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BACKGROUND AND PURPOSE
Inhibition of the renin angiotensin system (RAS) has been consistently demonstrated to reduce atherosclerosis. However, there
has been no direct comparison among the three available pharmacological modes of inhibiting the RAS, which are inhibitors
of renin, ACE and angiotensin II type 1 receptor. The purpose of this study was to determine the relative effects of these three
modes of pharmacological RAS inhibition in reducing atherosclerosis by determining the dose–response relationships.

EXPERIMENTAL APPROACH
Male LDL receptor -/- mice were administered either vehicle or any of three doses of aliskiren, enalapril or losartan through
s.c. infusion for 12 weeks. All mice were fed a saturated fat-enriched diet during drug infusions. Systolic and diastolic BPs
were measured during the study using a non-invasive tail-cuff system. Plasma cholesterol and renin concentrations,
atherosclerotic lesions, and renal angiotensin II concentrations were determined at the termination of the study.

KEY RESULTS
Plasma renin concentrations were increased by all three drugs. None of the drugs changed plasma cholesterol concentrations.
All drugs produced a dose-related decrease in BP. All three drugs also profoundly reduced atherosclerosis in a dose-dependent
manner. The highest dose of each drug markedly attenuated lesion size, with no significant differences between the different
drugs. The highest dose of each drug also similarly reduced renal angiotensin II concentrations.

CONCLUSION AND IMPLICATIONS
Drugs that inhibit the RAS, irrespective of their mode of inhibition, profoundly affect atherosclerotic lesion development in a
dose-dependent manner.

Abbreviations
ACE, angiotensin-converting enzyme; Ang, angiotensin; apoE, apolipoprotein E; AT1, angiotensin II type 1 receptor; BP,
blood pressure; LDL, low-density lipoprotein; PCR, polymerase chain reaction; RAS, renin angiotensin system

Introduction
The renin angiotensin system (RAS) contains a single precur-
sor, angiotensinogen, that is cleaved by renin to form angio-

tensin (Ang)I. Ang I is subsequently cleaved by angiotensin-
converting enzyme (ACE) to generate Ang II, the major
bioactive peptide in the RAS. Renin and ACE are the critical
enzymes for the synthesis of Ang II, while the Ang II type 1
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(AT1) receptor is the major receptor for the physiological and
pathophysiological effects of Ang II. Over the last decade, the
classic RAS has been expanded by the identification of alter-
native enzymes to synthesize or catabolize Ang II, a spectrum
of other bioactive angiotensin peptides, and an increasing
number of receptors that have been recognized to interact
with these angiotensin peptides (Ferrario, 2002; Carey and
Siragy, 2003; Santos et al., 2003). Therefore, the RAS is a
complex system exerting an array of responses, some being
antagonistic to others.

Despite the complexity of the RAS, it has been consis-
tently demonstrated that Ang II contributes to the develop-
ment of atherosclerosis (Daugherty and Cassis, 1999;
Daugherty et al., 2000; Weiss et al., 2001; Bruemmer et al.,
2003). Conversely, pharmacological inhibition of the classic
RAS components decreases experimental atherosclerosis
(Rader and Daugherty, 2008). Renin is the rate-limiting
enzyme in the generation of angiotensin peptides. Previous
studies have demonstrated that aliskiren, a renin inhibitor,
blocks the generation of all angiotensin peptides (Lu et al.,
2008) and reduces atherosclerosis in animal models (Iman-
ishi et al., 2008; Lu et al., 2008; Nussberger et al., 2008;
Weiss and Taylor, 2008). Studies have also consistently dem-
onstrated that ACE or AT1 receptor inhibition profoundly
reduces atherosclerosis in a variety of animal models
(Daugherty et al., 2001; Candido et al., 2002; 2004; Wass-
mann et al., 2004; da Cunha et al., 2005; Grothusen et al.,
2005). However, the mechanisms by which ACE inhibition
or AT1 receptor antagonism reduces atherosclerosis may be
complex. For example, inhibition of ACE results in the
accumulation of Ang I, which can thus be converted
into Ang (1-7) through an ACE2-dependent pathway. In
addition, ACE inhibitors also block the degradation of
bradykinin, which has potent vasodilator properties. As to
AT1 receptor antagonists, although the direct inhibition of
Ang II AT1 receptor signalling could account for its anti-
atherosclerotic effect, there may also be a contribution from
the continuous presence of angiotensin peptides that inter-
act with other receptors such as AT2 or mas receptors. There-
fore, inhibition of different sites within the RAS may reduce
atherosclerosis through distinct mechanisms, indicating dif-
ferences in anti-atherosclerotic effects depending on the
mode of RAS inhibition.

