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Abstract
The von Hippel-Lindau tumor suppressor gene (VHL) is best known as an E3 ubiquitin ligase that
negatively regulates the hypoxia inducible factor (HIF). VHL mutations are the genetic defects
underlying several human diseases including polycythemia, familial VHL tumor syndrome and
sporadic renal cell carcinoma. VHL mutations can lead to cell-autonomous phenotypes in the
tumor cells. However, non-tumor cell-autonomous functions of VHL have also been noted. VHL
tumor-derived cytokines can promote inflammation and induce mobilization of endothelial
progenitor cells. Up-regulation of HIF caused by VHL loss-of-function mutants, including
heterozygotes, has been shown to increase the activities of hematopoietic stem cells, endothelial
cells and myeloid cells. As such, systemic functions of VHL likely play important roles in the
development of VHL disease.
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Introduction
The von Hippel-Lindau tumor suppressor gene (VHL) encodes a multifunctional protein, the
mutations of which underlie the genetic defect in the familial VHL disease. Germ line
mutations in VHL predispose the patients to several highly vascularized benign and
malignant tumors, including renal cell carcinoma of the clear-cell type (ccRCC),
hemangioblastoma (HB) and pheochromocytoma (tumor in the adrenal glands). Less
frequent VHL tumors include those in pancreas (pancreatic cysts, serous cystadenoma and
pancreatic neuroendocrine tumors), inner ears (endolymphatic sac tumor) and testes
(epididymal cystadenomas). In these tumors, the remaining wild-type allele is inactivated
through somatic mutation. Biallelic loss of VHL function has also been found in a majority
of the sporadic ccRCC [1–3]. The protein encoded by the VHL gene is best known as the
substrate-binding subunit of an E3 ubiquitin ligase [4–8]. The best-known degradation target
of VHL-containing E3 ligase is the α-subunit of hypoxia-inducible factor (HIF-α) in normal
physiological conditions [9]. At normal oxygen level, HIF-α is hydroxylated at the proline
residues within an oxygen-dependent degradation domain. The prolyl-hydroxylated HIF-α
is recognized by VHL, leading to poly-ubiquitination and degradation. The hydroxylation
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reaction is mediated by the prolyl-hydroxylase domain proteins (PHDs) [10]. In hypoxic
conditions, the prolyl-hydroxylases are inactive and HIF-α is stabilized. HIF-α then
dimerizes with the β-subunit (HIF-β) and translocates to the nucleus where the dimer
functions as a transcription factor. Its best-known target genes encode proteins involved in
glycolysis (e.g., phosphoglycerate kinase), glucose transport (Glut-1), angiogenesis
[vascular endothelial growth factor (VEGF)] and erythropoiesis (erythropoietin); that is,
proteins that mediate the cellular response and adaptation to hypoxic conditions [11]. In
addition, CXC chemokine receptor 4 (CXCR4) and the ligand stromal cell-derived factor
(SDF)-1 were also identified as HIF targets [12, 13], which indicates that HIF activation
may contribute to the metastatic potential of cancer cells. These functions support a critical
role of VHL in regulating tumor progression, especially in hyper-vascularized tumors such
as ccRCC and HB. However, accumulated evidence has indicated that many HIF-
independent activities of VHL also exist [14, 15]. Some of these functions are mediated
through stabilizing VHL targets, contrary to its known E3 ligase activity. Therefore, VHL is
a multifunctional adaptor protein that, depending on the interacting partners, can promote
protein degradation or serve as a chaperon. Some of these diverse activities likely also
contribute significantly to the tumor suppressor and other physiological functions.

