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Summary
The pKa values of internal ionizable groups are usually very different than the normal pKa values
of ionizable groups in water. To examine the molecular determinants of pKa values of internal
groups, we compared the properties of Lys, Asp and Glu at internal position 38 in staphylococcal
nuclease. Lys-38 titrates with a normal or elevated pKa whereas Asp-38 and Glu-38 titrate with
elevated pKa values of 7.0 and 7.2, respectively. In the structure of the L38K variant, the buried
amino group of the Lys-38 side chain makes an ion pair with Glu-122; whereas, in the structure of
the L38E variant, the buried carboxyl group of Glu-38 interacts with two backbone amides and
has several nearby carboxyl oxygen atoms. Previously we showed that the pKa of Lys-38 is
normal owing to structural reorganization and water penetration concomitant with ionization of
the Lys side chain. In contrast, the pKa of Asp-38 and Glu-38 are perturbed significantly owing to
an imbalance between favorable polar interactions and unfavorable contributions from
dehydration and from Coulomb interactions with surface carboxylic groups. Their ionization is
also coupled to subtle structural reorganization. These results illustrate the complex interplay
between local polarity, Coulomb interactions and structural reorganization as determinants of pKa
values of internal groups in proteins. This study suggests that improvements to computational
methods for pKa calculations will require explicit treatment of the conformational reorganization
that can occur when internal groups ionize.
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Introduction
A small fraction of ionizable residues in proteins are sequestered from water and buried in
the protein interior.1-3 These internal ionizable groups are essential for catalysis,4-6 H+/e-

transport,7-10 and molecular recognition.11 The pKa values of internal ionizable groups are
usually different than the normal pKa values in water,12-19 and are often tuned for specific
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biological purposes.4 Understanding the determinants of these pKa values is important for
quantitative description of the structural basis of function in a large variety of biological
processes.

The shift in the pKa of an internal group relative to the normal pKa in water is governed by
differences in the polarity and polarizability experienced by the charge in the two
environments (ΔGself), and by Coulomb interactions with the charges of other ionizable
groups. Structural reorganization of the protein coupled to the ionization of internal groups
can also influence their pKa. One of the goals of this study was to examine the relative
magnitude of these three determinants of the pKa values of internal groups.

The polarity and polarizability in the protein interior are usually lower than in bulk water;
therefore, ΔGself is generally unfavorable for buried ionizable groups. For this reason, the
pKa values of internal ionizable groups are usually shifted in the direction that favors the
neutral state (i.e. increase in pKa for acidic groups and depression for basic ones).12-18

Surprisingly, the apparent polarity and polarizability in the protein interior reported by
internal ionizable groups is not as low as previously thought. 15-17; 20-25 In some cases,
hydrogen bonds (i.e. high polarity) can actually compensate fully for the loss of hydration
experienced by a charged atom inside a protein.6; 19; 26

Coulomb interactions between surface charges are usually weak because charges are
screened effectively by water.27-31 In contrast, the Coulomb interaction of ion pairs
sequestered from bulk solvent at protein-protein interfaces can be quite strong (3-5 kcal/
mol).32 Coulomb interactions between surface and internal groups in protein active sites
have never been studied directly. Surface ionizable group have been shown to have small,
but observable effects on enzyme activity.33-35 Even if the effects are small, the sum of
many small interactions could lead potentially to a large effect.36; 37 A complete
understanding of interactions between internal and surface charges is necessary to
understand contributions of surface ionizable residues to the properties of internal groups at
active sites and interfaces.4

Staphylococcal nuclease (SNase) is an excellent model system for studying properties of
internal ionizable groups systematically, and for dissecting molecular determinants of their
pKa values. It has been shown that hyperstable variants of SNase can tolerate substitutions
of 25 internal positions with Lys, Asp, Glu and Arg.38 The majority of these internal
ionizable groups titrate with pKa values shifted in the direction that promotes the neutral
state, some by as much as 5.7 pKa units.15; 16; 22; 23; 25; 26; 39 We have shown previously
that, although Lys-38 in staphylococcal nuclease is internal, it titrates with a normal or
possibly elevated pKa value. The pKa is not depressed despite the amino group being
secluded from bulk water in the crystal structure; water penetration facilitated by structural
relaxation ensures hydration of the charged group.39 In contrast, we show here that the pKa
of Glu-38 and Asp-38 are shifted significantly. The differences in the ionization behavior of
Lys, Glu, and Asp at position 38 in SNase offer opportunities to examine contributions by
the reaction field of bulk solvent, local polarity and polarizability, conformational
reorganization, and Coulomb interactions to the pKa values of these internal ionizable
groups.

Results
Crystal structure of the L38E variant

Two hyperstable variants of SNase were used in this study: PHS and Δ+PHS. The structure
of the PHS/L38E variant was solved to 2.0 Å and compared to the structures of PHS
nuclease and the PHS/L38K variant.39; 40 Refinement statistics are shown in Table 1 in the
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Supplementary Information. PHS nuclease was used for crystallographic studies instead of
the Δ+PHS form of nuclease that was used for equilibrium thermodynamic and NMR
spectroscopy experiments because the PHS/L38E crystallized and Δ+PHS/L38E did not.
PHS nuclease contains six residues (44-49) in a dynamic loop and two point mutations
(F50G and N51V) that are not present in Δ+PHS nuclease. The structures of Δ+PHS and
PHS variants are superimposable.40; 41

The overall structure of the PHS/L38E variant is comparable to the structures of PHS
nuclease (Cα RMSD = 0.7 Å) and of the PHS/L38K variant (Cα RMSD = 0.4 Å), even in
the region surrounding Glu-38 (Figure 1A). The primary difference between the PHS/L38E
and PHS/L38K structures is the position of Glu-122. This residue is in the same position in
the structure of PHS and PHS/L38E, whereas, the Cδ of Glu-122 is shifted by 1.6 Å to
establish a Lys-38/Glu-122 ion pair in the structure of PHS/L38K.39 Residues 113-115 in
the structure of PHS/L38E are in a slightly different conformation than in the other
structures owing to the presence of an inhibitor (thymidine-3′,5′-diphosphate) that is
present in the structure of PHS/L38E nuclease and absent in the other structures.