Despite the consistent demonstration that inhibition of
the RAS profoundly reduces atherosclerosis (Daugherty
et al., 2001; Candido et al., 2002; 2004; Wassmann et al.,
2004; da Cunha et al., 2005; Imanishi et al., 2008; Lu et al.,
2008; Nussberger et al., 2008; Rader and Daugherty, 2008;
Weiss and Taylor, 2008), no studies have determined the
maximal effect or directly compared the relative anti-
atherosclerotic effects of the three different modes for
pharmacological inhibition of the RAS. Hypercholestero-
laemia is critical for the development of atherosclerosis
(Rader and Daugherty, 2008). RAS activation is a critical
contributor to hypercholesterolaemia-induced atherosclero-
sis in mice as demonstrated in our previous studies (Daugh-
erty et al., 2004; Lu et al., 2008). In this study, we used LDL
receptor -/- male mice fed a saturated fat-enriched diet to
determine the dose-related response of the three modes of
pharmacological inhibition of the RAS on the reduction of
atherosclerosis.

Methods

Mice and diet
LDL receptor -/- (B6.129S7-Ldlrtm1Her; Stock #002207) male
mice that have been backcrossed ten times into the C57BL/6
background were purchased from The Jackson Laboratory
(Bar Harbor, ME, USA). All mice were maintained in a barrier
facility and fed with a normal mouse laboratory diet. To
induce hypercholesterolaemia, mice were fed with a diet
supplemented with saturated fat (milk fat 21% wt/wt) and
cholesterol (0.2% wt/wt; Diet# TD.88137; Harlan Teklad, WI,
USA). At the end of the experiment, the mice were anaesthe-
tized by an i.p. injection of ketamine (100 mg·kg-1) and
xylazine (10 mg·kg-1). Blood was collected with EDTA
(1.8 mg·mL-1) via right ventricular puncture, kept on ice,
centrifuged (376 g ¥ 20 min) at 4°C and stored at -80°C. After
collection of blood, the right atrium was incised, and saline
was infused through a left ventricular puncture to remove
blood. Aortas were removed and kept in 10% formalin, while
other organs such as livers and kidneys were snap- frozen in
liquid nitrogen and stored at -80°C. All animal care and
experimental procedures were performed with the approval
of the University of Kentucky Institutional Animal Care and
Use Committee.

Drug administration
Model 2004 Alzet mini-osmotic pumps (Durect Corporation,
Cupertino, CA, USA) were implanted into LDL receptor -/-
male mice at the age of 8 weeks, and replaced every 4 weeks
to continuously deliver drugs for a total of 12 weeks (Daugh-
erty and Cassis, 1999; Daugherty et al., 2000). Ten groups of
mice (n = 15 per group) were studied as follows: vehicle (PBS);
aliskiren 2.5, 12.5 or 25 mg·kg-1·day-1; enalapril 0.25, 1.25 or
2.5 mg·kg-1·day-1; and losartan 2.5, 12.5 or 25 mg·kg-1·day-1.
Doses of each drug were chosen based on estimates that
would encompass a range of partial to complete inhibition of
their respective targets (Daugherty et al., 2001; Lu et al.,
2008). Aliskiren was provided by Novartis. Enalapril (Cat#
E6888) and losartan (Cat# 61188) were purchased from
Sigma-Aldrich (St. Louis, MO, USA). All study mice were fed
the saturated fat-enriched diet, which was started 1 day after
the pump implantation throughout the drug infusions.