These diverse functions also suggest that there may not be a simple, unified
pathophysiological mechanism that can explain the etiology of VHL diseases. Although
cell-autonomous mechanisms in VHL mutant tumors might be explained by up-regulation of
cyclin D1 [16], increased Akt-mTOR signaling [17, 18], elevated FGF receptor signaling
[19, 20], disruption of cilia formation [21–23], down-regulation of p53 [24], among others,
it is also well established that VHL mutant cells secret a large repertoire of growth factors
and cytokines, including erythropoietin (Epo), VEGF, TGF-β, PDGFβ, TNF-α, among
many others [11]. Furthermore, in the last decade, it has become apparent that HIFs play a
central role in the hematopoietic system [25–28]. VHL mutations and the resulting HIF up-
regulation therefore can impact many vasculo/hematopoietic lineages. Also interestingly,
some of these abnormalities can occur in partial VHL loss-of-function mutants and in
heterozygous mice and heterozygous immune cells from VHL patients [20, 29, 30]. During
development, the Drosophila VHL gene also shows haploid insufficiency [31]. The haploid-
insufficient function of VHL may be profoundly important in considering the etiology of
VHL disease since all VHL patients are, by definition, VHL heterozygotes. Such
understanding prompted the idea that a non-cell autonomous and systemic consideration of
the VHL function in the context of VHL disease may need to be evaluated. This review
examines the current knowledge in this regard. The role of VEGF and PDGFβ over-
expression in VHL tumor angiogenesis is well known and will not be discussed herein.

1. VHL-associated polycythemia
A homozygous missense mutation in the VHL gene, first identified in the Chuvash region of
Russia and called the Chuvash mutation (R200W), was linked to a familial form of
polycythemia — overexpansion of erythrocytes [32]. Subsequently, a knockin R200W
transgenic mouse and a zebrafish VHL null mutant also exhibited polycythemia [33, 34].
Erythropoiesis is regulated by Epo, and polycythemia can be caused by hypersensitivity to
Epo (called primary polycythemia or polycythemia vera), or by overproduction of Epo
(secondary polycythemia) [33, 35, 36]. Interestingly, VHL-associated polycythemia has
features of both primary and secondary polycythemia [36]. Epo is normally produced by
interstitial fibroblasts in the kidney [37, 38] and by perisinusoidal (Ito) cells in the liver [39].
HIF over-expression leads to up-regulation of Epo, not only in the normal Epo-producing
cells but also in the VHL mutant tumor cells [40–43]. However, erythrocyte progenitors
harboring the R200W mutation are also more sensitive to Epo [33, 35, 36]. The mechanism
of this hypersensitivity has been discovered only recently. The Epo receptor (EpoR) signals
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through the JAK-STAT pathway: upon ligand binding, the receptor-associated tyrosine
kinase JAK2 is phosphorylated and in turn phosphorylates the transcription factor STAT5
[36, 44]. In a negative feedback loop, phosphorylated JAK2 (pJAK2) is targeted for
proteasomal degradation by ubiquitination [44]. VHL was found to mediate pJAK2
polyubiquitination, and in polycythemia-associated VHL mutations, a failure to eliminate
pJAK2, leading to prolonged JAK-STAT signaling, was observed [35]. This phenotype
could be rescued both in vitro and in vivo by administration of the JAK2 inhibitor
Tg101209, indicating that JAK2 inhibitors may prove useful in the treatment of
polycythemia. Surprisingly, VHL-mediated pJAK ubiquitination did not require the
formation of the well-characterized ElonginB/C-Cul2-VHL E3 ligase complex [5]. Instead,
pJAK2 ubiquitination depended on the formation of a complex of pJAK2, SOCS1 and VHL.
The presence of primary polycythemic phenotype also indicates that VHL mutant
erythrocyte progenitors may be a contributing factor to the disease.

