role in hampering tumour cell

progression whereas both natural and inducible Treg cells

may restrain tumour-reactive T cells. Considering that the

malignant B cells have an aberrant behaviour compared

with normal B cells (regarding proliferation and apoptosis

resistance), it is possible that the malignant B cells are also

targets for the inducible Treg cells.

Inducible Treg cells, also known as adaptive Treg cells,

are induced from naive T cells by antigenic stimulation in

combination with factors that are not optimal for effector

T-cell generation, such as high levels of IL-10, IL-2 and

transforming growth factor-b (TGF-b).48 Retinoic acid has

been shown to induce Treg cells even in the presence of

inflammatory cytokines.49 Several subsets of inducible Treg

cells have been described, including CD4+ Tr1 and Th3

Treg cells, as well as CD8+ Treg cells. Recently, T follicular

regulatory cells were described in mice, and these Treg cells

were shown to regulate germinal centre reactions.50–52 This

CXCR5+ subset is, however, most likely induced from nat-

ural Treg cells.50,51 The environment defines the Treg cell

phenotype because it has been demonstrated that transcrip-

tional regulators associated with different types of T helper

cell responses (Th1, Th2, Th17) shape the Treg cell

response.53 Further, Treg cell status is not at a differentia-

tion endpoint because studies have shown that these cells

can transform into effector cells, lose their regulatory func-

tion and produce IL-17 or interferon-c.54,55 Hence, the

plasticity of these cells allows for the multitask functions

needed to balance between immune regulation and activa-

tion. However, these characteristics makes it difficult to

pinpoint certain Treg cell subtypes and their intermediate

phases, and it complicates the role of these cells in haema-

tological malignancies because their status may either regu-

late or stimulate the tumour cell. The environment in B-

cell tumours will, hence, determine the subtypes of Treg

cells present in the tumour.

Treg cell effector functions

Treg cells are able to suppress a wide range of immune

cells. The suppression can either be direct or mediated

through secondary immune cells. To exert their function

Treg cells need to be activated in an antigen-dependent

manner but are then able to suppress nearby immune
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cells by antigen-dependent mechanisms or, more com-