BP measurements
Systolic and diastolic BPs were measured using a non-invasive
tail-cuff system (Coda 8; Kent Scientific Corporation, Tor-
rington, CT, USA) (Daugherty et al., 2009). The measurements
were performed for four sequential days prior to and at every
4 weeks during drug infusions.

Measurement of plasma components
Plasma cholesterol concentrations and lipoprotein–
cholesterol distributions were determined as described previ-
ously (Daugherty et al., 2000). Plasma renin concentrations
were measured by incubation of plasma samples (8 mL) with
an excess of rat angiotensinogen in the presence of EDTA
(0.02 M) for 30 min at 37°C. Ang I generated in the samples
was quantified by radioimmunoassay using a commercially
available kit (Cat# 1553; DiaSorin, MN, USA) (Lu et al., 2008).
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Quantification of atherosclerosis
Atherosclerosis was quantified on aortic intima of arches,
thoracic aortas and abdominal aortas by an en face method
as described previously (Daugherty and Whitman, 2003;
Daugherty and Rateri, 2005). Lesion size was measured in the
aortic arch region that included ascending aorta, arch and
part of descending aorta (from the aortic orifice of left sub-
clavian artery to 3 mm below), the thoracic aortic region that
was defined as from the end of the aortic arch region to the
last intercostal arteries, and the abdominal aortic region from
the last intercostal arteries to the aortic bifurcation.

Characterization of atherosclerotic tissues
Serial cross sections in aortic roots were cut on a cryostat as
described previously (Daugherty and Whitman, 2003). Oil
Red O staining was performed to visualize lipid-laden mac-
rophages and collagen was stained using Gomori Trichrome.
Immunostaining of smooth muscle alpha actin was per-
formed using a rabbit polyclonal antibody (Cat# ab5694;
Abcam, Cambridge, MA, USA) as described previously (Lu
et al., 2007b).

Kidney Ang II measurements
Kidney samples (n = 5 per group) from the study mice were
weighed and homogenized in 10 volumes of ice-cold buffer
containing HCl (0.1N), ethanol (80%), o-phenanthroline
(0.5 mM), pepstatin (0.1 mM) and captopril (10 mM). Homo-
genates were centrifuged at 20 000¥ g for 20 min at 4°C. The
supernatant was stored at -20°C for 12 h, centrifuged and
diluted (1:1) with orthophosphoric acid (0.1%). Samples were
stored at 4°C for 6 h, centrifuged, and the supernatant diluted
(1:1) with orthophosphoric acid (0.02%). Angiotensin pep-
tides were partially purified using C18 mini-columns equili-
brated with methanol (4 mL) and water (8 mL). Samples were
applied to columns using gentle pressure, columns were
washed twice with water (4 mL), and peptides were eluted
with methanol (3 mL). Eluate was vacuum evaporated and

reconstituted in the buffer for radioimmunoassay using a
rabbit anti-AngII antibody (Cat# T-4005; Bachem/Peninsula
Laboratories, San Carlos, CA, USA).

Statistical analyses
Version 9.2 of SAS (SAS Institute Inc., Cary, NC, USA) and
version 11 of SigmaPlot (Systat Software Inc., San Jose, CA,
USA) were used for statistical analyses. A P < 0.05 was consid-
ered significant except as noted below. To compare study
groups on continuous responses assessed once on each speci-
men, we employed one-way ANOVA followed by pairwise com-
parisons with P-values adjusted by the Tukey–Kramer method;
observations were weighted, and when necessary, square-root
transformed to justify application of one-way ANOVA. To deter-
mine the association between two continuous responses
assessed once, we computed a Pearson correlation. We also
estimated a standardized coefficient for a linear regression
model relating the two variables while controlling for group
membership. To compare groups on continuous responses
assessed repeatedly, we fit a linear mixed model expressing the
mean response as a function of group membership and time;
because the software did not adjust the P-values in pairwise
comparisons, we required a P-value < 0.01 to declare statistical
significance. Data are presented as mean � SEM.