The oxygen atoms of the Glu-38 side chain are completely solvent inaccessible in the
structure of PHS/L38E. The nearest crystallographic water molecule is 5.4 Å from the
Glu-38 Oε1 atom. Thus far, this is the only crystal structure of a SNase variant with an
internal oxygen atom in which the atom is not hydrated by an internal water molecule.16; 42

Interactions with internal water molecules might be precluded by hydrogen bonds between
the carboxylic group of Glu-38 and the backbone amides of Thr-120 and His-121, and the
hydroxyl group of Tyr-91 (Figure 1B). The hydrogen bond to Tyr-91 directly links Glu-38
into an extensive hydrogen bond network.30; 31; 43; 44

Although SNase is a basic protein, the ionizable residues nearest to Glu-38 in the crystal
structure of the PHS/L38E variant are acidic: Asp-77 (4.0 Å) and Glu-122 (5.1 Å). The next
nearest ionizable residues are basic: His-121 (6.5 Å) and Arg-126 (6.6 Å) (Figure 1B). The
proximity of these residues makes them ideal for direct measurement of Coulomb
interactions between surface charges and the carboxylic groups of Asp-38 and Glu-38.

pKa values of Glu-38 and Asp-38
The pKa values of Glu-38 and Asp-38 were measured by analysis of the pH-dependence of
protein stability. This method takes advantage of the thermodynamic linkage between proton
binding and stability.45 Measurement of the unfolding free energy (ΔG°H2O) of a protein as
a function of pH reports on the pKa values of all ionizable residues in the protein. The pKa
value of a single group introduced by mutagenesis can be measured by subtracting ΔG°H2O
of the background protein (i.e. Δ+PHS nuclease) from ΔG°H2O of the variant protein (i.e. Δ
+PHS/L38E). Shifts in the pKa are reflected in the characteristic shape of the pH-
dependence of ΔΔG°H2O.

15; 23; 25 It was shown previously that the pKa of Lys-38 was ≥
10.4, comparable to the normal pKa of a Lys in water.39 In contrast, the pKa values of
Glu-38 and Asp-38 were 7.0 +/- 0.3 and 6.8 +/-0.3 pH units, respectively (Figure 2).
Relative to the normal pKa values of 4.4 and 4.0 for Glu and Asp in water, respectively, this
corresponds to shifts in pKa of 2.6 and 2.8 pH units.

The measurement of pKa values by analysis of the pH dependence of stability is too
imprecise for detailed investigation of the contribution of Coulomb interactions to the
observed pKa value. An attempt was made to measure the pKa of Glu-38 with NMR
spectroscopy using the pH-dependence of the Glu-38 Cδ resonance.41 Although the Cδ
resonance could be assigned at low pH, the peak entered intermediate exchange above pH
5.6 and could not be followed at higher pH values. Resonances corresponding to the Cγ/Cδ
atoms of Glu-73, Glu-75, Asp-77, Asp-83, and Glu-122 all showed a secondary apparent
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titration centered at pH 7.0. At positions 75 and 77, the magnitude of the secondary
transition was greater than 0.5 ppm. All of the data from NMR spectroscopy are consistent
with a pKa of 7.0 for Glu-38.

The pKa of Glu-38 was also obtained by performing a global fit to the pH titrations of
multiple resonances.46; 47 Specifically, the pKa was obtained by analysis of the pH-
dependence of the 1H chemical shift of six backbone amides (Thr-33, Phe-34, Arg-35,
Glu-75, Gly-88, and Leu-89). The titration events monitored by these amide backbone atoms
in Δ+PHS nuclease are shown in Figure 3A. No changes larger than 0.06 ppm were
observed over the pH range studied. A small transition centered at pH 6.3 +/- 0.3 is visible
for positions 34, 35, 75, and 89, most likely reflecting the titration of His-8 or Asp-21,
whose pKa values are both 6.5 in Δ+PHS nuclease.41 In contrast, the pH-dependence of
the 1H chemical shift of the same six amides in the Δ+PHS/L38E variant (Figure 3B)
reflects a large transition. A global fit of the modified Hill equation to this transition yielded
a pKa value of 7.0 +/- 0.1, in excellent agreement with the pKa of Glu-38 determined using
linkage thermodynamics and the value inferred from the titration of carboxylic acids. A
similar analysis of the L38D variant showed that Asp-38 has a pKa of 7.2 +/- 0.1, which is
also in agreement with the value of 6.8 +/- 0.3 obtained by analysis of the pH dependence of
stability of the Δ+PHS/L38D variant. The pKa values extracted by global fit of NMR
spectroscopy data and by linkage analysis are summarized in Table 1.

The agreement between the pKa values measured from equilibrium thermodynamic data and
from the global fit of titrations of backbone amide resonances suggests that the values
obtained by NMR are accurate. However, the NMR experiment does not follow the amino
acid of interest directly. Other groups could be responsible for the observed transition. To
examine this possibility, the pKa values of all residues that titrate between pH 4.6 and 8.5 in
Δ+PHS nuclease were measured in the Δ+PHS/L38E variant. The pKa values of His-8,
His-121, and Asp-21 were found to be 6.5, 5.7, and 6.5, respectively in the Δ+PHS/L38E
variant (Tables 2 and 3). This demonstrates that none of these groups are responsible for the
apparent titration near pH 7 monitored with NMR spectroscopy. The 1H chemical shifts of
multiple groups appear to be reporting on the proton titration of Asp-38 or Glu-38.

