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Abstract
Motor chunking facilitates movement production by combining motor elements into integrated
units of behavior. Previous research suggests that chunking involves two processes: concatenation,
aimed at the formation of motor-motor associations between elements or sets of elements; and
segmentation, aimed at the parsing of multiple contiguous elements into shorter action sets. We
used fMRI to measure the trial-wise recruitment of brain regions associated with these chunking
processes as healthy subjects performed a cued sequence production task. A novel dynamic
network analysis identified chunking structure for a set of motor sequences acquired during fMRI
and collected on three days of training. Activity in the bilateral sensorimotor putamen positively
correlated with chunk concatenation, whereas a left hemisphere frontoparietal network was
correlated with chunk segmentation. Across subjects, there was an aggregate increase in chunk
strength (concatenation) with training, suggesting that subcortical circuits play a direct role in the
creation of fluid transitions across chunks.
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Introduction
Motor sequence learning refers to the process by which temporally ordered movements are
prepared and executed with increasing speed and accuracy (Willingham, 1998). To do so,
the processing demands associated with the rapid planning of multiple serial movements
within a sequence must be reconciled. The traditional notion is that the individual motor
commands that constitute new sequences become temporally integrated into elementary
memory structures or chunks (Gallistel, 1980; Lashley, 1951; Book, 1908). Chunking in
motor sequencing allows groups of individual movements to be prepared and executed as a
single motor program facilitating the performance of complex and extended sets of
sequences at lower cost (Halford et al., 1998). The grouping of distinct elements into a
single unit is a general performance strategy that is also observed in non-motor tasks (Gobet
and Simon, 1998; Ericsson et al., 1980).

A host of behavioral studies of sequence learning support a hierarchical model of
sequencing, in which long sequences of finger movements are segmented into shorter
chunks (Verwey et al., 2009; Bo and Seidler, 2009; Kennerley et al., 2004; Verwey and
Eikelboom, 2003; Sakai et al., 2003). The temporal pattern commonly observed is the
production of one slow key press that is followed by several key presses produced in quick
succession (Sakai et al., 2003; Verwey and Eikelboom, 2003). Recent studies suggest that
individuals will spontaneously segment sequences into a set of subject-specific chunks
(Verwey et al., 2009; Bo and Seidler, 2009; Kennerley et al., 2004; Sakai et al., 2003;
Verwey and Eikelboom, 2003). The benefit of such segmentation is that it reduces memory
load during ongoing performance (Bo and Seidler, 2009; Ericsson et al., 1980). With
extended practice, short chunk segments can be concatenated into longer segments (Sakai et
al., 2003; Verwey, 1996), suggesting that concatenation can operate on pairs of individual
motor elements or between two sets of motor elements.

The aforementioned findings suggest that two chunking processes are at play during
sequence learning. One process concatenates adjacent motor elements so that sequences can
be expressed as a unified action, and the other process parses sequences into shorter groups.
Both processes could lead to the pattern observed in chunking. In concert, they impart
competing strategies for enhancing performance in the production of long motor sequences,
presumably driven by the formation of motor-motor associations and the strategic control
over sequence segmentation (e.g., Verwey, 2001).

Evidence suggests that the basal ganglia support the concatenation of multiple motor
elements of a sequence. Studies from individuals with Parkinson’s disease (Trembley et al.,
2010) and stroke patients (Boyd et al., 2009) found that damage to the basal ganglia impairs
one’s ability to integrate motor elements into chunks. Further support comes from rodent
and nonhuman primate research (Graybiel, 2008; Yin and Knowlton, 2006). As rats learn to
navigate a T-maze for reward, neurons in the nigrostriatal circuit gradually represent motor
sequences as chunks by firing preferentially at the beginning and end of action sequences,
yielding concurrent improvements in performance (Thorn and Graybiel, 2010; Barnes at al.,
2005). The disruption of this phasic nigrostriatal activity also leads to the impairment of
sequence learning in mice (Jin and Costa, 2010). Similarly, subcutaneous injections of
raclopride, a dopamine antagonist of the D2 receptor, disrupt sequence consolidation and
chunking behavior in cebus monkeys (Levesque et al., 2007), which can be reversed by
administration of a dopamine agonist (Trembley et al., 2009).

Several recent studies have argued that a frontoparietal network is critical for the
segmentation of long sequences into multiple chunks (Pammi et al., 2012; Verwey et al.,
2011; Verwey, 2010). The ability to segment long sequences into chunks is greatly
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diminished in older adults (Verwey et al., 2011; Verwey, 2010), possibly due to decreasing
cortical capacity (Raz et al., 2005; Resnick et al., 2003). Moreover, a frontoparietal network
was recruited when subjects produced long sequences that could be segmented into chunks
relative to those that could not (Pammi et al., 2012). Further, transcranial magnetic
stimulation (TMS) of the pre-supplementary motor area (preSMA), a part of the prefrontal
cortex, disrupts the selection of chunks that are held in memory during the production of
newly learned sequences (Kennerley et al., 2004).

Critically, the aforementioned experiments examined either the concatenation or the parsing
process of chunking but not both processes simultaneously. By contrast, the following
experiment that we report investigated the dynamics of both aspects of chunking over the
course of extensive motor sequence learning. Our goal was to examine if both of these
chunking processes enhance performance and to identify the underlying neural activity. To
achieve this, it was critical to establish a method that overcame some of the limitations of
existing methods for chunk identification.