Results

Characteristics of study mice
All doses of the three drugs were well-tolerated as determined
by daily visual inspection and steadily body weight gain
(Table 1). Plasma cholesterol concentrations (Table 1) and
lipoprotein–cholesterol distributions (data not shown) were
not influenced by any dose or mode of the RAS inhibition
compared with the vehicle. While all doses of enalapril and
losartan increased plasma renin concentrations, only the
highest dose of aliskiren increased plasma renin concentra-

Table 1
Characteristics of mice

Infusion
Dose
(mg·kg-1·day-1)

Body weight (g) Plasma cholesterol
concentrations (mg·mL-1)Baseline Final

Vehicle 24.2 � 0.5 34.1 � 1.1 15.8 � 1.1

Aliskiren 2.5 24.6 � 0.5 37.0 � 1.0 15.9 � 0.7

12.5 24.3 � 0.4 33.9 � 0.5 16.9 � 0.8

25 24.1 � 0.5 33.4 � 0.9 15.4 � 0.9

Enalapril 0.25 23.7 � 0.3 36.1 � 0.9 17.2 � 0.8

1.25 23.6 � 0.4 36.3 � 0.9 16.1 � 0.5

2.5 24.2 � 0.5 30.8 � 1.5 15.8 � 0.6

Losartan 2.5 24.3 � 0.5 38.4 � 1.0 16.4 � 0.7

12.5 24.7 � 0.5 36.2 � 1.1 15.8 � 0.8

25 24.7 � 0.4 34.3 � 1.0 15.9 � 1.3

Values are presented as mean � SEM. Comparisons of body weight and plasma cholesterol concentrations among the 10 study groups
(n = 8–15 per group) were performed by one-way ANOVA.
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tions (Figure 1). However, there was no significant difference
in plasma renin concentrations among the three doses of
aliskiren (Figure 1A). Both enalapril (Figure 1B) and losartan
(Figure 1C) dose-dependently increased plasma renin con-
centrations. The magnitude of change in plasma renin con-
centrations was equivalent in mice infused with the highest
doses of enalapril and losartan.

Comparison of three modes of
pharmacological RAS inhibition on systolic
and diastolic BP reduction
Changes in systolic and diastolic BP (at week 12 during drug
infusion vs. baseline) were compared. Each dose of all three
drugs produced dose-related decreases in both systolic and
diastolic BPs (Figures 2 and 3). The highest doses of each drug
reduced both systolic and diastolic BPs to a similar level.

Comparison of three modes of
pharmacological RAS inhibition
on atherosclerosis
Atherosclerotic lesions were quantified as % lesion area in
aortic arches, thoracic aortas and abdominal aortas by en face
measurement. LDL receptor -/- mice fed the saturated fat-
enriched diet for 12 weeks developed readily discernable
lesions in aortic arches, modestly sized lesions in thoracic
aortas, and minimal lesions in abdominal aortas (data not
shown). All three modes of pharmacological RAS inhibition
profoundly reduced hypercholesterolaemia-induced athero-
sclerosis in a dose-dependent manner in both aortic arches
(Figure 4 and Supporting Information Figure S1) and thoracic
aortas (Supporting Information Figure S2). There were no dif-
ferences in the maximal reductions in lesion size between the
groups.

Oil Red O staining demonstrated the predominance of
lipid-laden macrophages in atherosclerotic lesions. The pres-
ence of collagen was not readily distinguishable, whereas
only sparse positive staining of smooth muscle actin was
detected in atherosclerotic lesions (data not shown).