Spectroscopic probes of structural rearrangement
Structural reorganization associated with the substitution of Leu-38 with Asp or Glu, or with
the ionization of Asp, Glu and Lys at position 38 was probed by CD, Trp fluorescence, and
NMR spectroscopy. The intrinsic fluorescence of Trp-140, which caps the C-terminal end of
helix 3, has been shown to be a robust reporter of the global integrity of SNase.48 Trp
fluorescence at neutral pH was insensitive to the substitution of Leu-38 with ionizable
groups (data not shown). Circular dichroism spectra of all variants in the far-UV range were
also indistinguishable from one another at pH 4, 7, and 10 (Figure 4), suggesting that none
of the substitutions altered the secondary structure of the protein significantly, even when
the internal Lys, Asp or Glu groups were charged. Similarly, 70 to 90% of the 131 peaks in
the 15N-1H HSQC spectrum of Δ+PHS nuclease at pH 4.5 were identifiable by visual
inspection on the spectrum of each variant (Figure 5).41 Overall, the spectroscopic probes
suggest that the substitutions did not affect the structure of the protein over a wide range of
pH.

Although the global structure of the proteins remained intact, the previous investigation of
the Δ+PHS/L38K variant suggested that flexibility of the loop containing residues 113-119
allowed water to penetrate the protein to solvate the charged moiety of the side chain of
Lys-38. To probe the conformation of this loop in these variants, an HNN experiment was
used to assign all backbone 15N-1H peaks in the HSQC spectra of the Δ+PHS/L38E and Δ
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+PHS/L38K variants at pH 4.6.49 These spectra were compared to the spectra of Δ+PHS
collected previously,41 at pH values between 2.8 and 9.0 in steps of ∼0.4 pH units.

At pH 4.5, 137 peaks were evident for Δ+PHS nuclease, 138 for the Δ+PHS/L38E variant,
and only 125 for the Δ+PHS/L38K variant. In the spectrum of Δ+PHS nuclease, only three
peaks in the region of interest entered intermediate exchange (i.e. millisecond timescale)
with increasing pH: Tyr-113 disappeared above pH 5.7; Lys-116 and Gly-117 disappeared
above pH 7.2. Larger changes were observed in the spectrum of the Δ+PHS/L38E variant.
The peaks for seven residues (78, 80, 114, 117-120) all entered exchange above pH 6.3,
concomitant with ionization of Glu-38. Without further information, it cannot be determined
if this is due to structural relaxation or due to the change in the electrostatic environment of
the groups owing to the ionization of Glu-38. Changes in proton chemical shift as large as
0.4 ppm were also observed in helix 3 (residues 123-130), around Tyr-91 (residues 88-92),
and in the residues adjacent in sequence to position 38 (residues 34-39).

Unlike Glu-38 and Asp-38, Lys-38 was ionized over the entire pH-range under
investigation. Twelve peaks are missing in this spectrum at all pH values studied. Of these, 9
peaks correspond to a contiguous stretch from Tyr-113 to Glu-122 (Figure 4). The
remaining three missing peaks are Lys-38, Lys-78, and Gln-80. Changes in 15N-1H chemical
shifts should not be overinterpreted;50 however, the absence of these peaks is consistent with
increased exchange of the amide protons with solvent. This interpretation is also consistent
with the previous investigation of the L38K variant and with the measured pKa value of
His-121 (see next section).39 Overall, the changes in chemical shift are smaller in the Lys-38
variant than in the Glu-38 variant, having a maximum shift of 0.2 ppm. The largest changes
are limited to the N-terminal end of helix 3.

Structural reorganization probed with His-121
The properties of His residues of SNase have been characterized extensively.30; 31 Changes
in the microenvironments of His residues can be probed by measuring their pKa values by
1D 1H NMR, a method that has high accuracy and precision > 0.1 pH units. The Δ+PHS
variant of nuclease only contains two of the four His residues normally present in wildtype
SNase: His-8 and His-121. In Δ+PHS nuclease, His-8 and His-121 titrate with pKa values of
6.6 and 5.4, respectively. The pKa of His-8 was entirely insensitive to the presence and
ionization of Asp, Glu, or Lys at position 38 (Table 2). This was expected because His-8 is
17 Å from position 38.

It has been shown previously that the pKa of His-121 is depressed owing primarily to
dehydration in a partially buried configuration.31 His-121 is 6 Å from the Oε1 of Glu-38 and
9 Å from the Nζ atom of Lys-38 (Figure 1B). In both the L38D and L38E variants, the pKa
value of His-121 was elevated from 5.4 to 5.7 (Table 2). This cannot be due to a Coulomb
interaction because His-121 and the internal carboxylic groups do not ionize in the same
range of pH. It has been observed previously that perturbations to the hydrogen bonding
network centered around His-121 almost always cause the pKa value of His-121 to increase
relative to its pKa in Δ+PHS.31 Thus, it is likely that Glu-38 and Asp-38 perturb the
hydrogen-bond network, possibly allowing more water to reach His-121 than in Δ+PHS
nuclease.

Lys-38 is fully charged in the range of pH where His-121 titrates; therefore, a Coulomb
interaction between these residues is possible. An unfavorable Coulomb interaction would
further depress the pKa of His-121. This was not observed. Instead, as in the L38D and
L38E variants, the pKa of His-121 was elevated to 5.6 in the presence of Lys-38. This small
change is consistent with slight structural relaxation induced by the substitution of Leu-38
with Lys, or by the ionization of Lys-38. This is fully consistent with the conclusion of our
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previous study of Lys-38 and with the evidence from NMR spectroscopy of slight structural
reorganization in the L38K variant.39

Coulomb interactions between surface and internal ionizable groups
Δ+PHS nuclease has 20 Asp and Glu residues. The pKa values of these groups are known.41

With the exception of Asp-21, which has an elevated pKa, all carboxylic groups titrate with
depressed or normal pKa values. The pKa values of surface Asp and Glu residues in the Δ
+PHS/L38E and Δ+PHS/L38K variants were measured with NMR spectroscopy (Table 3).

