
Natural killer T cells suppress zymosan A-mediated granuloma
formation in the liver by modulating interferon-c and interleukin-10

Introduction

The liver is a unique immune organ, in terms of both the

unconventional leucocyte populations that reside there and

the immunosuppressive responses often induced. This is

related to the fact that the liver has to process many foreign

antigens transported via the portal vein. Another possible

reason may be that the liver originates phylogenetically

from the intestine, which is central to mucosal immunity.

For example, the liver contains many unique leucocytes,

including Kupffer cells, dendritic cells, natural killer T

(NKT) cells,1–5 and intermediate T-cell receptor cells of

extrathymic origin.6,7 These leucocyte populations seem to

mediate liver-specific immune responses. Of these, hepatic

dendritic cells are unique in terms of morphology and

function because they are immunosuppressive (e.g. they are

associated with immune tolerance in the liver).8–13

The NKT cell population is also unique, being most

abundant in the liver, and recognizing some glycolipids in

conjunction with the MHC class I-like molecule, CD1d.1–5

It is conceivable that NKT cells in the liver mediate some

unknown function to maintain liver-specific immune

responses. In recent studies, we noticed that CD1d)/)

(NKT-less) mice are sensitive to zymosan A-induced gran-

uloma formation in the liver. Therefore, in the present

study, we investigated the possibility that NKT cells play a

major role in suppressing granuloma formation in the liver.

Granulomatous diseases occur at various sites within

the body; however, granuloma formation is very common

in the liver. Because it is likely that many microbial anti-

gens reach the liver via the portal vein,14–17 we speculated

that NKT cells within the liver play a key role in regulat-

ing the immune responses in this organ.

Materials and methods

Mice

C57BL/6 [B6, wild-type (WT)] and CD1d)/)18 interferon-

c-deficient (IFN-c)/)) mice19 were used at the age of

8–12 weeks. All these mice had a B6 background. The

CD1d)/) mice lacked the generation of invariant NKT
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Wild-type (WT) and CD1d)/) [without natural killer (NK) T cells] mice

were treated with zymosan A to induce granuloma formation in the liver.

Increased granuloma formation was seen in NKT-less mice on days 7 and

14 after administration. WT mice showed limited granuloma formation,

and zymosan A eventually induced NKT cell accumulation as identified

by their surface marker (e.g. CD1d-tetramer). Zymosan A augmented

the expression of Toll-like receptor 2 on the cell surface of both macro-

phages and NKT cells. One possible reason for accelerated granuloma

formation in NKT-less mice was increased production of interferon- c

(IFN-c); a theory that was confirmed using IFN-c)/) mice. Also, zymosan

A increased interleukin-10 production in WT mice, which suppresses

IFN-c production. Taken together, these results suggest that NKT cells in

the liver have the potential to suppress zymosan A-mediated granuloma

formation.
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cells and almost all NK1.1+ CD3int cells (NKT cells

including invariant NKT cells) are absent in these mice.

We therefore refer to these CD1d)/) mice as NKT-less

mice in the text. These mice were maintained at the ani-

mal facility of Niigata University (Niigata, Japan) under

specific pathogen-free conditions.

Granuloma formation

Zymosan A (mainly b-1,3-glucan), which reacts with toll-

like receptor 2 (TLR2)17 and dectin-1,20,21 was used to

induce granulomas in the liver. Zymosan A (Sigma, St

Louis, MO) was suspended in PBS, placed in a boiling water

bath for 1 hr, then centrifuged for 30 min at 1300 g; the

residue was resuspended in PBS. Zymosan A was injected

intravenously at a dose of 1 mg/mouse in 200 ll PBS.

Histology of organs

Tissues for histology were fixed in 10% phosphate-buf-

fered formalin and embedded in paraffin. Sections, 4 lm

in thickness, were stained with haematoxylin & eosin.