2. The role of Epo in angiogenesis and tumorigenesis
Polycythemia has been considered an isolated branch of the VHL syndrome, mainly because
the Chuvash disease (R200W mutant) patients do not exhibit increased incidences of tumors
[45]. This notion may need to be reconsidered, however, since Epo has been shown to have
pleiotropic effects [46, 47], including a role in tumorigenesis. Epo signaling is not restricted
to red blood cells. Also, the Epo/EpoR system is known to induce proliferation, chemotaxis,
and angiogenesis, and inhibit apoptosis [46, 48, 49]. Epo has been found to exert a strong
cyto-protective effect in animal models of brain, cardiac and renal ischemia [reviewed in
(47)]. Epo signaling appears to inhibit apoptotic pathways triggered by ischemia, but may in
addition reduce hypoxic injury by promoting angiogenesis. Epo administration to ischemic
patients is therefore currently subject to clinical trials. Epo and EpoR are also expressed in
various tumors including those of head-and-neck [50], breast, colon, lung, prostate [51],
ovary [51, 52], uterine [52], kidney [40, 42, 43] and cervix [53], as well as neuroblastoma,
astrocytoma, and other solid nervous system tumors [54], and numerous malignant cell lines
[55, 56]. Epo added to cancer cell lines in vitro elicited secretion of angiogenic growth
factors and promoted proliferation and chemotaxis of endothelial cells [54]. Neutralizing
anti-Epo monoclonal antibody and soluble EpoR antagonist injected into ex vivo cultured
tumor tissue blocked tumor growth [52] and soluble EpoR antagonist injected into mice
carrying cancer cell xenografts reduced angiogenesis and tumor cell survival [55].
Furthermore, Epo pretreatment of some cancer cell lines rendered them less sensitive to the
cytotoxic effects of the chemotherapy drug cisplatin [56]. Of note, polycythemic mice were
shown to be iron deficient [57], most likely because the Epo-induced erythropoiesis led to an
exhaustion of iron stores. Since iron is a necessary co-factor of proline hydroxylases, it is
tempting to speculate that Epo-induced iron deficiency may be a mechanism by which
tumors mediate systemic HIF up-regulation.

Interestingly, although full-blown polycythemia is infrequent in VHL disease, consistently
elevated Epo is detected in a majority of VHL patients [58]. In addition, certain
heterozygous VHL mutations can lead to polycythemia [59–61]. There is also an established
association between hemangioblastoma and polycythemia [62]. It is therefore conceivable
that elevated Epo level in VHL patients, whether or not it manifests into polycythemia, may
contribute to progression of various VHL tumors.

3. VHL and endothelial progenitor cells
Based on the observation that mononuclear cells isolated from bone marrow or peripheral
blood can give rise to endothelial colonies, the existence of endothelial stem cells – called
endothelial progenitors cells (EP or EPCs) or, if detected in the peripheral blood, circulating
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EPCs (CEP/CEPC) – has been postulated (reviewed in [63, 64]). Importantly, EPCs need to
be distinguished from a subset of monocytes that express endothelial markers such as
VEGFR1, VEGFR2, Tie2 and CD31. These monocytes are sometimes referred to as
circulating angiogenic cells (CACs). CACs contribute to angiogenesis by releasing
proangiogenic cytokines, but do not differentiate into endothelial cells; instead they
differentiate into a subset of tumor promoting macrophages (discussed in section 5) [63, 65].
CACs and CEPCs are CD45 positive and negative, respectively.

It has been proposed that CEPCs may contribute to tumor angiogenesis, although this is still
somewhat controversial (see for instance [48, 66]). Nevertheless, there is evidence that
CEPCs are relevant to VHL tumors. Patients with ccRCC were found to have elevated levels
of CEPCs [67]. In addition, high levels of VEGFR2-positive cells in the peripheral blood
were found to correlate with a poor prognosis in ccRCC [68]. Interestingly, elevated CEPCs
were also detected in a case of sporadic ccRCC caused by somatic VHL inactivation [69].
Therefore CEPC mobilization observed in VHL tumors may result from both intrinsically
higher motility of the EPCs or from stimulation emanating from the VHL tumors. In the
latter case, VHL tumors can induce CEPC mobilization through Epo [70], which is
expressed by ccRCC [42, 43]. In addition, ccRCC can also induce the mobilization of
VEGFR1+ CACs, at least in part through VEGF [71].

4. VHL, HIF and the hematopoietic system
The role of HIF in the immune system has been extensively reviewed [25–28, 72]. We will
therefore summarize only some of the most recent findings and highlight papers that directly
address the role of VHL.