monly, independently of specificity. Hence, an immune

effector cell does not need to share the same specificity as

the Treg cell in order to be suppressed. Treg cells are able

to suppress target cells by the release of inhibitory cyto-

kines such as IL-10, TGF-b and IL-35.56 Interleukin-10

induces a long-lasting anergy in both CD4+ and CD8+ T

cells and down-regulates the expression of co-stimulatory

molecules, adhesion molecules and MHC class II on anti-

gen-presenting cells.57–60 The TGF-b is able to inhibit T-

cell proliferation by disturbing IL-2 production and can

block differentiation of naive T cells.61 Interleukin-35

suppresses T-cell proliferation62 and can stimulate Treg

cells to proliferate and produce high levels of IL-10.63

Treg cells are also able to inhibit T cells by interfering

with their metabolism. By expressing the ectozymes CD39

and CD73, Treg cells generate adenosine, which sup-

presses effector T cells by binding to the adenosine recep-

tor 2A.64,65 Further, cAMP can be transported from Treg

cells to T cells through gap junctions where they inhibit

proliferation and IL-2 production.66,67 Prostaglandin E2,

which is generated by cyclooxygenase-2, can be secreted

by Treg cells68 and mediates its suppressive function by

increasing the level of cAMP, which further suppresses

the T cells.69 Recently, we suggested that Treg cells are

able to release CD25 to further deprive its microenviron-

ment of IL-2 and by this means inhibit the proliferation

of conventional T cells.70 Treg cells can also deprive T

cells of thiols, such as cysteine, that are provided to T

cells in the dendritic cell vicinity.71 The Treg cells are able

to induce indoleamine 2,3-dioxygenase production by

dendritic cells in a CTLA-4-dependent manner.72 Indole-

amine 2,3-dioxygenase is an enzyme that catabolizes tryp-

tophan into the toxic kynurenine metabolites 3-HAA (3-

Hydroxyanthranilic acid) and QUIN (Quinolinic acid),

which induce apoptosis in Th173 and Th2 cells.74

Treg cells are able to suppress a wide range of immune

cells by induction of apoptosis. This killing is generally

mediated by Fas–Fas ligand interaction75,76 or through

the release of perforins/granzymes.77–82 Grossman et al.78

demonstrated that natural Treg cells preferentially express

granzyme A upon activation, in contrast to inducible Treg

cells, which express granzyme B.78 Treg cells can also kill

T cells by using the TRAIL–DR5 pathway.83 Also, galec-

tin-1, which can induce apoptosis in target cells, is up-

regulated on Treg cells.84 By killing their target, Treg cells

can control CD4+78 and CD8+75,78,80 T cells, monocytes,78

dendritic cells,78 B cells76,79,81 and natural killer cells.80

Treg cells in B-cell-derived tumours

The role of Treg cells is more complex in haemato-

logical cancers compared with non-haematological cancers

because the tumour is derived from the immune system.

The normal behaviour of antigen-presenting cells, such as

the B cell, in lymph nodes or at sites of inflammation is to

interact with T cells including Treg cells. It is possible that

Treg cells have a dual role in patients with leukaemia or

lymphoma. On one hand, they may suppress anti-tumour

immune responses mediated by T cells but on the other

hand they may regulate the malignant immune cell, either

directly or by interfering with T-cell help (Fig. 1). Some

studies have investigated the relationship between the num-

ber of Treg cells and patient outcome in B-cell lymphoma.

Several of these showed that patients with a high number of

tumour infiltrating FoxP3+ cells (Treg cells) have a better

survival than patients with few Foxp3+ cells.7–13

The tumour microenvironment is beneficial for the

maintenance and expansion of Treg cells because of the

presence of IL-10, TGF-b and immature dendritic

cells,85,86 and these factors are present in both non-hae-

matological and haematological cancers. Although, IL-10

is an immunosuppressive molecule for effector T cells, it

is stimulatory for B cells. Hence, IL-10 may drive both

Treg cells and the B-cell tumour. In B-cell lymphoma it

was shown that patients with elevated levels of both IL-10

and tumour necrosis factor-a were less likely to respond

well to treatment.87 In follicular lymphoma, the tumour B

cells were shown to convert nearby CD4+ T cells into

FoxP3+ Treg cells in an antigen-specific manner.88

During different steps of B-cell development, T cells

control the fate of the B cell by either killing it89 or pro-

moting its survival by up-regulating anti-apoptotic mole-

Treg

T helper CTL

B

Treg
GZMs

IL-10

IL-10

TCR/MHC

CSR

DRs

Figure 1. Interactions between T cells and malignant B cells. The

malignant B cells may require T helper cells for sustained growth

but the helper cells may also be part of the control of malignant cells

by direct cytotoxicity or by stimulating anti-tumour immunity.

Helper cells can interact via T-cell receptor (TCR)/MHC-II and via

co-stimulatory receptors (CSR). The malignant B cells can release

substances [such as interleukin-10 (IL-10)] that promote the conver-

sion of T helper cells into regulatory T (Treg) cells that suppress

both T helper cells and cytotoxic T cells (CTL). The Treg cells can

also recognize MHC-II on the B cells. If cytotoxic, they may interact

via death receptors (DRs) to induce B-cell apoptosis. The CTLs rec-

ognize MHC-I on malignant B cells and induce apoptosis via DRs.