When subjects retrieve chunks from memory, it is common to observe a non-random subset
of prolonged inter-key intervals (IKIs) that are assumed to represent boundaries between
separable chunks (Sakai et al., 2003; Verwey and Eikelboom, 2003). A common test for
determining chunk boundaries is to compare response times at a subjectively identified
pause relative to the IKIs between these pauses (Kennerley et al., 2004; Verwey and
Eikelboom, 2003). This technique facilitates the extraction of putative sequence segments
but relies on assumptions that during training (1) chunk boundaries are static and (2) short
chunks are not combined into larger chunks. Further, this approach averages IKIs over
multiple elements within each sequence, obscuring movement-by-movement contributions
to chunking. Thus, this approach is not sensitive enough to measure the chunking structure
that unfolds with training. These limitations underscore the need to develop a more flexible
method for the identification of chunking structure, so that no constraints are made as to
where or when chunks occur, and further, that it allows for changes to occur in the degree of
parsing, where parsing occurs, and the strength of motor-motor associations of adjacent
elements.

To model chunking behavior, we modified a network-based community detection algorithm
(Bassett et al., 2011; Mucha et al., 2010). We modeled each trial as a network with nodes
representing individual IKIs in a simple chain structure connecting neighboring IKIs with
weights indicating their similarity (see Experimental Procedures). The networks were
constrained to this simple chain structure to allow only interactions between adjacent
movements within a sequence. To identify chunks, we performed community detection (a
form of data clustering) using a multi-trial extension (Mucha et al. 2010) of the modularity-
optimization approach (Fortunato, 2010; Porter et al., 2009; Newman, 2004). Modularity-
optimization algorithms seek groups of nodes that are more tightly connected to each other
relative to connections to nodes in other groups, and the multi-trial extension allowed us to
consider both intra-trial and inter-trial relationships between nodes. We then quantified the
strength of trial-specific network modularity (Qsingle–trial, see Experimental Procedures).
Network modularity (Q) can be conceptualized as the ease that a network can be divided
into smaller communities. We define chunk magnitude as 1/Qsingle–trial, which we denote by
ϕ. To determine the relative strength of ϕ for a given trial, we normalized ϕ with respect to ϕ̄
for each participant and sequence. Thus, for trials with a high ϕ, it was computationally
more difficult to parse the entire sequence into smaller groups (i.e., chunks). Conversely,
trials with a low ϕ corresponded to sequences that were more easily divisible into chunks.
We chose model parameters such that trials had between two and four chunks over each
sequence. Our method is flexible in the sense that it imposes no constraints on where or
when these chunk boundaries occur in a given trial. Furthermore, it allows for the
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identification of different chunking patterns in each individual and the identification of
changes in chunking patterns over the course of training.

To measure the trial-by-trial contributions of the brain to chunking during sequence
learning, we correlated blood oxygenated level dependent (BOLD) estimates with ϕ.
Subjects learned a set of 12-element explicitly cued sequences using the four fingers of the
left hand during the collection of functional magnetic resonance imaging (fMRI) data on
three days of scanning. The aim of the fMRI experiment was to determine which brain
regions support trials characterized by concatenation or by parsing. We used normalized
values of ϕ as weights in a parametric analysis correlating ϕ with the regional change of the
BOLD signal on a trial-by-trial basis. We predicted that trials with low ϕ and thus having
easily separable chunks would correlate with activity in a frontoparietal network previously
shown to be sensitive to sequence segmentation (Pammi et al., 2012; Kennerley et al., 2004).
Conversely, trials with high ϕ, or those dominated by the concatenation process, would
correlate with the sensorimotor striatum. Lastly, we tested if ϕ would increase with sequence
learning and if this change was independent of conventional measures such as the time
needed to complete a sequence. If true, ϕ could serve as a measure of sequence learning
based on the strength of motor-motor associations that emerge with training.

Experimental Procedures
The data presented in this paper were collected in an experiment previously described by
Bassett et al. (2011). Twenty-five right-handed subjects (16 female, average age ≈ 24 years,
range ≈ 19–30 years), as confirmed by the Edinburgh Handedness Inventory, volunteered
with informed consent in accordance with the Institutional Review Board/Human Subjects
Committee, University of California, Santa Barbara. All subjects had less than 4 years of
experience with any musical instrument, had normal vision, and had no history of
neurological disease or psychiatric disorders. All completed three training sessions and one
follow-up test session within 2 weeks. All training sessions were completed during the first
5 days, and the test session was completed 5 - 7 days after the final training session. All
training and test sessions were performed during the acquisition of BOLD. In the following
discussion, we focus on the data collected from the training sessions.

Experiment setup and procedure
Subjects lay supine in the MRI scanner and padding was placed under the left forearm to
minimize muscle strain during the task. Subjects performed a cued sequence production
(CSP) task by responding to visually cued sequences on a response box using their left hand.
Responses were made using the 4 fingers of the left hand. Sequences were presented as a
static series of musical notes on a 4-line staff (Figure 1A). Subjects reported the note
configurations from left to right. The top line mapped onto the leftmost key using the
leftmost finger and the bottom line was mapped onto the rightmost key using the rightmost
finger. Each 12-element sequence contained 3 notes per line. The notes were randomly
ordered without repetition and were free of regularities such as runs (123) and trills (121)
with the exception of one frequently trained sequence (see below) that contained a trill. The
number and order of sequence trials was identical for all subjects, with the exception of two
who each missed one run of training due to technical difficulties.

A trial began with a fixation signal, which was displayed for 2 s. The complete sequence
was presented immediately after and subjects responded as quickly as possible. They had 8 s
to type each sequence correctly. The sequence was present for the entire duration that
subjects typed. If a sequence was reported correctly, the notes were replaced with a fixation
signal until the trial duration was reached. If a participant responded incorrectly, the verbal
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cue ‘INCORRECT’ appeared and the participant waited for the next trial. Trials not finished
within the time limit were counted as incorrect.