Cell preparation

Hepatic mononuclear cells and splenic lymphocytes were

isolated by a previously described method.6 Briefly, the

liver (or the spleen) was removed, pressed through 200-

gauge stainless steel mesh, and suspended in Eagle’s

minimal essential medium (Nissui Pharmaceutical, Tokyo,

Japan) supplemented with 5 mM HEPES and 2% heat-

inactivated newborn calf serum. After being washed once

with medium, the cells were resuspended in 15 ml of 35%

Percoll solution (Amersham Pharmacia Biotech, Piscataway,

NJ) containing 100 U/ml heparin and centrifuged at 300 g

for 15 min. The pellet was resuspended in erythrocyte

lysing solution (155 mM NH4Cl, 10 mM KHCO3, 1 mM

Na-EDTA, and 17 mM Tris–HCl; pH 7�3). Concanavalin A

blasts and lipopolysaccharide blasts were prepared by using

splenic lymphocytes as previously described.7

Immunofluorescence tests by a cell analyser

The surface phenotype was identified by using monoclo-

nal antibodies (mAbs) in conjunction with two-colour or

three-colour immunofluorescence tests.7 The mAbs used

here included FITC-, phycoerythrin- (PE) or biotin-con-

jugated reagents of anti-CD3 (145-2C11), anti-CD4

(RM4-5), anti-CD8 (53-6.7), anti-Mac-1 (M1/70), anti-

Gr-1 (RB6-8C5), anti-IFN-c (XMG1.2, rat IgG1), isotype

control (R3-34, rat IgG1) mAbs (BD Biosciences, San

Diego, CA); anti-TLR2 (6C2) mAbs (eBioscience, San

Diego, CA); and CD1d tetramer (ProImmune Ltd.,

Oxford, UK). Biotin-conjugated reagents were developed

with Tri-Color-conjugated streptavidin (Caltag Labora-

tory, San Francisco, CA). To prevent non-specific binding

of mAbs, CD32/16 (BD Biosciences) was added before

staining with labelled mAbs. For the intracellular staining,

Cytofix/CytoPerm Kit (BD Biosciences) was used. The flu-

orescence-positive cells were analysed by flow cytometry

(FACScan; BD Biosciences). Dead cells were excluded by

forward scatter, side scatter and propidium iodide gating.

Lymphocyte culture

Both WT and NKT-less mouse liver cells (1 · 106/ml)

were cultured in complete RPMI-1640 medium contain-

ing 10% fetal calf serum in the presence of 100 lg/ml

zymosan A in a 96-well microculture plate for 1, 3 and

5 days at 37�.

ELISA for the detention of IFN-c, TNF-a and IL-10

Pooled sera and cultured supernatant fluid were used for

measurement of the concentrations of IFN-c, tumour

necrosis factor-a (TNF-a) and interleukin-10 (IL-10) by

ELISA using OptEIA mouse IFN-c and IL-10 sets (BD

Biosciences) and mouse TNF-a ELISA Ready-SET-Go!

(eBioscience).

Reverse transcription-PCR and real-time PCR analysis

Total RNA was extracted from cells of WT and NKT-less

mice. To detect mRNAs of cytokines, RNA was reverse tran-

scribed using the primers of these genes and such cDNA

was further amplified by PCR methods. Briefly, total RNA

was prepared from cells with Isogen (Nippon Gene, Tokyo,

Japan). The cDNA was synthesized using 1 lg RNA with a

SuperScript b First-Stand Synthesis System for reverse tran-

scription-PCR (RT-PCR) (Invitrogen, Carlsbad, CA) and

oligo-dT 15 Primer (Promega, Madison, WI). The PCR

amplification of synthesized cDNA was then conducted.

Forward primers for IL-4, IL-10, IL-12p40, glyceraldehyde

3-phosphate dehydrogenase (GAPDH) were paired with a

reverse primer for a constant region sequence that is shared

by all T-cell receptor c clusters. The PCR was carried out

with an initial denaturation for 10 min at 95�, followed by

40 cycles of 1 min at 95�, 1 min at 57�, and 1 min at 72�.

Their sequences are as follows: IL-4 sense, 50-CCAGCTA

GTTGTCATCCTGC-30; IL-4 antisense, 50-GTGATGTGGA

CTTGGACTCA-30; IL-10 sense, 50-GGACAACATACTGCT

AACCGG-30; IL-10 antisense, 50-ATATTTCGGAGAGAG

GTACA-30; IL-12p40 sense, 50-CGTGCTCATGGCTGGTG

CAAAG-30; IL-12p40 antisense, 50-CTTCATCTGCAAGT

TCTTGGGC-30; GAPDH sense, 50-ACCACAGTCCATGA

AATCAC-30; GAPDH antisense, 50-TCCACCACCCTGTT

GCTGTA-30. PCR products were visualized on 2% agarose

gel stained with ethidium bromide under UV illumination.