Substitution of Leu-38 with Glu did not alter the pKa values of any of the Asp or Glu
residues (Table 3). This does not imply that Glu-38 does not interact with these groups.
Glu-38 titrates with a pKa of 7.0, while most other acidic groups titrate with pKa values near
4.0; therefore, Glu-38 is neutral during the titration of the other Asp and Glu residues and
cannot affect their pKa values by Coulomb interaction. These data also show that the L38E
substitution has no detectable impact on the structure of the protein and thus on the
electrostatic environments of the surface Asp and Glu residues. If Asp-21 had a significant
Coulomb interaction with Glu-38, its pKa of 6.5 would be affected. The lack of any
detectable shift indicates that any Coulomb interaction between these two carboxylic groups
is < 0.1 kcal/mol. Overall, the absence of any measurable impact of substitutions of Leu-38
on the pKa values of surface residues corroborates the results from spectroscopic
experiments showing that the structure of the variants are very similar if not identical to the
structures of the background protein.

To probe interactions between Asp-38 and Glu-38 with neighboring ionizable residues
directly, five double mutants were made: L38E/D77N, L38E/E122Q, L38E/E122D, L38E/
R126Q, and L38D/E122Q. The pKa value of the internal Glu-38 or Asp-38 was measured by
global fit of the pH dependence of 1HN chemical shifts measured with NMR spectroscopy.
The measured pKa values are listed in Table 4. These pKa values can be readily converted to
apparent ΔGij values by multiplying the difference in pKa between the background protein
and the variants with neutral substitutions by RTln(10). To measure the interaction between
Glu-38 and Asp-122, the ΔpKa was measured using the L38E/E122Q variant as a
background. The observed ΔGij values were strongly distance-dependent and ranged from 0
to 1.5 kcal/mol (Table 5).

Unlike Asp-38 or Glu-38, which are neutral at low pH, Lys-38 is ionized below pH 10. Any
Coulomb interaction with Lys-38 should therefore alter the pKa values of surface carboxylic
groups. In particular, Lys-38 is involved in a 2.7 Å ion pair with Glu-122 in the crystal
structure of the L38K variant. A conservative estimate of the possible pKa shift can be made
using Coulomb's law using the dielectric constant of pure water. This indicates that an
interaction of 1.5 kcal/mol between Lys-38 and Glu-122 is possible. This would shift the
pKa of Glu-122 by 1.1 units. The measured pKa values of the carboxylic groups in the Δ
+PHS/L38K variant are shown in Table 3. Surprisingly, no shifts in pKa value were
observed. This experiment demonstrates conclusively that the ion pair between Lys-38 and
Glu-122 observed in the crystal structure is not present in solution, and that Lys-38 does not
interact with any carboxylic acid residues in the protein. This behavior is fully consistent
with a structural rearrangement leading to hydration of the charged side chain of Lys-38.

Structure-based pKa calculations
Reproducing the shifts in pKa values in multiple sites in a protein is still a difficult challenge
for structure-based electrostatics calculations. To test the ability of computational methods
to calculate Coulomb interactions accurately, five computational methods were used to
calculate the pKa of Glu-38 in the L38E, L38E/D77N, L38E/E122Q, L38E/E122D, and
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L38E/R126Q variants. The pKa values of Asp-38 (in the L38D variant), His-8, and His-121
were also calculated. Overall, the calculations attempted to reproduce 12 unique pKa values:
Glu-38 in the five variants listed above (Table 4), Asp-38 in the L38D variant (Table 4), and
His-8 and His-121 in the L38E, L38E/E122Q, and L38D variants (Table 2). A variety of
different computational methods were tested: PROPKA,51 the single site (S/FDPB) and full-
site PARSE (F/FDPB) implementation of finite difference Poisson-Boltzmann
electrostatics,52-54 the pH-adapted conformer FDPB method (PAC),55; 56 and multi-
conformer continuum electrostatics (MCCE).57; 58

PROPKA uses a set of empirical rules to estimate pKa values from structure. The pKa of
Glu-38 calculated with PROPKA was 5.3. The group was classified as buried and
experienced an unfavorable dehydration energy (2.1 kcal/mol) offset by favorable polar
interactions with the Tyr-91 side chain and His-121/Glu-122 backbone (-1.3 kcal/mol). No
Coulomb interactions were calculated because PROPKA only treats Coulomb interactions
between two residues if they are both classified as buried and are within 7 Å of one another.
Only His-121 meets both criteria, but no interaction energy was calculated because the
calculated pKa of His-121 (5.1) is below that of Glu-38; the PROPKA algorithm excludes
possible interaction because the groups are never charged simultaneously. The lack of
explicit Coulomb interactions causes PROPKA to be entirely insensitive to substitution of
residues at positions 77, 122, or 126 with uncharged analogs. The overall RMS error for the
calculated versus experimental pKa values was 1.0 (Table 6).