In the last decade it has become evident that HIF, and in particular HIF-1α, regulates
hematopoietic stem cells, and both innate and adaptive immune cells [25–29, 72]. In
contrast, the role of VHL in these cell lineages has been addressed only in a small number of
studies. However, there is evidence that cells of the hematopoietic system are sensitive to
even small changes in HIF-1α expression levels. Hence, in many cases, opposite phenotypes
are observed in HIF-1α−/− and VHL−/− cells, and in some cases VHL haploinsufficiency is
observed, with VHL+/− cells displaying a phenotype that is intermediate to that observed in
HIF-1α−/− and VHL−/− cells [29, 30]. This is consistent with a model that implicates the
importance of HIF-1α dosage: HIF-1α−/− cells display loss of function, VHL+/− cells
intermediate gain-of-function due to moderate HIF-1α up-regulation, and VHL−/− cells
hyper- or malfunctioning due to high-level HIF-1α over-expression.

It is now recognized that lymphatic organs as well as sites of inflammation are hypoxic [28,
29]. Cells of the hematopoietic system rely to a large extent on an anaerobic source of ATP:
glycolysis [73–75]. Since it is the master transcription factor of glycolysis related genes,
HIF-1α plays a prominent role in many lineages of the hematopoietic system [28, 73–75],
and defects in HIF-1α deficient immune cells can be in part explained by decreased ATP
levels [74]. Besides its role in regulating glycolysis, HIF-1α also regulates apoptosis, cell
proliferation and differentiation of the hematopoietic lineages. For instance, it was recently
shown that HIF-1α is necessary for the maintenance of quiescence in long-term
hematopoietic stem cells (LT HPSC) [29]. In an induced conditional HIF-1α knockout
(using Poly I:C induced Msx-Cre), LT HPSCs showed increased proliferation when
experimentally challenged as well as upon aging. The increased proliferation led to
senescence, and ultimately to an exhaustion of the LT HPSC pool. Consequently, HIF-1α−/
− HPSCs failed to reconstitute the bone marrow in serial transplantations. In contrast,
deletion of VHL in HPSCs led to increased quiescence and increased numbers of HPSCs, in
particular LT-HPSCs. However, these VHL mutant HPSCs were not functional: they failed
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to reconstitute the bone marrow in transplantation experiments due to a combination of
abnormal quiescence, homing defects and enhanced apoptosis [29]. The observed defects in
VHL−/− HPSCs were HIF-1α dependent and cell autonomous. Interestingly, heterozygous
VHL HPSC displayed an intermediate phenotype: deletion of one VHL allele led to
increased quiescence and increased numbers of HPSCs; however, in contrast to VHL−/−
HPSCs, VHL+/− HPSC were functional and reconstituted the bone marrow of lethally
irradiated mice even more efficiently than wild-type HPSCs. Hence, HIF-1α levels in
HPSCs are fine-tuned to maintain a balance between quiescence necessary for the
maintenance of the HPSC pool, and proliferation necessary to replenish the hematopoietic
system. The increased HPSC activity conferred by VHL heterozygosity may be a significant
contributing factor in the progression of VHL disease, considering the hypervascularity
associated with the VHL tumors and the potential contribution from inflammatory response
(see below).

HIF-1α also plays an important role in lymphocytes. HIF-1α deficiency leads to an increase
in B1 B cells, and a concomitant reduction in B2 B cells, the latter due to a lack of
proliferation of pro-B cells [76]. The role of VHL in B cell differentiation has not been
directly addressed, but epigenetic down-regulation of VHL has been recently reported in
diffuse large B cell lymphoma and chronic lymphocytic leukemia [77–80].