To quantify the amount of IL-10 RNA, a real-time PCR,

based on SYBR green fluorescence, was performed using
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SYBR Premix Ex Taq polymerase and Takara real-time

Thermal Cycler Dice (Takara, Shiga, Japan). The following

primers were used to specifically amplify respective

genes: IL-10 sense, 50-GCCAGAGCCACATGCTCCTA-30;

IL-10 antisense, 50-GATAAGGCTTGGCAACCCAAGTAA-30;

GAPDH gene used as a control, GAPDH sense, 50-

TGTGTCCGTCGTGGAT CTGA-30; GAPDH antisense, 50-

TTGCTGTTGAAGTCGCAGGAG-30.

Statistical analysis

Significance of differences was determined by unpaired

t-test or two-way analysis of variance. A value of P < 0�05

was considered to be significant.

Results

Predominant formation of granulomas in CD1d)/) mice

Mononuclear cells were isolated from the livers of WT

and NKT-less mice and the number of mononuclear cells

was counted (Fig. 1a). After the administration of zymo-

san A, the number of mononuclear cells increased up until

day 7 before decreasing again. The number of cells was

comparable in both mouse strains, but was slightly higher

in NKT-less mice. During the same time period, granulo-

mas formed in both mouse strains. The number of granu-

lomas observed in liver sections was compared on days 7

and 14 (Fig. 1b) and the results showed a significantly

higher number in NKT-less mice than in WT mice

(P < 0�01). Representative images are shown in Fig. 1(c).

On day 14 after zymosan A administration, many granulo-

mas were seen in the livers of NKT-less mice along with

some areas of necrosis. The granulomas disappeared spon-

taneously by day 28 in both strains of mice.

Temporal kinetics regarding the number of NKT cells
and macrophages in the liver of mice treated with
zymosan A

We next examined how NKT cells were regulated in the

liver of WT mice after zymosan A administration (Fig. 2a).

NKT cells were identified by their expression of CD1d-tet-

ramer and CD3int. This cell population was completely

absent from NKT-less mice (data not shown). On days 7

and 14, the proportion of NKT cells decreased markedly;
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Figure 1. Granuloma formation in the livers of

wild-type (WT) and CD1d)/) [natural killer T

(NKT) cell-less] mice. (a) The number of

mononuclear cells in the liver. (b) The number

of granulomas in the liver. (c) Histology. WT

and NKT-less mice were treated with zymosan

A and various parameters were examined at

the indicated time-points. Data represent the

mean ± SD from four mice. **P < 0�01.
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however, the absolute number remained relatively constant

(Fig. 2b). The reason for this was an increase in the total

number of mononuclear cells within the liver.

Next, we determined the proportion of macrophages

(Gr-1int Mac-1+) in the livers of both strains of mice

(Fig. 2c). Most of this population was F4/80 positive (data

not shown). On days 7 and 14, the proportion of macro-

phages increased markedly in both strains; however, this

increase was observed earlier (day 3), and to a greater extent,

in NKT-less mice. The absolute number of macrophages was

then calculated (Fig. 2d), and was found to be significantly

higher in NKT-less mice than in WT mice, especially on days

3 and 7. In a final portion of this experiment (Fig. 2e), it was

confirmed that NKT cells were rarely found in CD1d)/) mice

irrespective of zymosan A treatment.

Augmented expression of TLR2 by NKT cells and
macrophages

The expression of TLR2 (a receptor for b-1,3-glucan) by

mononuclear cells in the livers of zymosan A-treated WT

mice was examined using three-colour staining for NK1.1,

CD3 and TLR2, or for Gr-1, Mac-1 and TLR2 (Fig. 3).

The expression of TLR2 on NKT cells (NK1.1+ CD3int),

macrophages (Gr-1int Mac-1+) and T cells (NK1.1)

CD3high) was determined using gated analysis. On day 0,
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Figure 2. Identification of natural killer T

(NKT) cells and macrophages. (a) Two-colour

staining for CD3 and CD1d-tetramer. (b)

Number of NKT cells. (c) Two-colour staining

for Mac-1 and Gr-1. (d) Number of macro-

phages. (e) Identification of NKT cells in

CD1d)/) mice. Mononuclear cells were isolated

from the livers of wild-type (WT) and NKT-

less mice. Immunofluorescence studies were

done to identify NKT cells (CD3int CD1d-tet-

ramer+) and macrophages (Gr-1int Mac-1+).