The results of FDPB calculations were highly dependent on the choice of protein dielectric
constant. Using S/FDPB, the calculated pKa of Glu-38 ranged from 19.2 when εp = 4, to 5.4
when εp = 20. Likewise, the pKa of Glu-38 calculated using F/FDPB ranges from 19.2 when
εp = 4, to 5.2 when εp = 20. The pKa of 7.0 of Glu-38 was reproduced by dielectric
constants of 12 and 11 with the S/FDPB and F/FDPB methods, respectively. The dielectric
constant that reproduced the experimental pKa value (εapp) was used for all further
calculations. In both types of calculations, the pKa at εapp was governed by unfavorable
dehydration energy (4 kcal/mol), net favorable polar interactions (-3 kcal/mol), and net
unfavorable Coulomb interactions (2.5 kcal/mol). The overall RMS for all 13 measured pKa
values was 1.2 and 2.1 for S/FDPB and F/FDPB respectively (Table 6). The relatively large
RMS value is due to a large error in the calculated pKa value of His-121 (8.0 and 10.2). If
this is excluded from the RMS calculation, both methods have RMS errors of 0.4. S/FDPB
overestimated the apparent Coulomb interactions by 75 % and F/FDPB by 25 %.

The PAC method generates ensembles of possible side chain positions at pH extremes,
calculates electrostatic potentials of each configuration using FDPB, then Boltzmann
weights these ensembles as a function of pH. To test the best-case scenario for PAC
calculations, a variety of parameter combinations were used to maximize agreement with
experiment. For PAC, it was found that minimizing side chain positions was the most
important user-adjustable parameter, lowering the RMS error by 20 %. Even so, the
calculations performed poorly. The calculated pKa of Glu-38 was 4.9 and the overall RMS
error the pKa values was 3.4 pH units (Table 6). On average, the apparent coulomb
interactions calculated using this method were 3.7 times higher than experiment.

MCCE couples conventional FDPB calculations to side chain rotamer sampling with a
Monte Carlo method. MCCE does not allow for arbitrary adjustment of the protein dielectric
constant without extensive reparameterization; therefore, these calculations used the default
εp values of 4 or 8. The calculations with εp = 4 failed to converge, giving pKa values for
Glu-38 that were > 14. Only calculations using εp = 8 are reported here. The calculated pKa
value of Glu-38 was 8.5 and the overall RMS error was 1.4 pH units (Table 6). The apparent
Coulomb interactions reported by MCCE were, on average, twice as strong as observed
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experimentally. A correlation plot of the experimental and calculated apparent Coulomb
interactions for each calculation type is shown in Supplementary Figure 1.

Discussion
Difference in ionization properties of Lys, Glu, and Asp at position 38

Previous experimental and computational studies with the L38K variant suggested that the
pKa of Lys-38 was governed by structural reorganization and water penetration, with little or
no contribution from the buried ion pair between Lys-38 and Glu-122 observed in the crystal
structure.39 We have now confirmed this with NMR spectroscopy. The HSQC spectrum of
this variant shows no peaks for residues 113-123 at any pH value studied. Although
chemical shifts are sensitive to factors other than structural relaxation, the data are consistent
with reorganization of this segment of the protein and exchange with solvent. The shift in
the pKa of His-121 from a depressed value towards a more normal value is opposite from
the shift expected from Coulomb interactions between His-121 and Lys-38. However, it is
fully consistent with enhanced hydration of His-121 owing to structural relaxation in this
region of the protein. Finally, Lys-38 does not shift the pKa value of any acidic residue in
the protein. This is particularly striking for Glu-122, which is part of a 2.7 Å ion pair in the
crystal structure of the L38K variant, but apparently insensitive to the charge in Lys-38. This
can only be explained if Lys-38 is fully hydrated when charged, and if the structure of the
L38K variant in solution is different than the crystal structure.

In contrast to the behavior of Lys-38, the pKa values of Glu-38 and Asp-38 are higher than
normal pKa values by 2.6 and 3.2 pH units, respectively. These two carboxylic groups
experience substantial Coulomb interactions with multiple neighboring groups. There are
several possible explanations for this difference in behavior between Lys-38 and the
carboxylic groups at this same position. The first is proximity to solvent. Although Lys-38
and Glu-38 are internal in the crystal structures of the PHS/L38K and PHS/L38E variants,
the side chains point towards the protein-water interface and they are much closer to bulk
water than the internal ionizable groups of acidic and basic residues at internal positions 66
and 92 studied previously.15-17; 21-23; 59 The shorter side chain of Glu-38 is further from
bulk water than the longer Lys-38 side chain, and therefore will experience the reaction field
of bulk water more weakly. This would contribute to the shift in its pKa. Consistent with
expectation, the shifts in pKa correlate inversely with side chain length. We also suspect that
the short length of the side chain of Asp-38 is responsible for its not being fully dehydrated.
A model of the L38D variant made from the crystal structure of the PHS/L38E variant (see
Methods) showed that Asp-38 forms a single hydrogen bond with its own backbone, but is
too short to reach any other hydrogen bonding partners without substantial structural
rearrangement. Water molecules have been found in association with the carboxylic oxygen
atoms of internal Asp and Glu in all previous structures of SNase variants with internal Glu
or Asp.16; 42 To examine the possibility that internal water molecules can satisfy the
hydrogen bonding potential of the side chain of Asp-38, the DOWSER algorithm60, which
places internal water molecules in polar cavities in crystal structures, was applied to the
model of the L38D variant. DOWSER identified two potential water molecules in the region
between Asp-38 and the 113-119 loop, which make hydrogen bonds with Asp-38 thereby
linking this residue to the backbones of Asn-118 and Glu-122.

The difference in the pKa of Lys-38 versus Glu-38 or Asp-38 is also consistent with the
ability of carboxylic residues to form better hydrogen bonds than internal Lys residues. In
the crystal structure, the amino group of Lys-38 makes an ion pair with the carboxylic side
chain of Glu-122, and one bond to the backbone of Ala-112. In contrast, Glu-38 forms
hydrogen bonds to the side chain of Tyr-91 and to the backbone amides of Thr-120 and
His-121. If the predictions with the DOWSER method are correct, Asp-38 forms a hydrogen
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bond to its own backbone and two hydrogen bonds to internal water molecules. The polar
network that Asp-38 and Glu-38 establish might rigidify this part of the protein and thereby
prevent these groups from being solvated through water penetration. This would contribute
to the shift in pKa values in the direction that was observed.