Subjects trained on 16 different sequences at 3 different levels of training exposure. Three
sequences were trained frequently; with 189 trials for each sequence and uniformly
distributed across the training sessions. These ‘frequent sequences’ are the focus of the
present manuscript. The following frequent sequences were presented: s1: ‘324124134132’;
s2: ‘342142134312’; s3: ‘231431241342’. These numbers indicate the placement of the
musical note on the staff: notes on the top line are represented by a ‘1’ while notes on the
bottom line are represented by a ‘4’. Additionally, a second set of three sequences were each
presented for 30 trials and a third set of ten sequences were each presented between 4 - 8
trials during training. For the remainder of this paper, we report the results for the three
frequent sequences.

Frequent sequences were practiced in blocks of 10 trials, with 9 out of 10 being the same
frequent sequence, and the other a rare sequence. Trials were separated by an inter-stimulus
interval (ISI) between 0 s and 20 s, not including time remaining from the previous trial.
Following the completion of each block, and in order to motivate subjects, feedback was
presented that detailed the number of correct trials and the mean time needed to complete a
sequence for the block. Training epochs contained 40 trials (i.e., 4 blocks) and lasted 345
scans. Each training session contained 6 scan epochs and lasted a total of 2070 scans.

Behavioral apparatus
Stimulus presentation was controlled with a laptop computer running MATLAB 7.1
(Mathworks, Natick, MA) in conjunction with Cogent 2000 (FIL, 2000). Key-press
responses and response times were collected using a button box connected to a digital
response card (DAQCard-6024e; National Instruments, Austin, TX).

Imaging procedures
Functional MRI recordings were conducted using a 3.0 T Siemens Trio with a 12-channel
phased-array head coil. For each epoch, a single-shot echo planar imaging sequence that is
sensitive to BOLD contrast was used to acquire 33 slices per repetition time (TR = 2000 ms,
3 mm thickness, 0.5 mm gap), echo time (TE) of 30 ms, flip angle of 90 degrees, field of
view (FOV) of 192 mm, and 64 × 64 acquisition matrix. Before the collection of the first
epoch, a high-resolution T1-weighted sagittal image of the whole brain was acquired (TR
=15.0 ms; TE = 4.2 ms; flip angle = 9 degrees, 3D acquisition, FOV = 256 mm; slice
thickness = 0.89 mm, acquisition matrix = 256 × 256).

Data analysis: behavior
We collected three behavioral variables during training: the time between key presses (i.e.,
the vector of inter-key intervals), movement time (MT), and error. MT is the time elapsed
from the initial to final key press. Error was scored as any trial not produced in the correct
order as well as those trials not completed within the 8 s time limit. To test for learning, we
entered the MT data for each subject, sequence, and session into a repeated-measures
ANOVA (with subject treated as a random factor). To test for differences in error over
training, we combined error for each frequent sequence and entered them for each subject
and session using a repeated-measures ANOVA. For all statistical tests, we set a probability
threshold of P < 0.05 for the rejection of the null hypothesis.

Sequence network construction
We collected inter-key interval (IKI) data for all correct frequent sequence trials. Each trial
consisted of 11 IKI data points (Figure 1A). We excluded the first key press in the sequence
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from the IKIs because it contained the time elapsed from initial cue presentation to the
completion of the first button press. We calculated the mean for each frequent sequence IKI
(giving a total of 11 mean IKIs/sequence) for each participant. We then excluded trials
containing IKIs greater than 3 standard deviations from each mean IKI. To facilitate the
examination of chunking behavior, we constructed a sequence network to encode the
relationship between IKIs for each trial. We defined the nodes for each sequence network as
the 11 IKIs for a trial (Figure 1B). We defined motor chunks as specific groups of
movements that occur serially in time. Consecutive nodes are therefore connected to one
another using undirected edges; the node representing IKI1 is connected to the node
representing IKI2 and the node representing IKI2 is also connected to the node representing
IKI1 (Figure 1C). Furthermore, intra-chunk movements occur in rapid succession relative to
inter-chunk movements. We therefore defined the similarity in IKIs as (d̄ij − dij)/d̄ij, where
dij is defined as the absolute difference in IKIs, (i.e., dij =|IKIi − IKIj|) and d̄ij is defined as
the maximum of dij over the entire trial. In each sequence network, these similarity scores
weight the connecting edges between neighboring nodes only: the weight w12 between
nodes 1 and 2 is equal to the similarity s12 between nodes 1 and 2 (Figure 1C). We define
the weight matrix w to be the 11×11 matrix whose elements wij represent the pairwise
connectivities of the sequence network. Importantly, consecutive IKIs (e.g., IKI1 and IKI2,
IKI2 and IKI3, etc. located along the |1|-diagonal of w) are linked by the nonzero weights sij
but non-consecutive IKIs (e.g., IKI1 and IKI3, IKI1 and IKI4, etc. located in the, |2|- to |11|-
diagonals of w) are linked by zero-valued weights to hard-code the fact that only sequential
movements are related. This process creates the chain topology shown in Figure 1C.

Multi-trial sequence network construction
One can investigate chunking behavior in the individual sequence networks for each trial by
using an algorithm for community detection (Fortunato, 2010; Porter et al., 2009). However,
this treats the movements in each sequence as if they were independent of other trials and
ignores the information available in consecutive trials. This would imply that chunking
could be based on outlier behavior of single trials. To prevent this, we used information
from multiple adjacent trials to determine chunking structure, based on a multilayer
approach (Bassett et al. 2011; Mucha et al. 2010). To do this, we linked the sequence
network from a single trial to the sequence network of the subsequent trial by connecting
each node in the first network with itself in the second network (Figure 1D) with weight
equal to the selected inter-trial coupling parameter (see below). Thus each trial defines a
layer in the multilayer structure. We constructed separate multilayer sequence networks by
combining all trials for each of the three frequent sequences for each participant.