Correlation analysis between BP changes and
lesion size
We performed Pearson correlation analyses to determine
whether % lesion area in aortic arches was correlated with
systolic or diastolic BP changes. The Pearson correlation of %
lesion area with systolic BP was -0.421 (P < 0.0001), and with
diastolic BP was -0.360 (P = 0.0002). However, if group mem-
bership was controlled by fitting a linear regression model
with BP changes as the dependent variable, and both % lesion
area and group membership as the independent variables, the
estimated standardized regression coefficient for % lesion
area with either systolic or diastolic BP was -0.093 (P = 0.43
and 0.45, respectively).

Comparisons of renal Ang II concentrations
in study mice
We were unable to directly measure Ang II concentrations in
aortas. Instead, we measured Ang II concentrations in kidney
tissues from mice infused with either PBS or the highest dose
of each drug. There was a significant but equivalent reduction

Figure 1
Comparison of different modes of RAS inhibition on changes in
plasma renin concentrations. Plasma renin concentrations were mea-
sured using a radioimmunoassay kit (n = 7 per group). Histograms
represent means and bars represent SEM. *P < 0.0001 versus the
vehicle, and #P < 0.0001 versus enalapril 0.25 mg·kg-1·day-1. (A)
Effects of aliskiren; (B) enalapril and (C) losartan.
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Figure 2
Comparison of different modes of RAS inhibition on changes in
systolic BP. Changes in systolic BP were compared in LDL receptor -/-
mice between 1 week before pump implantation (baseline) and at
12 weeks after drug administration at the indicated doses (n = 8–14
per group). Histograms represent means and bars represent SEM.
*P < 0.0001 versus the vehicle, and #P < 0.0001 versus the two lower
doses of losartan (2.5 and 12.5 mg·kg-1·day-1). (A) Effects of
aliskiren; (B) enalapril and (C) losartan.

Figure 3
Comparison of different modes of RAS inhibition on changes of
diastolic BP. Changes in diastolic BP were compared in LDL receptor
-/- mice between 1 week before pump implantation (baseline) and at
12 weeks after drug administration at the indicated doses (n = 8–14
per group). Histograms represent means and bars represent SEM.
*P < 0.0001 versus the vehicle, and #P < 0.0001 versus the two lower
doses of losartan (2.5 and 12.5 mg·kg-1·day-1). (A) Effects of
aliskiren; (B) enalapril and (C) losartan.
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in kidney Ang II concentrations in mice infused with the
highest dose of each drug, compared with the PBS-infused
control mice (Supporting Information Figure S3).

Discussion and conclusions

The present study demonstrated that inhibition of the RAS by
drugs that operate through three distinct pharmacological
modes reduces atherosclerotic lesion size in a dose-dependent
manner in hypercholesterolaemic mice. The dose–response
curves showed no marked differences in the relative anti-
atherosclerotic effects for these three different modes of RAS
inhibition. The RAS inhibition was achieved by s.c. infusion
of the drugs through osmotic minipumps to ensure continu-
ous and constant delivery during a 12 week period. To our
knowledge, this is the first study to directly compare the three
currently available pharmacological modes of inhibition of
the RAS on atherosclerosis using multiple doses of each drug
within a single study.

The effects of renin inhibition on atherosclerosis have
been determined recently in a number of studies (Imanishi
et al., 2008; Lu et al., 2008; Nussberger et al., 2008; Weiss and
Taylor, 2008; Poss et al., 2010). Conversely, many studies
have used experimental models to demonstrate the consis-
tent anti-atherosclerotic effects of ACE inhibitors and AT1