The role of HIF-1α in T cells differentiation and activation is somewhat controversial,
although conflicting findings may be in part explained by distinct roles of HIF-1α in
different T cell subsets and immature vs. mature T cells. Neumann and colleagues reported
attenuated T cell receptor (TCR) signaling in VHL−/− T cells [81]. This effect was HIF-1α-
dependent, since it was not observed in VHL−/− HIF-1α−/− T cells. Hence, HIF-α
expression appears to regulate TCR signaling negatively. Consistent with this, deletion of
VHL in the thymus led to increased apoptosis of T cells at the double positive stage (a stage
at which T cells are positively selected for a functional TCR) [82], resulting in a decrease in
mature T cells. Furthermore, HIF-1α−/− T cells were reported to produce more
inflammatory mediators such as IFNγ and TNFα- than wild-type T cells when stimulated in
vitro [83]. Also, mice in which HIF-1α was deleted in T cells showed improved survival of
sepsis due to T cell activation [84]. In contrast to these findings, which indicate that HIF-1α
negatively regulates T cell survival and activation, hypoxia induced HIF-1α was found to
inhibit activation induced cell death (AICD) in T cells [85]. However, this protective effect
may be also explained by attenuated TCR signaling, since AICD is TCR dependent. On the
other hand, it is difficult to reconcile the anti-inflammatory effects of HIF-1α discussed
above with the recent finding that HIF-1α is essential for the induction of Th17 cells, a pro-
inflammatory CD4 T cell subset [86]. CD4 T cells can differentiate into either Th17 or Treg
T cells, depending on the cytokine environment [87]. RORγt and Foxp3 are key
transcription factors in Th17 and Treg differentiation, respectively, and Foxp3 also inhibits
RORγt [87]. Dang and colleagues [86] showed that HIF-1α tips the balance towards Th17
differentiation by inducing RORγt. Consistent with these findings, mice in which HIF-1α
was conditionally deleted in CD4 T cells had reduced numbers of Th17 cells and were
protected from experimentally induced encephalitis (a model for autoimmune disease).
Therefore, VHL+/− with moderate increase in HIF-1α can potentially promote Th17-
mediated inflammatory response.

The role of HIF in the myeloid lineage was addressed using a lysozyme M driven Cre,
which led to efficient deletion in both macrophages and neutrophils [72, 74]. In vivo
experiments using these conditional knockout mice show that both HIF-1α and HIF-2α
have essential roles in myeloid-mediated inflammation. Myeloid HIF deletion protected
mice from inflammation induced by chemical irritation, experimentally induced
autoimmune disease and LPS induced sepsis [72, 74]. Conversely, mice with myeloid HIF
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deletion were impaired in controlling bacterial infections [88]. These studies also showed
that HIF-1α and HIF-2α have distinct, non-redundant roles in innate immunity. In myeloid
cells, HIF-1α is needed for ATP generation, granzyme synthesis and iNOS/NO production,
and, in neutrophils, protection from apoptosis, whereas HIF-2α mediates cytokine
production and up-regulates chemokine receptors involved in macrophage migration [25, 26,
74, 88]. Consistent with HIF over-expression upon VHL deletion, HIF and VHL myeloid
knockout resulted in opposite phenotypes both in vitro and in vivo [74]. VHL−/−
macrophages produced more granzymes and iNOS/NO, and were more efficient than wild-
type macrophages at lysing phagocytosed bacteria in vitro. Furthermore, in a phorbol ester
induced ear inflammation model, mice with myeloid VHL deletion displayed a significantly
enhanced inflammatory response, although it was not investigated whether this phenotype
was solely due to HIF over-expression [74].

5. VHL, inflammation and cancer
Based on the observation that HIF is essential for myeloid and Th17-mediated inflammation,
it is now thought that hypoxia is a strong pro-inflammatory cue for immune cells [26–28, 86,
89]. Importantly, VHL haploinsufficiency, which is likely associated with partial up-
regulation of HIF, is observed both in HPSCs and neutrophils (see above) [29, 30]. Also, in
support of a link between VHL and inflammation, it has recently been reported that
pulmonary hypertension, a complication of Chuvash polycythemia, is caused by lung
fibrosis [90]. It is hence likely that the immune system of VHL heterozygous individuals is
skewed towards the development of inflammatory responses. Such a pro-inflammatory
environment may contribute to tumorigenesis. Tumor infiltrating macrophages, called tumor
associated macrophages (TAMs), are thought to promote tumor growth by releasing pro-
angiogenic and immunosuppressive cytokines. In support of this, a high degree of TAM
infiltration correlates with poor prognosis in human cancers [65]. Nuclear HIF-2α was
detected in TAMs of many human cancers [91], and conversely, myeloid HIF-2α deletion
led to a reduction in TAM recruitment, and concomitantly, slower tumor growth [72]. It is
tempting to speculate that VHL deletion (VHL−/− or VHL+/−) would lead conversely to
faster tumor growth due to more efficient TAM recruitment and/or increased cytokine
production by TAMs. However, alterations in other immune cells, such as Th17 T cells,
could also promote tumorigenesis. It remains to be elucidated if immune cells contribute to
the formation of tumors in VHL disease, and if so, which types of immune cells are relevant
in this process.