Chunk detection
After constructing a multilayer sequence network, we identified chunks by performing
community detection using a multilayer extension (Mucha et al. 2010) of the popular
modularity-optimization approach (Fortunato, 2010; Newman, 2010; Porter et al., 2009;
Newman, 2004). Communities in sequence networks represent movement chunks.
Modularity-optimization algorithms applied to individual networks seek groups of nodes
that are more strongly connected to one another than they are to other groups of nodes. In a
multilayer community-detection algorithm, one performs a similar optimization procedure
that simultaneously utilizes information from consecutive layers. This allows chunks to be
identified within a sequence based on evidence across adjacent trials. The result is a
partitioning of the IKIs in each sequence into chunks (Figure 1E). Importantly, these
partitions can vary between sequences and within sequences over training.
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Parameter selection
Multi-trial community detection requires the selection of two resolution parameters (Mucha
et al. 2010; Porter et al. 2009): one determines the relative weights between intra-trial IKIs
and the other determines the relative weights between inter-trial IKIs. The intra-trial
resolution parameter (γ), which determines the sensitivity of multi-layer modularity to the
size of chunks, was set to 0.9. The inter-trial coupling parameter (C), which determines the
sensitivity of multi-layer modularity to variability across trials, was set to 0.03. We selected
these two parameters based on the following. Previous chunking studies suggest that
sequences are separable into chunks containing 3 - 5 elements (Bo and Seidler, 2009;
Verwey, 2001). We expected to find sequences that contained between 2 and 4 chunks and
selected γ accordingly. Second, longer sequences that contain multiple chunks have slower
IKIs at the boundaries of a chunk relative to the other IKIs found within a chunk (Sakai, et
al., 2003; Verwey, 2001). We selected C and γ so that slow IKIs for a trial marked the
transition between serial chunks. Third, chunking patterns are not constant, but are plastic
over the course of learning (Sakai et al., 2003; Verwey, 1996). Accordingly, we selected a
value of C that allows for realistic plasticity in chunk boundaries over training.

Diagnostics
We studied chunking characteristics in terms of the segregation of a sequence trial into
chunks (Qsingle–trial), and its multiplicative inverse, chunk magnitude ϕ, which measures the
aggregate strength of chunking for a given trial. Both the segregation and aggregation
single-trial diagnostics were based on the maximization of the multi-layer modularity quality
function (Q), which provided the best partitioning of the multilayer sequence networks into
chunks. The identification of the optimal partition is NP-hard and here we employ a
generalization of the Louvain approach (Blondel et al. 2008). The modularity of a partition
of a sequence network is defined in terms of the weight matrix w. In the simplest case of
computing the modularity for a single trial, we suppose that IKIi is assigned to chunk gi and
IKIj is assigned to chunk gj. Then the network modularity Q (Newman and Girvan, 2004) is
then defined as

(1)

where δ(gi, gj) = 1 if gi = gj and it equals 0 otherwise, and Pij is the expected weight of the
edge connecting IKIi and IKIj under a specified null model (Fortunato, 2010; Porter et al.,
2009). In the multi-trial network case, we use a more complicated formula developed in
Mucha et al. 2010 for a broad class of time-dependent and multiplex networks. In this case,
the quality function to be maximized is given by

(2)

where the adjacency matrix of trial l has components Aijl, γl is the resolution parameter of
trial l, gil, gives the community assignment of node i in layer l, gjr gives the community
assignment of node j in layer r, Cjlr is the connection strength between node j in layer r and
node j in layer l, kil is the strength of node i in layer l, 2μ = Σjr κjr, κjl = kjl + cjl, and cjl = Σr
Cjlr. In optimizing Qmulti–trial, we attained optimal partitions for all trials simultaneously
using the constant values γt = 0.9 and for neighboring layers l and r, Cjlr = 0.03. To
determine the modularity of each trial separately (Qsingle–trial) we computed the modularity
function Q given in Equation (1) using the partition assigned to that trial by Qmulti–trial.
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Chunk magnitude (ϕ) is defined as 1/Qsingle–trial. Low values of ϕ correspond to trials with
greater segmentation, which are computationally easier to split into chunks and high values
of ϕ correspond to trials with greater chunk concatenation, which contain chunks that are
more difficult to computationally isolate. We normalized the values of ϕ across correct trials
for each frequent sequence:

(3)

where ϕt is the chunk magnitude for a single trial and ϕ̄ is the mean chunk magnitude.

Statistical validation
An important caveat of modularity-optimization algorithms is that they provide a partition
for any network under study whether or not that network has significant community
structure (Fortunato, 2010). It is therefore imperative to compare results obtained from
empirical networks to random null models in which the empirical network structure has been
destroyed. We constructed a random null model by randomly shuffling the temporal
placement of IKIs within the network for each trial. By contrasting the optimal modularity
Qmulti–trial of the empirical network to that of this null model network, the amount of
modular structure (i.e., the amount of chunking) observed in the real data can be tested.