receptor antagonists (Aberg and Ferrer, 1990; Charpiot et al.,
1993; Schuh et al., 1993; Strawn et al., 2000; Johnstone et al.,
2004; Wassmann et al., 2004; Weiss and Taylor, 2008).
Although all three modes of inhibiting the RAS reduced
lesion size, it is unclear whether there are differences in effi-
cacy. Renin is the rate-limiting enzyme that acts on its unique
substrate of angiotensinogen in the formation of angiotensin
peptides. Unlike renin, ACE has both RAS-related and non-
RAS-related substrates (Nishimoto et al., 2001). In addition,
ACE inhibition influences other substrates of ACE such as
bradykinin, which also affects experimental atherosclerosis
(Merino et al., 2009). AT1 receptor antagonism prevents the
actions of Ang II by inhibiting its binding to the AT1 receptor.
However, it simultaneously increases plasma concentrations
of Ang II (Muller et al., 1997; Strawn et al., 2000) and possibly
other angiotensin peptides. Increased plasma Ang II concen-
trations during AT1 receptor antagonism may stimulate AT2

receptors; however, the role of AT2 receptors in atherosclerosis
is unclear (Daugherty et al., 2001; 2004; Iwai et al., 2005;
Johansson et al., 2005; Sales et al., 2005; Hu et al., 2008;
Koitka et al., 2010).

Given the different modes of inhibiting the RAS, it is
possible that ACE and AT1 receptor inhibition reduces athero-
sclerosis through different pathways from renin inhibition.
There have been reports that ACE inhibition and AT1 receptor
antagonism have differential effects on atherosclerosis (Schuh
et al., 1993), while several other studies have demonstrated
that single doses of drugs targeting different sites within the
RAS produce comparable reductions in atherosclerotic lesion
size (Ortlepp et al., 2002; Imanishi et al., 2008; Nussberger
et al., 2008; Weiss and Taylor, 2008). To directly compare the
anti-atherosclerotic effects and thus assist in clarifying the
conflicting findings in the literature, the present study, via
applying multiple doses of each drug concurrently, provided

Figure 4
Comparison of different modes of RAS inhibition on atherosclerotic
lesion size in aortic arches. The lesion area (as a % of whole area) was
measured on the intimal surface of aortic arches (n = 8–14 per
group). Triangles represent the values for individual mice, diamonds
represent means, and bars are SEM. *P < 0.001 versus the vehicle. (A)
Effects of aliskiren; (B) enalapril and (C) losartan.
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strong evidence that the three modes of pharmacological RAS
inhibition similarly reduce atherosclerosis in mice.

While the reduction in intrarenal Ang II concentration, as
measured in the present study, may represent the effective-
ness of the three modes of RAS inhibition, it does not imitate
the changes in Ang II production in aortas that may directly
contribute to the development of atherosclerosis. Unfortu-
nately, measurement of Ang II levels in mouse aortas is not
technically feasible (Weiss and Taylor, 2008). We have dem-
onstrated previously that angiotensinogen, renin and ACE
are present in atherosclerotic lesions of LDL receptor -/- mice
(Daugherty et al., 2004). Angiotensinogen and renin are pre-
dominantly co-localized with lipid-laden macrophages,
whereas ACE is present in all the major cell types in lesions.
Although all these components of the RAS are present in
atherosclerotic lesions, the contribution of the local expres-
sion of angiotensinogen or ACE to lesion formation has not
been defined. Conversely, deletion of renin from bone
marrow-derived cells decreases atherosclerosis (Lu et al.,
2008). Ang II exerts its effects on atherosclerosis by binding to
AT1A receptors (Daugherty et al., 2004; Wassmann et al.,
2004). However, we did not find that AT1A receptors on bone
marrow-derived cells played a critical role in the development
of hypercholesterolaemia-induced atherosclerosis (Lu et al.,
2008), although contradictory findings have been reported in
different mouse models (Cassis et al., 2007; Fukuda and Sata,
2008; Kato et al., 2008; Koga et al., 2008; Tsubakimoto et al.,
2009; Endtmann et al., 2011).