Besides a direct role in the immune cells, VHL knockouts in mouse kidney epithelia have
also been shown to induce an inflammatory response. A knockout strain specific for the
podocyte in kidney exhibited glomerulomegaly and occasional glomerulosclerosis [92].
Interestingly, a Pepck-Cre driven (specific for proximal tubules) VHL knockout could be
induced to develop renal fibrosis after subtotal nephrectomy of one kidney and complete
removal of the other [93]. In addition, hypoxia and increased HIF-1α or HIF-2α activities
have been linked to kidney fibrosis in mouse [94, 95]. VHL mutant ccRCC cells have been
shown to over-produce such inflammatory cytokines as TNFα [96] and TGF-β [97], and to
up-regulate NFkB [98, 99], the latter can in turn induce cytokine expression. The connection
between VHL mutant cells and inflammation is worthy of more in-depth investigation, since
prolonged inflammation can promote proliferation through the action of secreted cytokines,
and importantly, can induce genetic changes in pre-cancerous cells by induction of reactive
oxygen species or by oxidative inactivation of mismatch repair enzymes [100–103].
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6. VHL, glucose metabolism and insulin secretion
β-cells in the endocrine islets of the pancreas produce insulin and store it in secretory
vesicels [104]. Glucose Stimulated Insulin Secretion (GSIS) is essential for glucose
homeostasis and is induced by quantitative ATP generation after glucose uptake. A rise in
the ATP/ADP ratio induces the closure of ATP sensitive KATP channels, leading to
depolarization of the plasma membrane and Ca2+ influx. The Ca2+ influx in turn stimulates
the excocytosis of insulin. Hence, insulin secretion is coupled to extracellular glucose
concentration: a rise in extracellular glucose concentration results in increased intracellular
ATP generation, and ultimately, in increased insulin secretion. Since HIF-1α up-regulation
is known to affect glucose metabolism, the role of VHL in insulin-mediated glucose
homeostasis has attracted extensive interest. β-cell (RIP2) or pan-pancreas (Pdx2) specific
Cre mice have been used to delete VHL in β-cells [105–109]. Several studies reported that
gross morphology of the pancreas was unaffected by β-cells specific or pan-pancreatic VHL
deletion [105–108], although two studies suggested an age dependent decrease in β-cells
[106, 107]. In contrast, a recent study reported development of precancerous lesions in pan-
pancreatic VHL knockout mice, but not upon deletion of VHL in α-or β-cells [109]. These
differences are at least in part due to differences in the mouse strains used in the studies
(mixed C57BL/6 - Sv129 vs C57BL/6, BALB/C or A/J) [110]. Interestingly, the β-cells
VHL knockout mice, but not the pan-pancreatic VHL knockout mice displayed also
dwarfism [105, 107, 111]. Cantley and colleagues reported that the dwarfism was caused by
RIP2-Cre activity in the hypothalamus, which led to reduced growth hormone (GH)
production [105], whereas Shen and colleagues did not oberve a significant down-regulation
of GH [109]. It is possible that these differences are due to the age at which the GH levels
were assayed (3 months vs 6 monts). More importantly, several studies showed that VHL
knockout in β-cells (pan-pancreatic or β-cell specific) led to impaired GSIS at high glucose
concentrations (e.g., following glucose injection), and consequently glucose intolerance
(impaired clearance of glucose from the blood), the hallmark of type-II diabetes [105, 106,
108]. Impaired GSIS and glucose intolerance were found to be HIF-1α dependent, since
they were not observed in VHL and HIF-1α double β-cell knockout mice [105, 106]. In the
cell, glucose can be used for aerobic or anaerobic ATP generation. In the aerobic pathway,
glucose is processed to pyruvate, which is converted to acetyl-CoA and is channeled into the
tricarboxy acid (TCA) cycle, generating electron donors for oxidative phosphorylation in
mitochondria, with oxygen as the electron acceptor. In contrast, the less-efficient glycolytic
ATP generation involves the processing of pyruvate to lactate. VHL deletion in β-cells led
to HIF-1α-dependent upregulation of pyruvate dehydrogenase kinase 1 (PDK1), which
inhibits the conversion of pyruvate to acetyl-CoA, preventing its entry into the TCA cycle,
and Lactate dehydrogenase A (LDHA), which generates lactate from pyruvate. Hence, as
described for other cell types, HIF-1α stabilization in β-cells induced a metabolic switch
from ATP generation through oxidative phosphorylation to ATP generation through
glycolysis. Although these studies disagreed on whether glucose uptake and basal insulin
secretion were affected in VHL knockout cells, they demonstrated that the lack of oxidative
glucose metabolism was the likely cause of the observed type-II diabetes phenotype. A link
between VHL mutation and diabetes has not been established clinically. Nonetheless, the
metabolic imbalance gleaned from the VHL functional studies may help clarify some
aspects of the etiology of type-II diabetes. These models also serve as an in vivo
confirmation of metabolic switch in the VHL mutant cells, which may be a relevant
contributor to the suspected metabolic-stress-induced inflammatory response in cancer cells.