Statistical sampling
As described in Good et al. (2010), modularity-optimization algorithms can yield numerous
partitions near the optimum solution for the same network. The number of near-degenerate
solutions increases significantly with network size and when the distribution of edge weights
approaches a bimodal distribution (i.e., when the networks are unweighted). In the current
application, our use of small networks (11 nodes in each layer and approximately 150 layers
in a multilayer sequence network) with weighted connections minimizes the risk of near-
degeneracy. In addition, we sampled the optimization landscape 100 times for each network,
albeit with the same computational heuristic (different results occur because of pseudo
random ordering of nodes in the algorithm). We report the mean and standard deviation
from those 100 samples. The mean results are expected to be representative of the system
structure, and such a procedure has been used for other networks (Bassett et al., 2011).

fMRI data analysis
We executed the preprocessing and analysis of the functional imaging data in Statistical
Parametric Mapping (SPM5, Wellcome Department of Cognitive Neurology, London, UK).
Raw functional data were realigned, coregistered to the native T1, normalized to the
MNI-152 template with a resolution of 3 × 3 × 3 mm and a smoothing kernel of 8 mm full-
width at half-maximum. To control for potential fluctuations in intensity across the training
sessions and the test session, we normalized global intensity across all functional volumes
by scaling each volume by the aggregate voxel mean.

The design matrix included all trial types as well as the blocking variables for run epochs.
We determined relative differences in the BOLD signal by using a general linear model
(GLM) for event-related functional data. We created first-level designs with stimulus onset
timing vectors for each frequent sequence. To isolate brain regions that are involved in
chunking the frequent sequences, we included an additional covariate vector that contained
the normalized ϕ values based on the segmentation patterns attained from community
detection. Differences in brain activity due to MT were accounted for by using MT as the
modeled duration for corresponding events. MT is a direct measure of time spent on the task
rather than the magnitude of a behavior, thus it is logical to model this temporal measure in
terms of duration. This approach leads to accurate modeling of the BOLD response in the
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GLM (Grinband et al., 2008). We convolved events using the canonical hemodynamic
response function (HRF) and temporal derivative of the BOLD signal. Using freely available
software (Steffener et al., 2009), we combined beta image pairs for each event type (HRF
and temporal derivative) at the voxel level to form a magnitude image (Calhoun et al., 2004)

(4)

where H is the combined amplitude of both the estimation of BOLD (B̂1) and its temporal
derivative (B̂2). We performed mixed-effects group analysis using a full-factorial design,
with chunking as the factor (3 levels: one for each frequent sequence). We minimized
detection of false-positives (type II error) by using cluster-corrected family-wise error rate
correction at P < 0.05. We evaluated results pertaining to hypothesis-driven contrasts that
failed to survive this corrected threshold at uncorrected P < 0.001 with a 10-voxel cluster
threshold.

The aim of this investigation was to identify which regions are involved in motor sequence
chunking based on the correlation of the BOLD response with ϕ. Both negative and positive
correlations might be present: positive correlations indicate the regions that support the
concatenation of chunks within a sequence, and negative correlations indicate the regions
that support the segmentation of sequences into separable chunks.

Results
Behavior effects of sequence learning

We evaluated practice-related change in movement time (MT) over the course of training
using a 2-way (sequence × session) repeated-measures ANOVA. This revealed a main effect
for session [F(2,21) ≈ 92.13, P < 0.00001]. This finding confirms that subjects learned the
sequences during training. There was no significant effect of sequence type or interaction,
confirming that the three sequences were learned similarly and with similar speed (Figure
2). The mean percent error (+/− SD) across the training sessions was 12.8 +/− 7.5. We found
no significant effect of error over session, indicating that there was no change in the speed/
accuracy tradeoff even though MT values decreased with training.

We quantified chunking within each sequence by the optimized modularity Qmulti–trial of the
sequence networks. Modularity in this case measures the separability between clusters of
IKIs. Higher values of Q indicate a greater ease in separating chunks. The average
modularity was 0.54 +/− 0.007, which was significantly greater than that expected in a
random null model network (P < 0.000000001, T ≈ 8.44, DF = 42). This demonstrates that
significant chunking exists in the data.

We predicted ϕ would increase with learning, reflecting stronger associations across
adjacent chunks. Subjects demonstrated considerable variability of ϕ (Figure 3A). To test for
increasing ϕ over time at the group level, we correlated group ϕ̄ to a linear slope. We first
calculated group ϕ̄ by taking a random sample of 100 values of ϕ ordered in time for each
participant. To control for the random selection of trials, we performed and then pooled 100
instances of the correlation between the group ϕ̄ and the linear slope (Figure 3B).
Confirming our prediction, group ϕ̄ increased significantly over the course of training (R >
0.40, P ≈ 0.0002).

Because ϕ and MT both change over time, it is critical to evaluate their relationship. We
correlated trial-wise ϕ and MT for each participant and then pooled (averaged) the R values
and resultant p values over subjects, revealing that the two measures are independent (R ≈
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0.13, P > 0.20). This suggests that brain regions correlated with ϕ reflect a novel
performance diagnostic related to sequence learning.

Although we found ϕ had no significant relationship to MT, the two performance
diagnostics could still be related to individual differences. An important question to ask is
whether “good learners” are also “good chunkers”? In this sense, “good learners” can be
defined as those with the greatest improvement in MT over training (e.g., Crossman, 1959),
and “good chunkers” can be defined similarly, as those with the greatest increase in ϕ over
training. We divided the ϕ and MTs for each participant and sequence into three bins that
preserved temporal order and averaged over sequences. A correlation between ϕ and MT
difference scores (given by a subtraction between the first and third bins) revealed that there
was no significant relationship (R ≈ 0.17, P > 0.44) between those with the largest
improvements in MT and those with the largest improvements in ϕ.