The data represent the mean ± SD from four

mice. **P < 0�01.
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TLR2 was expressed at very low levels by NKT cells, but

was positive in 59% of macrophages. After the adminis-

tration of zymosan A TLR2 was expressed by 10% of

NKT cells after 2 hr and on day 7. The majority of mac-

rophages also showed increased levels of TLR2 expression

after 2 hr and on day 7.

CD1d-/- mice treated with zymosan A show increased
IFN-c production

The results of our experiments revealed that NKT-less

mice showed increased granuloma formation, and that

these granulomas contained a higher number of macro-

phages after treatment with zymosan A. As macrophages

are activated by cytokines such as IFN-c and TNF-a, the

levels of these cytokines were examined both in sera and

in in vitro culture (Fig. 4). High levels of IFN-c were

detected in the sera of NKT-less mice treated with zymo-

san A (Fig. 4a), reaching a peak by day 14. In contrast,

the level of TNF-a was similar between WT mice and

NKT-less mice.

Next, liver mononuclear cells were isolated from both

WT mice and NKT-less mice and cultured with or with-

out zymosan A (Fig. 4b). The levels of IFN-c and TNF-a
in the culture supernatants were then measured on the

indicated days. Higher titres of IFN-c were detected in

NKT-less mice, whereas the levels of TNF-a were similar

in both strains.

Next, the leucocyte subsets responsible for IFN-c pro-

duction in zymosan A-treated NKT-less mice were analy-

sed (Fig. 4c). Liver mononuclear cells were isolated on day

14 and three-colour staining was performed (the third col-

our stained cytoplasmic IFN-c). All the tested cell popula-

tions (except CD8+ T cells) contained IFN-c-producing

cells (between 4�9 and 7�1%). However, the difference

between WT mice and NKT-less mice was insignificant.

IFN-c-/- mice show decreased granuloma formation

It was hypothesized that IFN-c was intimately involved in

granuloma formation after zymosan A administration. To

confirm this, tissue sections from IFN-c)/) mice were pre-
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Figure 3. Expression of Toll-like receptor 2

(TLR2) on natural killer T (NKT) cells and

macrophages. Wild-type (WT) mice were trea-

ted with zymosan A and mononuclear cells

were isolated from the liver on the indicated

days. Three-colour staining for TLR2, NK1.1

(or Gr-1) and CD3 (or Mac-1) was then per-

formed. To show the expression of TLR2, the

gated analysis was conducted for NKT cells

(NK1.1+ CD3int), macrophages (Gr-1int Mac-

1+), and T cells (NK1.1) CD3high). Representa-

tive results from three independent experi-

ments are shown. The numbers in the figure

represent the percentage of fluorescence-

positive cells.
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Figure 4. Interferon-c (IFN-c) and tumour

necrosis factor-a (TNF-a) production in wild-

type (WT) and CD1d)/) mice. (a) IFN-c and

TNF-a levels in the sera. (b) IFN-c and TNF-a
levels in the culture supernatants. (c) Cytoplas-

mic detection of IFN-c and TNF-a in different

leucocyte populations. Cytoplasmic cytokines

were detected using immunofluorescence. Data

represent the mean ± SD from four experi-

ments.
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pared on day 14 and the numbers of granulomas in WT,

NKT-less and IFN-c)/) mice were compared (Fig. 5a).

The results showed that granuloma formation was most

pronounced in NKT-less mice, and least in IFN-c)/)

mice. The actual number of granulomas was compared

on days 7 and 14 (Fig. 5b), and a large decrease in the

number of granulomas was observed in IFN-c)/) mice at

both time points.

WT mice show high levels of IL-10 after
zymosan A treatment

Why did the deficiency of NKT cells result in increased

production of IFN-c and subsequent activation of macro-

phages? The answer to this question may involve IL-10,

which is known to suppress IFN-c production. Hence, IL-

10 levels were measured in WT and NKT-less mice trea-

ted with zymosan A (Fig. 6a). High levels of IL-10 were

detected in the sera of WT mice as early as 1 to 2 hr after

zymosan A administration. However, only minimal levels

were detected in NKT-less mice. Interleukin-10 was not

detectable in the sera of either mouse strain between day

1 and day 28.