Bader and Hsu Page 7

FEBS Lett. Author manuscript; available in PMC 2013 June 04.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



7. Hematopoietic stem cells, hemangioblastoma and VHL-associated
extramedullary hematopoiesis

HB is a highly vascularized tumor of the central nervous system that affect the retina,
cerebellum, brain stem and spinal cord [112]. Although HB is a benign tumor, it is typically
associated with large peritumoral cysts, which cause morbidity and mortality by exerting
pressure on the surrounding neuronal tissue [112–114]. The exact etiology of HB is still
unclear. HB consists of a vascular and a stromal component [112]. Somatic VHL
inactivation was detected only in the stromal component [115–117]. Hence, although they
are sometimes described as such, HBs are not endothelial tumors; rather, the overgrowth of
endothelium is caused, at least in part, by proangiogenic factors synthesized by the tumor.
However, HB tumor cells not only express Epo, VEGF and angiopoietin, but also the
receptors of these cytokines (e.g., EpoR, Flk1/VEGFR2 and Tie2) [41, 118–120], suggesting
that they act as paracrine and autocrine growth factors to promote both angiogenesis and
tumor growth. We have also shown that heterozygous VHL mice exhibited elevated
angiogenic activity in response to bFGF stimulation due to increased FGF receptor
accumulation in the endothelial cells [20].

Most interestingly, there is evidence that HB tumor cells are derived from developmentally
arrested, hemangioblast-like stem cells [119–122]. Hemangioblast is a structure that gives
rise to the first endothelial and hematopoietic cells during embryogenesis (e.g., the
extraembryonic yolk sack associated blood island) [123], and is thought to contain
mesodermal stem cells that differentiate into both endothelial and hematopoietic cells, or, as
recent findings suggest, sequentially into first endothelial, then hematopoietic stem cells,
with a transient “hemogenic” endothelium [124, 125]. Similar to the hemangioblasts, tumor
cells in hemangioblastoma express the early mesodermal marker Brachyury, as well as stem
cell markers such as Flk1/VEGFR2, the transcription factor stem cell leukemia (scl) and
CD133 [119, 121]. Furthermore, tumor cells isolated from hemangioblastoma give rise to
both endothelial cells and hematopoietic cells when cultured in vitro [121] and foci of
extramedullary hematopoiesis (EMH) are observed in advanced hemangioblastoma [120,
122]. Importantly, loss of heterozygosity is observed in the foci of EMH [120], confirming
that they arise from VHL−/− cells. Since HB tumor cells can differentiate into endothelial
cells in vitro, it is possible that de novo vasculogenesis contributes to the overgrowth of
blood vessels observed in HB. Vortmeyer and colleagues detected fetal hemoglobin in HB-
associated EMH foci, arguing that the VHL−/− cells found in HB contribute to primitive
hematopoiesis [122]. The hematopoietic progenitor characteristics of these HB cells imply
that they may originate from aberrantly mobilized HPSCs.