We carried out several tests to determine the robustness of our model to adhere to the
behavioral features of chunking. Previous accounts suggest that IKIs at the start of chunks
are slower and reflect retrieval (Kennerley et al., 2004, Sakai et al., 2003; Verwey, 2001).
To test whether our model and its parameters specified chunks that were consistent with this,
we first determined the boundaries for each chunk. Using a repeated-measures ANOVA
with sequence as the repeated measure and type of IKI as the categorical factor (border IKI
or other IKI in a chunk), we found that the border IKIs are significantly slower than the IKIs
taken from the middle of chunks [F(1, 21) ≈ 11.686, P≈ 0.003]. Thus, our model identified
chunks in a reproducible manner and the elements at the chunk borders show the expected
increase of retrieval time relative to other elements within the same chunk.

In addition, we confirmed that the number of chunks identified for a given trial using
community detection at the selected resolution parameters was consistent with previous
behavioral accounts (e.g., Sakai et al., 2003). We expected the sequences to be segmented
into approximately 2 - 4 chunks and found that the mean number of chunks per sequence
was 3.06 +/− 0.06. Figure 3C shows examples from representative subjects (each showing 2
- 4 chunks per sequence). Critically, the patterns of chunks are not static but instead
fluctuate (as do the numbers of elements contained within chunks) over training.

Neural correlates of motor chunking
Based on previous studies of motor chunking (e.g., Pammi et al., 2012; Trembley et al.,
2010; Boyd et al., 2009; Kennerley et al., 2004) we hypothesized that ϕ would isolate
distinct brain regions that support the concatenation and segmentation chunking processes
on a trial-by-trial basis. Confirming our prediction that the basal ganglia is involved in
binding sequential motor elements, we observed a positive correlation between ϕ and fMRI
BOLD activity within the bilateral putamen. The pattern of activation within the
contralateral putamen extended ventrally from the dorsal posterior sensorimotor territory
alongside the border with the external globus pallidus. We found activation of the ipsilateral
putamen to be distinct from that in the contralateral cluster, extending ventrally from a more
intermediate locus (rostral to y = 0, ventral to z = 4) (Figure 4 and Table 1). Further,
consistent with our prediction that segmentation involves the recruitment of frontoparietal
regions, we found a negative correlation between ϕ and BOLD in left hemisphere cortical
regions including the mid-dorsolateral prefrontal cortex (mid-DLPFC) and foci along the
intraparietal sulcus (IPS). Activation in the mid-DLPFC was rostral to the premotor cortex
and deep within the inferior frontal sulcus (IFS). In addition, we found three separate voxel
clusters along the IPS. Two of these clusters were located next to the supramarginal gyrus
and an additional cluster was located at the posterior aspect of the IPS (Figure 5 and Table
2). These regions are presented at a hypothesis-directed uncorrected threshold of P < 0.001
with an activation cluster threshold of 10 contiguous voxels.

Wymbs et al. Page 10

Neuron. Author manuscript; available in PMC 2013 June 07.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Discussion
Chunking is a performance strategy that supports increasing speed and accuracy through the
formation of hierarchical memory structures. Two separable processes drive the formation
of temporal structures: one parses long sequences into shorter groups to be handled more
easily in memory, and the other concatenates pairs of adjacent motor elements or sets of
elements to express a long sequence as a unified action. Because chunking is not static
during learning (e.g., Sakai et al., 2003) and is variable across subjects (e.g., Kennerley et
al., 2004; Verwey and Eikelboom, 2003), it has been challenging to quantify these two
concurrently active processes and to use them as a description of performance. To address
this, we identified chunks on a trial-by-trial basis using a novel multi-trial network analysis
for community detection (Bassett et al., 2011; Mucha et al., 2010) that takes into account
both intra-trial information and the interaction between neighboring trials for chunk
identification. Our approach is based on multi-trial network linkages and imposes no
constraints on where or when chunking ought to occur. This led to the identification of
chunks that were different across subjects and sequences, but also could be different from
one trial to the next. We found a range in chunking over training, as some subjects had
variable segmentation patterns (S13, S24 in Figure 3C), while others changed very little
(S25 in Figure 3C). Further, we measured how trial-wise chunk magnitude (ϕ) changed over
training, with higher values reflecting greater concatenation and lower values reflecting
greater segmentation. Some subjects were highly variable (S13 in Figure 3A) relative to
others (S3 in Figure 3A). Critically, at the group level, ϕ increased over training (Figure 3B)
suggesting that the structure of a sequence was strengthened and individual chunks became
more difficult to isolate.

Using normalized ϕ as a covariate provided for the trial-wise assessment of the neural
activity related to both the concatenation and the parsing processes during sequence
learning. This led to the identification of two activation patterns. First, trials that were
computationally difficult to divide into chunks due to stronger motor-motor associations
correlated with an increase in activation of the bilateral putamen. Second, trials that were
easily separable into chunks, a characteristic of increased hierarchical parsing, led to
increased activation of a frontoparietal network isolated to the left hemisphere.

Recent evidence from patient populations suggests that chunking motor sequences is
supported by the basal ganglia (Trembley et al., 2010; Boyd et al., 2009), consistent with a
dopamine-dependent mechanism that is reliant on the sensorimotor putamen. Parkinson
disease (PD) patients are known to be impaired in generating previously automatic
movements due to lesions of sensorimotor dopaminergic nuclei in the basal ganglia.
Chunking, which emerges as a feature of practiced movements, is blocked in unmedicated
patients while performing a sequencing task, relative to both age-matched controls and PD
patients on L-DOPA (Trembley et al., 2010). Critically, all groups were able to demonstrate
learning, but only patients without medication were unable to translate single motor
responses into chunks. In other words, the absence of chunking does not necessarily restrict
all potential avenues for sequence learning, such as cortically based associative learning,
which elderly subjects were likely using despite their lack of chunking during sequence
learning (Verwey, 2010). Similarly, Boyd et al. (2009) found that chunking was impaired in
patients with chronic middle cerebral artery (MCA) stroke involving the basal ganglia when
they used their non-hemiparetic arm.