The differences in the properties of Lys-38 and Glu-38 or Asp-38 probably also reflect
differences in the pH dependence of stability of the different variant proteins. The stability
of the L38K variant near pH 10, where Lys normally titrates, is lower than the stability of
the L38D and L38E variants near pH 4, where Asp and Glu normally titrate. At pH 10, the
local stability of the loop comprised of residues 113-119 does not appear to be sufficiently
high to maintain Lys-38 buried in the neutral state. Instead, the loop appears to adopt
alternative, more open conformations that allow Lys-38 to be charged, hydrated, and
probably only partially buried. We showed previously that a subtle structural reorganization
is sufficient to promote water penetration and solvation of the charged side chain of
Lys-38.39 Near pH 4, the local stability of the 113-119 loop is sufficiently high to maintain
Glu-38 and Asp-38 buried in the neutral state; therefore, the pKa values of these internal
groups are shifted upwards. Because the stability of the L38E and L38D variants decrease
with increasing pH, this loop might shift towards a more open, alternative conformation
when Asp-38 and Glu-38 titrate near pH 7. This is analogous to what was observed in the
L38K variant. Consistent with this hypothesis, several resonances in the HSQC spectra of
the L38E variant corresponding to this loop disappear when Glu-38 ionizes. The
disappearance of these peaks is somewhat difficult to interpret; it could reflect structural
reorganization but it could also be due by the electrostatic effects of the charge of Glu-38 on
the amides.50

Coulomb interactions between internal and surface ionizable residues
How do the observed Coulomb interaction energies between internal and surface groups
compare to previously measured interactions between surface ionizable moieties? The
distance-dependence of ΔGij between internal and surface charges is plotted in Figure 6 and
compared to previously measured long-range interactions between surface charges.30; 31 A
single ΔGij vs rij plot is sufficient to describe all data. This indicates that the interactions
between internal and surface groups are as weak as those between surface groups, at least
for these internal groups, which are close to the protein-water interface. The effective
dielectric constant obtained by fitting Coulomb's law with a Debye-Hückel parameter to the
ΔGij obtained between Glu-38 and nearby surface residues is 35 +/- 3, which is almost as
high as the value of 46 +/- 8 obtained by including ΔGij from interactions between surface
groups, measured previously.30; 31 The high effective dielectric constant is fully consistent
with the high local polarity in the microenvironment of Glu-38 and subtle structural
reorganization coupled to its ionization.61

Another interesting feature of the measured Coulomb interactions is the asymmetry of the
Glu-38/Asp-122 and Asp-38/Glu-122 interactions. The apparent Coulomb interaction of
Glu-38/Asp-122 is 1.5 kcal/mol, whereas the apparent Coulomb interaction of Asp-38/
Glu-122 is 0.8 kcal/mol. This is surprising: how could simply reversing the placement of the
charges significantly alter the observed energy of interaction? Simple structural models of
the L38D and L38E/E122D variants suggest an explanation. In these models, the nearest
side chain oxygen atoms of the Glu-38/Asp-122 pair were 5.3 Å apart and the Asp-38/
Glu-122 atoms were 3.6 Å apart. Due to their burial, neither Asp-38 nor Glu-38 can change
position without a steric clash. Asp-122 and Glu-122, however, are on the surface and
therefore not tethered in a fix position. Glu, with its extra methylene carbon, is simply
longer and better able to respond to the repulsive interaction with Asp-38.
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Implications for structure-based pKa calculations
The pKa values of internal ionizable residues are especially useful to test models for
structure-based calculation of electrostatic energies and pKa values.61; 62 In general, it is not
sufficient to test the validity of these methods simply by reproducing pKa values, especially
when the methods include ad hoc modifications to improve their performance.52; 53; 63-65 In
these cases the experimental pKa values can be reproduced accurately but for entirely
incorrect physical reasons.62 The utility of the data in this study is that it contributes
additional constraints, such as the magnitude of pair-wise Coulomb interactions, that must
be satisfied to ensure that pKa values are reproduced for the right physical reasons. To
reproduce these data, a computational method must correctly capture both the self-energy
and Coulomb interaction energies experienced by ionizable residues at a single position, and
it must also reproduce the differences in the ionization properties of Lys-38 and Asp-38 or
Glu-38.

Our experimental data expose several weaknesses in current computational methods. For
example, the attempts to reproduce the experimental pKa values with PROPKA revealed the
importance of medium-range electrostatics interactions, which can be an important
determinant of pKa values. These interactions are neglected in PROPKA, thus it fails to
reproduce the experimental pKa values (Table 6). Inclusion of this term would likely bring
the calculated pKa from 5.3 closer to the experimentally measured value. On the other hand,
all of the continuum calculations overestimated the strength of Coulomb interactions,
especially the PAC and MCCE methods. This reflects the fact that because the PAC and
MCCE methods attempt to model side chain relaxation explicitly, lower protein dielectric
constants are used. The failure of these methods demonstrates that these models either
neglect important energetic terms in their Boltzmann-weighted ensembles, or that relaxation
involving the protein backbone occurs on the timescale of the experiments, which is not
treated by PAC or MCCE.

Conventional FDPB calculations did better than the PAC and MCCE methods, however, it is
important to emphasize that in these calculations the protein dielectric constant was used as
a tunable variable to maximize agreement between calculated and measured pKa values.
FDPB calculations with a static structure cannot predict pKa values of internal ionizable
groups. Both the S/FDPB and F/FDPB calculations slightly overestimated the strength of
unfavorable Coulomb interactions. As the calculation reproduced the pKa of Glu-38, the
strength of the favorable polar interactions is either overestimated, the energetic penalty of
dehydration is underestimated, or both. If slight relaxation of the structure occurs in
solution, the strength of Coulomb interactions, polar interactions, and the energetic penalty
of dehydration would all decrease. Such a process would explain the discrepancy between
the experimental and computational results.