It has been demonstrated consistently, in both human
and animal studies, that plasma renin concentrations are
increased by the three pharmacological approaches we used
to inhibit the RAS (Wiggins and Kelly, 2009). While some
human studies have shown that plasma renin concentrations
were increased more profoundly in patients treated with
aliskiren, compared with ACE inhibitors or AT1 receptor
antagonists (Nussberger et al., 2002; 2007; Uresin et al., 2007;
Wiggins and Kelly, 2009), others did not find differences in
plasma renin concentrations between patients administered
aliskiren and ACE inhibitors or AT1 receptor antagonists
(Azizi et al., 2004; Menard et al., 2006). In this study, different
magnitudes of plasma renin increases may reflect factors
inherent within the mode of the assay and the method of
blood collection in anaesthetized mice. For example, it has
been reported that monoclonal antibodies used in some com-
mercial renin assays may directly interact with renin inhibi-
tors, and factors such as incubation duration may also affect
the values from such renin assays (Menard et al., 2006). In the
present study, plasma renin concentrations were determined
by measuring generation of Ang I from the addition of an
excess of rodent angiotensinogen (Cassis et al., 2004). The
lower concentrations of plasma renin in mice infused with
aliskiren might have resulted from residual aliskiren in the
assay that inhibited the production of Ang I. In addition, it is
well recognized that anaesthesia can increase plasma renin
concentrations (Oates and Stokes, 1974). Therefore, the
stated measurements of plasma renin may be overestimated.

While the end point of this study was atherosclerotic
lesions, we also delineated the relative role of the different
modes of pharmacological RAS inhibition on systolic and
diastolic BPs. Consistent with their effects on atherosclerosis,
all three modes of inhibiting the RAS also dose-dependently

reduced BP. Pearson correlation analyses of lesion size with BP
changes indicates that these two parameters represent two
distinct manifestations, and both are similarly affected by the
three modes of RAS inhibition. Furthermore, while these
analyses infer an associative link between BP changes and
lesion size, this does not provide a conclusive demonstration
that changes in BP per se directly contribute to the mecha-
nisms of atherosclerosis (Lu et al., 2007a). The role of BP has
been approached in several studies that have compared the
anti-atherosclerotic effects of RAS inhibition to other classes
of drugs that lower BP. These include comparisons between
irbesartan and hydralazine and between aliskiren and
hydralazine, which all produced comparable BP reductions in
apoE -/- mice, but only aliskiren and irbesartan reduced ath-
erosclerotic lesions (Wassmann et al., 2004; Poss et al., 2010).
Similarly, AT1 receptor antagonism by irbesartan or cande-
sartan and calcium antagonism by amlodipine equivalently
reduced BP, but only AT1 receptor blockade markedly reduced
atherosclerosis (Candido et al., 2004; Doran et al., 2007). The
findings from the literature and this study infer that the link
between BP lowering effects of pharmacological RAS inhibi-
tion and their anti-atherosclerotic effects may involve a
complex mechanism.

This study confirms the important effect of the RAS in the
development of experimental atherosclerosis. Using a mouse
model in which drug administration can be constantly main-
tained for 3 months, this study demonstrated that inhibitors
of renin, ACE and AT1 receptors markedly reduce atheroscle-
rotic lesion formation in a similar dose-dependent manner.
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Supporting information

Additional Supporting Information may be found in the
online version of this article:

Figure S1 Representative en face images of aortic arches that
were used for quantification of atherosclerotic lesions. Images
are provided for examples of atherosclerosis in mice infused
with PBS, aliskiren 25 mg·kg-1·d-1, enalapril 2.5 mg·kg-1·d-1 or
losartan 25 mg·kg-1·d-1.
Figure S2 Comparison of RAS inhibition on atherosclerotic
lesions in thoracic aorta. Percent lesion area was measured on
the intimal surface of thoracic aortas (n = 8–14 per group).
Triangles represent the values for individual mice, diamonds
represent means, and bars are SEM. * denotes P < 0.001 versus
the vehicle.
Figure S3 Comparison of RAS inhibition on renal AngII
concentrations. Renal AngII concentrations (n = 5 per group)
were measured using radioimmunoassay method. Histobars
represent means and bars represent SEM. * denotes P < 0.05
versus the vehicle.
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should be directed to the corresponding author for the article.
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