The involvement of the sensorimotor striatum in the expression of chunking through well-
practiced procedures has been studied extensively in both rats and nonhuman primates
(Graybiel, 2008; Yin and Knowlton, 2006). Neural firing patterns recorded in the rat
dorsolateral caudoputamen display a task-bracketing distribution, with phasic firing at the
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start and finish of T-maze navigation (Barnes et al., 2005; Jog et al., 1999). Further, the
expression of these phasic patterns in the dorsolateral caudoputamen is linked to learning
motor components of navigation behavior (Thorn et al., 2010). Task-bracketing activity
sharpens throughout early learning and occurs in parallel with phasic patterns in the
associative dorsomedial caudoputamen. Critically, once cue-based associations are learned,
dorsomedial firing wanes and performance is correlated with the ongoing phasic dorsolateral
activity. This suggests that firing in the dorsolateral caudoputamen supports the expression
of habitual actions (Thorn et al., 2010). Our finding that ϕ increases with sequence learning
is consistent with these results, suggesting that increased activation from the bilateral
putamen is necessary for strengthening motor-motor associations associated with fluid
sequential behavior. Growing evidence suggests that a frontoparietal network also supports
chunking but in a fundamentally different way (Pammi et al., 2012; Verwey et al., 2011;
Verwey, 2010; Bo and Seidler, 2009; Bo et al., 2009). Consistent with our observation that a
frontoparietal network was preferentially activated on trials that could be more readily
divided into segments, Pammi et al. (2012) found a substantial increase in activation of the
mid-DLPFC and the parietal cortex when subjects were able to spontaneously segment long
sequences into chunks. These activation foci were consistent with the locations of the left
mid-DLPFC and IPS clusters that we observed to represent segmentation. Pammi et al.
(2012) required subjects to perform an m × n visuospatial sequencing task involving the
maintenance of several “sets” of button presses in memory. They found that set size load
facilitated chunking, with subjects able to spontaneously segment a sequence that required
only 2 button presses to be remembered at a time but not in another sequence that required 4
button presses to be remembered. Hence, the reduction in set size facilitated segmentation,
which was associated with frontoparietal recruitment.

Other recent studies have shown aging to have a substantial effect on one’s ability to
segment sequences into chunks. It was found that older adults are unable to employ a
segmentation strategy when learning simple yet unstructured sequences (Verwey et al.,
2011; Verwey, 2010). This finding was observed when subjects performed a discrete
sequence production (DSP) task in which they responded to sequential spatially ordered
stimuli such that the next stimulus was immediately presented after a response was made to
the previous stimulus. Following brief practice on the DSP task, young adults are able to
transition from reacting to each successive stimulus to the execution of the entire sequence
as a whole (Rhodes et al., 2004; Verwey et al., 2002). In contrast, these studies revealed that
older adults could still learn sequences but were unlikely to employ strategic control to
process sequential elements (Verwey et al., 2011; Verwey, 2010). Interestingly, these effects
could be driven by known frontoparietal structural changes in grey matter and white matter
that emerge during aging (Madden et al., 2009; Perry et al., 2009; Raz et al., 2005; Resnick
et al., 2003).

Segmentation during chunking reflects the formation of temporally ordered action
boundaries. Consistent with this interpretation, there is growing evidence that suggests goal-
oriented actions are represented hierarchically in both the lateral prefrontal cortex (Badre et
al., 2009; Shima et al., 2007; Koechlin and Jubault, 2006) and along the IPS (Hamilton and
Grafton, 2008, 2006; Jubault et al., 2007). For instance, Koechlin and Jubault (2006) found
that the selection of learned key press movements followed a gradient of increasing
abstraction extending from the dorsal premotor cortex for the selection of a simple button
press to a set of increasingly rostral mid-DLPFC regions first for the selection of a simple
sequence (Brodmann Area 44) and for the selection of a superordinate set of contextually
selected simple sequences or chunks (Brodmann Area 45). Similarly, we found that trials
with increased behavioral evidence of segmentation were associated with increased
activation of the mid-DLPFC and within the IFS. Moreover, in a related investigation,
Jubault et al. (2007) observed that distinct regions within the parietal cortex were involved
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in the sequential organization of action. They found the left IPS was involved at different
levels of sequence organization, including phasic activation patterns for separate anterior
and posterior regions in left IPS (signifying the updating of action sets). Our results reflect a
similar pattern, with separate anterior and posterior activation IPS foci correlated with
sequence segmentation. Across these experiments, the common temporal pattern of slow and
fast elements during sequencing might reflect the increased involvement of cognitive
processes for the selection and temporal organization of high-level action representations.

The quantity ϕ represents a novel performance diagnostic for sequence behavior. How does
ϕ relate to learning? For individual subjects, on a trial-by-trial basis, this measure was
largely independent of traditional measures of performance, such sequence completion time
(MT). Furthermore, we found no significant relationship between those who could be
considered “good chunkers” (i.e., those who increased their ϕ the most over training) with
those who might be considered “good learners” based on the reduction of MT with practice.
Nevertheless, when averaged over subjects, we found that ϕ progressively increased over
training. This suggests that there is a general tendency for greater concatenation of chunks
with enough practice. This in turn highlights the role of practice in the formation of longer,
unified sequences of actions irrespective of movement speed. It is important to emphasize
that the 12-element sequence in our study was long relative to typical sequencing tasks such
as the DSP task (Rhodes et al., 2004). Additionally, subjects were required to learn three
frequent sequences, which might require persistent use of segmentation - even after three
days of practice - explaining the slow change in ϕ with training. Other levels of sequence
length, difficulty, or number of sequences might lead to different trade-offs between the
concatenation or segmentation processes used to maintain performance of motor sequences.