Our study demonstrates that very different factors can govern the pKa values of different
types of ionizable residues buried at the same location in a protein. Water penetration and
structural reorganization are the primary determinants of the pKa of Lys-38. In contrast,
favorable polar interactions and unfavorable dehydration and Coulomb interactions
determine the pKa values of Asp-38 and Glu-38. Some amount of structural reorganization
also influences the pKa values of Asp-38 and Glu-38, as demonstrated by the fact that
relatively high protein dielectric constants were needed to reproduce their pKa values in
structure-based calculations with static structures.

If structure-based electrostatics calculations are going to be useful predictors of structure/
function relationships, they must be able to reproduce the pKa values of internal ionizable
groups. To this end, they must be able of identify a priori the cases in which the ionization
of an internal group triggers structural reorganization. They must also be able to distinguish
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these cases from cases in which the ionization of an internal group does not promote
structural reorganization. Because the probability that a protein undergoes local structural
reorganization coupled to the ionization of an internal group is governed by the free energies
of the folded protein and of the low lying excited states, improved methods for structure-
based pKa calculations will require methodology for improved conformational sampling and
improved ability to estimate the stability of proteins.

Materials and Methods
Staphylococcal nuclease

Two hyperstable variants of SNase, known as PHS and Δ+PHS, were used for
crystallography and equilibrium thermodynamic experiments, respectively. Both variants
contain three substitutions: P117G, H124L and S128A. Δ+PHS nuclease has two additional
mutations (G50F and V51N) and a short deletion (residues 44-49). All genes were
engineered into the pET24A+ vector (Novagen, Madison, WI). Substitutions were
introduced using QuikChange™ site-directed mutagenesis (Stratagene, La Jolla, CA). All
proteins were expressed in BL21(DE3) cells from Stratagene, and purified using the
protocol of Shortle and Meeker.66 Uniformly 13C/15N labeled protein was made by growing
E. coli in minimal media with 15NH4Cl (1 g/L) and 13C6-D-glucose (4 g/L) (Isotec, Inc.)
Purity was determined to be greater than 98% by SDS-PAGE. Protein concentration was
determined by absorbance at 280 nm using an extinction coefficient of 0.93 mL mg-1

cm-1.67

Crystallography
PHS/L38E was crystallized in hanging drops using the vapor diffusion method. Three drops
containing 4 μL: 4 μL mixture of protein and reservoir solution were suspended over 1 mL
of reservoir solution and equilibrated at 4 °C. The protein solution consisted of 16.5 mg/mL
protein, 2 milliequivalents of thymidine-3′,5′-diphosphate (THP), and 3 milliequivalents of
CaCl2. THP was synthesized in our laboratory, as described previously.68 Reservoir solution
consisted of 35 % (v/v) 2-methyl-2,4-pentanediol and 25 mM potassium phosphate at pH
7.0. Diffraction data were collected from a single crystal suspended in mother liquor in a
cryoloop flash frozen in liquid nitrogen. Data were collected at 100 K using a Kappa ApexII
diffractometer outfitted with a sealed copper tube, multilayer optics, and a CCD detector
(Bruker/AXS, Madison, WI). Reflections were indexed and integrated using ApexII
software, and merged using XPREP. Structure determination and refinement were
performed using the ccp4i interface to the CCP4 program suite.69; 70 Molecular replacement
was done with PHASER,71 using the PHS nuclease structure (PDB ID: 1EY8) as a search
model.40 Solvent atoms were removed, Leu-38 was truncated to Ala, and all B-factors were
set to 20 Å2 prior to molecular replacement. Iterative model building and refinement were
performed using COOT and refmac5.72; 73 The sidechain for Glu-38 and the THP ligand
were visible after the first round of refinement. Waters, phosphates, and ions were added in
later rounds of refinement.

pKa values measured using pH-dependence of stability
GdnHCl denaturation experiments were done using an Aviv Automatic Titrating
Flourimeter 105 (Lakewood, NJ) using approach-to-equilibrium, as described
previously.20; 22; 39; 74 pKa values were extracted by the single-site linkage relationship to
the pH-dependence of ΔΔG°H2O, as described previously.15; 23; 39
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NMR data collection
For NMR titration experiments, a 1.4 mL sample of 1 mM protein was prepared in a
solution of 100 mM KCl, 0.5 mM NaN3 and 10% D2O (v/v) by buffer exchange using
Amicon Ultra-4 centrifugal filter units with a 10,000 MWCO (Millipore Corp., Billerica,
MA). This sample was split into two equal fractions, one for titration with acid and one for
base. Titrations were performed as described elsewhere.41

NMR experiments were performed on a Bruker Avance II-600 equipped with a cryoprobe.
All experiments were conducted at a calibrated temperature of 298 K. NMR spectra were
referenced against the position of the HDO peak, which was determined relative to the DSS
peak at 0.00 ppm.41; 75 All spectra were processed using NMRPipe76 and peak assignments
were completed using Sparky.77

Backbone assignments (15N, 1HN) for the Δ+PHS/L38E and Δ+PHS/L38K variants were
collected using the 3D HNN experiment.49 The 15N carrier frequency was set to 117.0 ppm;
a total of 42 complex points were collected in each of the t1 and t2 dimensions. Spectral
widths of 10000 Hz, 1825 Hz and 1825 Hz were used for the 1H, 15N, and 15N dimensions,
respectively.