Increased IL-10 production was confirmed using RT-

PCR (Fig. 6b). The signal for IL-10 mRNA increased

between 1 hr and 1 day after zymosan A administration

in WT mice, but not in NKT-less mice. Both IL-4 mRNA

and IL-12 mRNA were examined as controls. The signal

for IL-4 mRNA was only detected in concanavalin A

blasts, whereas that for IL-12 mRNA was detected in both

concanavalin A blasts and lipopolysaccharide blasts. Real-

time PCR was also conducted (Fig. 6c). The data con-

firmed the result from Fig. 6(b).

Discussion

In the present study, we showed that CD1d)/) mice had

an unusually high number of granulomas in the liver after

zymosan A treatment. This animal model of zymosan

A-induced granuloma formation is linked to activation of

macrophages in WT mice.22–26 At this time, TLR217 and

dectin-120, 21 might be associated with such activation.

These are known to be binding sites for many bacterial

products, including zymosan A. However, we did not

analysed which molecules of TLR2 or dectin-1 played a

major role for zymosan A-induced granuloma formation

in this protocol. Compared with WT mice, NKT-less mice
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Figure 5. Association of interferon-c (IFN-c) with granuloma forma-

tion. (a) Liver histology. (b) Number of granulomas. Wild-type

(WT), CD1d)/) and IFN-c)/) mice were treated with zymosan A.

On the indicated days, hepatic tissue was isolated. The data represent

the mean ± SD of the number of granulomas in four mice.

*P < 0�05 and **P < 0�01.
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treated with zymosan A showed an increase in the macro-

phage population in the liver (both in terms of number

and proportion). As NKT cells in WT mice treated with

zymosan A eventually down-regulated their expression of

T-cell receptors on the cell surface, it is conceivable that

activated NKT cells modulated the magnitude of zymosan

A-mediated granuloma formation in the liver.

We first assessed the production of IFN-c by mononu-

clear cells in the liver. This is because IFN-c is the most

important cytokine involved in macrophage activation27–31

and macrophages are the main leucocyte population

found in granulomas.32–34 The results showed that unusu-

ally large amounts of IFN-c (but not TNF-a) were pro-

duced by liver mononuclear cells in NKT-less mice

treated with zymosan A. This was true in both the in vivo

and in vitro experiments. We next examined the produc-

tion of IL-10 – an immunosuppressive cytokine that is

often produced by T cells or activated NKT cells.35–39 The

results showed that WT mice produced large amounts of

IL-10, especially within 1–2 hr of zymosan A administra-

tion. This suggests that NKT cells play an important role

in suppressing zymosan A-mediated granuloma formation

in the liver by modulating the production of IFN-c and

IL-10.

There was also evidence that NKT cells were directly

activated by zymosan A. In addition to down-regulated

expression of the CD1-tetramer by NKT cells, the results

showed elevated expression of TLR2 (from 2�1% to

10�0% of cells by 2 hr after zymosan A administration).

In the case of macrophages, a large proportion (59�3%)

of resting macrophages was TLR2+, and this was

increased by treatment with zymosan A.

To determine the source of IFN-c, the cytoplasmic

expression of IFN-c was examined in various leucocyte

populations in both WT and NKT-less mice. The results

showed that NKT cells, NK cells, CD4+ T cells and mac-

rophages produced IFN-c. Production of IFN-c by CD8+

T cells was minimal. The importance of IFN-c in granu-

loma formation was also examined in IFN-c)/) mice. Few

granulomas were seen in IFN-c)/) mice treated with

zymosan A.

One of the functions of NKT cells was cytotoxicity

against autologous thymocytes and hepatocytes. Cytotox-

icity against thymocytes did not require specific activa-

tion,40,41 but cytotoxicity against hepatocytes required

activation with a-GalCer.42–44 However, other immuno-

suppressive functions of NKT cells were also reported.45–48

For example, NKT cells suppress autoimmune uveitis by

inhibiting T helper type 17 differentiation,49 and play a

protective role in acute and chronic arthritis by amelio-

rating antigen-specific T helper type 1 responses.50

Granuloma formation in the liver and other organs is

important for sealing microbes within the tissue and pre-

venting their dissemination into the systemic circulation.

It is thought that TLR2-mediated or other TLR-mediated

granuloma formation is one such response.16,17 However,

excessive granuloma formation is sometimes dangerous

and can lead to tissue damage (e.g. hepatic failure). In

this regard, positive and negative regulation of granuloma

formation in the liver might be critical for the protection

of the whole body. The present results suggest that

NKT cells play an important role in regulating such

responses. The key factor modulating macrophage activa-

tion appears to be IFN-c, with IL-10 acting to provide

negative feedback.
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