However, HB has also been reported to express neuronal markers such as neuron-specific
enolase [126–129], neural cell adhesion molecule [129–131], and glial fibrillary acidic
protein (GFAP), although the latter is controversial, with some studies suggesting that
GFAP+ cells might correspond to entrapped astrocytes [96, 129, 132, 133]. Autopsy
revealed widespread small ‘tumorlets’, which are thought to be hemangioblast precursors, in
the roots of spinal nerves and the cerebellum of VHL patients [134–136]. Detailed
histological and immunhistochemical analysis of tumorlets and HB suggests that HB
progresses from slowly proliferating mesenchymal cells to highly proliferative epithelioid
cells, the latter displaying the clear cell morphology typical for VHL cancers [122, 134,
136]. Since the topology of hemangioblastoma coincides strikingly with the expression
pattern of scl in the developing CNS, it was suggested that hemangioblastoma might arise
from dormant stem cells of neurectodermal origin [119]. However, the expression of
hemangioblastic markers and the mesodermal marker Brachyury is difficult to reconcile
with a neurectodermal origin. On the other hand, no Brachyury expression was detected in
tumorlets, which are thought to be dormant precursors of HB [134]. Due to its hybrid
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neuronal-mesodermal phenotype, the origin of HB tumors remains unclear. Nonetheless, it
may be worth exploring whether primitive HPSCs or hemangioblast stem cells are
implicated in HB. The CNS localization could be explained by homing defects of HPSCs
involving endothelial cell adhesion molecules or chemoattractant cytokines specifically
expressed by the CNS vasculature. In support of this hypothesis, homing defects were
observed in VHL−/− HPSCs [29]. Furthermore, EMH targeting the spleen is observed in the
R/R polycythemic mouse [33, 35], despite normal bone marrow function. Interestingly,
leukemic EMH has been linked to the CXCR4-SDF-1 chemotactic system [137]. This is
particularly relevant since CXCR4 is a HIF responsive gene that was shown to be up-
regulated in VHL mutant cell lines [12], and is known to be expressed in ccRCC and HB
[13]. Furthermore, CXCR4 was down-regulated in HIF-1−/− macrophages [72], indicating
that HIF dosage regulates CXCR4 expression not only in cancer cells, but also in
hematopoietic lineages. Since the CXCR4 chemotactic system is utilized in embryonic
neuronal cell migration [138], it is possible that VHL mutant HPSCs may be aberrantly
mobilized and ectopically localized to the future HB loci.

8. Perspectives
It has become increasingly clear that tumor progression is a systemic problem that involves,
at the very least, the host immune and angiogenic responses. This is particularly true with
the VHL disease. In the case of VHL patients, the host hematopoietic and immune systems
are not simply responders to the growth of tumors but active contributors to the disease. This
is suggested by the increasing body of evidence that links VHL function to the activity of
HPSCs. Heterozygous VHL HPSCs and endothelial cells both show increased activities,
suggesting that they may contribute to the hypervascular phenotype of the VHL tumors.
Haploid-insufficient HPSCs may also promote tumor growth through increased
inflammatory response or directly contributing multipotent cells to the tumor loci. In
addition, VHL mutant tumor cells can secret a number of growth factors and cytokines that
can also activate the inflammatory and angiogenic components of the primary tumors. We
therefore argue that in designing new treatments for the VHL disease, a systemic approach
including targeting the hematopoietic system and the inflammatory response should be
considered.
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