Our approach to chunking is notably different from models of sequence learning that focus
on rates of change in behavior that might underlie “stages” of learning (Doyon and Benali,
2005; Doyon and Ungerleider, 2002). Our findings suggest that chunking is strongly
engaged throughout the three days of practice, and is unlikely to be a predictor for the rapid
rate of improvement seen during this period. Our results also provide a novel
conceptualization of how dual processing might be used in sequence planning - one that is
different but not mutually exclusive of previous dual models. For instance, Verwey (2001)
proposed a dual processor model containing parallel cognitive and motor processors to
account for the temporal pauses observed in chunking. According to this model, a motor
processor rapidly executes the tightly coupled elements within each chunk, and the cognitive
processor prepares each chunk for the motor processor. In this case, the pauses are due to
planning at a supraordinate cognitive level. Our results, however, suggest that the cognitive
processor is not causing delays due to planning. Instead, the delays are a direct result of
frontoparietal circuits segmenting long sequential structures into shorter ones. This strategic
parsing is countered by another subcortical process concatenating these same groups of
motor elements into longer sequences. In our view, activity of both processes occurs in
parallel to enhance performance of long sequences. In another dual model, Hikosaka et al.
(2002, 1999) proposed a hierarchical structure to account for the challenge of capacity
limitations in planning large motor sequences. In this model, processing limitations are
overcome by the activation of two parallel loops, each of which is supraordinate to the
planning of individual stimulus response maps. One loop codes for spatial features of
sequences and the other loop codes for motor features of sequences. In contrast, our results
highlight two loops that parse and concatenate a sequence. It remains to be tested if there is
a correspondence between these views, and it would be of interest to see if they can be
reconciled. For example, spatial loops - as defined by Hikosaka et al. (2002, 1999) - might
be more associated with parsing, whereas motor loops might be linked more closely with
concatenation.
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Chunk concatenation is correlated with activity of the putamen.

Chunk segmentation is correlated with activity of a left frontoparietal network.

Multi-trial community detection is a reliable estimator of chunk structure.

Multi-trial community detection is sensitive to both subject and sequence variability.
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Figure 1.
(A) A trial started with the onset of a static image depicting a sequence of 12 notes arranged
in the style of sheet music. Presentation served as the signal to report the sequence of notes,
which were read left to right proceeding one note to the next. Subjects reported the
sequences using their non-dominant left hand, with the leftmost finger corresponding to
notes on the top line and the rightmost finger corresponding to notes on the bottom line.
Construction of a trial-by-trial sequence network for multi-trial community detection: Using
the inter-key interval (IKI) between button presses, we constructed single-trial sequence
networks by converting each IKI into a node (B), which are linked to each other using
undirected edges. The weight (C) of an edge is defined as the normalized absolute value of
the difference between the 2 IKIs that it connects (see Experimental Procedures). We
applied multi-trial community detection to these sequence networks, and incorporated
information between consecutive trials by linking each node in one trial network to itself in
contiguous trials (D). Utilizing information from linked nodes in consecutive trials, we
partitioned IKIs into chunks using a multi-trial community detection (D) that grouped nodes
that were strongly connected to one another.
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Figure 2.
The time needed to complete each frequently trained sequence, or movement time (MT),
decreased over the course of training that was performed inside the scanner during the
simultaneous acquisition of BOLD images. The upper image (A) depicts the decreasing
group MT pattern, collapsed across the three frequently trained sequences. We combined
trials for each participant separately for each scan session into 10 equally sized trial bins
(preserving temporal order) and then averaged within each bin. The lower image (B) depicts
group MT change during each scan session; each sequence is shown separately. Using an
ANOVA, we found a significant effect of session (P < 0.00001) but did not find any
significant effect of sequence or interaction. This result confirms that performance was
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substantially improved over the 3 scan sessions, and that all three frequent sequences were
learned equally well. Error bars give the standard error of the mean (SEM).
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Figure 3.
The dynamics of chunking behavior. (A) Normalized chunk magnitude (ϕ) for each trial for
two representative subjects. High values of ϕ reflect greater chunk concatenation and low
values reflect greater chunk segmentation (see Experimental Procedures). There was a
substantial amount of variability in ϕ across trials and among individual subjects over
training. Some had a robust increase (top) and others had modest change (bottom). (B)
Group mean ϕ increased significantly over training, reflecting the tendency at the population
level for training to induce greater concatenation and formation of unified actions. (C)
Multi-trial community detection of chunks for one of the sequences, plotted for three
subjects. Some individuals show considerable trial-wise variability in segmentation
boundaries over the course of training (S13, S24), whereas others show less (S25). Colors
indicate separate chunks among the IKIs.
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Figure 4.
BOLD activation in the putamen was positively correlated with normalized ϕ, reflecting
increased involvement during the concatenation of sets of adjacent motor elements. Results
are shown at a cluster-level corrected threshold of P < 0.05 (FWE), with the voxel resolution
set to 2 × 2 × 2 mm.
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Figure 5.
BOLD activation of the intraparietal sulcus (IPS) and the mid-dorsolateral prefrontal cortex
(mid-DLPFC) was negatively correlated with normalized ϕ, reflecting increased
involvement during the segmentation of sets of motor elements. Results are shown at P <
0.001 (uncorrected with a cluster threshold of 10 voxels) with voxel resolution set to 2 × 2 ×
2 mm.
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