GZMs, granzymes.
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cules as well as inducing its proliferation. B-cell malignan-

cies arise during different stages of B-cell maturation90

and several of them originate from germinal centre-

derived B cells. The B-cell tumour in patients

with chronic lymphocytic leukaemia (CLL) dies rapidly

in vitro, which highlights the importance of the tumour

micro-milieu in tumour survival. It has been shown that

CLL cell survival in vitro can be supported by stromal

accessory cells.91 As a result of the close contact of B cells

and T helper cells it is likely that T-cell help is an impor-

tant feature of tumour progression. Hence, by suppressing

T helper cells in the tumour vicinity through the effector

mechanisms discussed above, Treg cells may block

tumour cell progression. Correspondingly, studies have

shown that Treg cells are able to regulate B cells by inter-

fering with their need for T-cell help in germinal cen-

tres.92,93 However, a study on Hodgkin’s lymphoma

demonstrated that many Treg cells in combination with

few Th2 cells correlated with increased risk of relapse.6

Treg cells are also able to regulate B cells directly by

induction of apoptosis.76,79,81 In a study recently pub-

lished by our group, we demonstrated that FoxP3+ Treg

cells in patients with B-cell leukaemia or lymphoma,

expressed cytolytic markers and were able to kill malig-

nant B cells in vitro.94 The same phenomenon has been

noted in patients with systemic lupus erythematosus. In

that study, Treg cells were able to regulate malignant

autoantibody producing B cells.95 In CLL, at least half of

the patients have tumour cells with somatically mutated

immunoglobulin heavy chain variable genes and more

than 20% express homologous stereotyped B-cell recep-

tors. These findings indicate that a certain antigen may

have caused the disease onset.96 It is not clear if this agent

(or agents) still drives the disease. Some antigens sug-

gested are present on apoptotic cells, or bacteria.97,98 It

has been proposed that CLL is driven by autoantigens

and CLL cells were shown to produce autoantibod-

ies.99,100 Since then, CLL has been connected to several

different autoimmune conditions.101 By controlling CLL

cells, Treg cells may exert their natural function as sup-

pressors of autoimmunity. As an interesting parallel; stud-

ies have shown that several autoimmune diseases

associated with autoantibody production have Treg cells

at a decreased level of function.102–106 Treg cells control-

ling B cells may suppress the B cells in an antigen-specific

manner (T-cell receptor–MHC-II-restricted) because

malignant B cells express MHC-II and killing via death

receptor ligands or granzyme release is commonly regu-

lated via T-cell antigen recognition. However, other

mechanisms exerted by the Treg cells may be used.

Even if several studies show a positive correlation

between FoxP3 and survival in B-cell malignancy, there

are also studies demonstrating that Treg cells are associ-

ated with a worse outcome in these patients.6 The dis-

crepancy may lay in methods of Treg cell detection. For

example, the PCH101 antibody can mistakenly also stain

activated T cells.41 Hence, some of the detected FoxP3+

cells may have been activated T cells which at least in

other cancers have been consistently shown to be benefi-

cial. As a result of the promiscuous phenotype of Treg

cells, these cells may also represent an intermediate phe-

notype on their way to transform into effector T cells.

Indeed, FoxP3– T cells in patients with leukaemia or lym-

phoma also displayed markers of cytolysis94 demonstrat-

ing the active participation of the immune system to

combat the malignant B cell. Clearly, further investiga-

tions are needed to elucidate the role of Treg cells, and T

cells in general, in patients with haematological tumours

such as B-cell malignancy.

Conclusion

Treg cells exist as many subtypes changing their wardrobe

depending on the ongoing immunological scenario. The

role of Treg cells in solid non-haematopoietic cancers is

to suppress tumour immunity probably through their

importance in inhibiting immune activity to self cells. In

haematological tumours the role of Treg cells may be

more complex because the Treg cells on the one hand

create a tumour-supporting environment by blocking

ongoing immune attacks in the tumour milieu, and on

the other hand may kill the tumour by recognizing

tumour antigens on MHC-II on the tumour cell leading

to the traditional ‘kiss of death’. Understanding the basic

interactions between T cells, Treg cells and normal B cells

will give new insights into the various immune responses

occurring in patients with B-cell-derived tumours.
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