Assignments for the Cγ and Cδ resonances of Asp and Glu residues in the Δ+PHS/L38E and
Δ+PHS/L38K variants were determined primarily by transferring assignments from the
CBCGCO spectra of Δ+PHS41 at pH 4.7 to the spectra of the variants. The side chain
aliphatic carbon (Cα, Cβ, Cγ) assignments of Glu-38 were collected using the C-C TOCSY
(CO)NH experiment.78 Through modification of the 13C-detect HBHGCBCGCO pulse
sequence to include a TOCSY element, the Glu-38 Cδ resonance was determined by
correlation with its side chain aliphatic carbon assignments (Castañeda and Majumdar,
unpublished).

The pKa values of Asp and Glu residues were determined by monitoring the pH dependence
of their Cγ and Cδ resonances, respectively, using a 13C-detect version of the 2D
HBHGCBCGCO experiment (Castañeda and Majumdar, unpublished). The spectra were
collected in 0.4 pH increments between pH 2 and pH 9. For indirect pKa determination of
carboxylic residues using 1HN chemical shifts, a series of 15N-1H HSQC spectra were
collected in a similar manner. These experiments were performed and processed as
previously described.41

For pKa determination of histidine residues in the Δ+PHS variants, samples were prepared
in the buffer described above except in 100% D2O. Samples were heated to 330 K for 15
minutes prior to experiments to promote exchange of amide protons. The Hε1 resonance of
the imidazole ring was monitored as a function of pH using 1D 1H NMR experiments as
described previously.23 The His Hε1 resonances were unambiguously assigned by
comparison to the same resonances in Δ+PHS.

pKa values from pH-dependent chemical shifts
pKa values of Asp, Glu and His residues were extracted using the modified Hill equation, as
described previously.41 Fitting was done using the nls function within the R 2.7.1 Statistical
environment.79

A global fit to the pH-dependence of the 1H chemical shift of six amides (Thr-33, Phe-34,
Arg-35, Glu-75, Gly-88, and Leu-89) was used to determine the pKa values of Glu-38 and
Asp-38. Three criteria were used to select these resonances: 1) An apparent titration > 0.15
ppm in the variant spectra that was not evident in the Δ+PHS spectra; 2) The resonance
could be unambiguously assigned in all variants and did not exhibit exchange over the
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course of the titration (Figures 2 and 4); 3) The residues were within close spatial proximity
of position 38. The fit minimized the root mean squared (RMS) deviation between the
calculated and measured chemical shifts:

1.

where N is the number of resonances included in the fit and δi,meas is the experimentally
measured chemical shift. δi,calc is described by the modified Hill equation:

2.

where δi,acidic and δi,basic are the acidic and basic baselines of the apparent titration. A single
pKa and Hill coefficient (n) were used for all resonances included in the fit. Minimization
was done using the optim function inside the R 2.7.1 statistical environment.79 To ensure
that the pKa and Hill coefficient did not depend on the resonances chosen, bootstrap
sampling of resonances included in the fit was performed. The list of resonances was also
expanded to include resonances that only met two of the three inclusion criteria. In all cases,
the bootstrap error was less than 0.05 pH units for the pKa value. The errors reported in the
paper reflect the maximum possible systematic error in pH measurement rather than the fit
error.

Structural models
Models of the PHS/L38D, PHS/L38E/D77N, PHS/L38E/E122Q, PHS/L38E/E122D, and
PHS/L38E/R126Q variants were made using the structure of the PHS/L38E variant as a
template. The positions of the atoms of the side chain that was mutated in silico were
minimized using the CHARMM22 forcefield, as described previously.23 All other atoms
were held fixed.

Structure-based electrostatics calculations
PROPKA calculations were performed using PDB2PQR 1.1.2, downloaded from
http://pdb2pqr.sourceforge.net/.51; 80 Conventional FDPB calculations were done using the
University of Houston Brownian Dynamics (UHBD) package, version 5.1.81 FDPB
calculations were done using two parameter sets: single-site (S/FDPB)52; 53 and full-site (F/
FDPB) using the PARSE parameter set.54 All calculations were performed at 100 mM ionic
strength as described previously.24 Multi-Conformer Continuum Electrostatics (MCCE)
calculations were done using MCCE 2.2, downloaded from
http://wwwsci.ccny.cuny.edu/∼mcce/.52 ; 58 The parameters distributed with the program
were used for the εp = 4 and εp = 8 calculations. Calculations were done at 100 mM ionic
strength. PAC calculations were done using the Karlsberg+ web interface
(http://agknapp.chemie.fu-berlin.de/karlsberg/).55; 56 Side chain positions were minimized
and salt bridges were randomized at high and low pH. Results were found to be insensitive
to choice of solvation model. Values reported herein were calculated using the vacuum
solvation model.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Crystal structure of PHS/L38E (pink, PDB accession code 3D6C) overlaid on the structures
of PHS/L38K (blue, PDB accession code 2RKS) and PHS nuclease (white, PDB accession
code 1EY8). (A) The global fold of the protein is not perturbed. The Cα atom of Asp and
Glu residues are shown as red spheres. Glu-38, Lys-38, and Glu-122 are shown as sticks. (B)
Microenvironment of Glu-38 and Lys-38. Ionizable residues within 8.4 Å of Glu-38 are
shown in stick, hydrogen bonds as black dashes.
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Figure 2.
pH-dependence of ΔΔG°H2O for the Δ+PHS/L38D ( ), Δ+PHS/L38E ( ), and Δ+PHS/
L38K ( ) variants. Solid lines are fits to the data (see methods). Error bars are propagated
from GdnHCl denaturation fit errors.
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Figure 3.
Apparent titration of 1H backbone resonances in Δ+PHS nuclease (A) and the Δ+PHS/L38E
variant (B). Series are Thr-33 (•), Phe-34 (+), Arg-35 (×), Glu-75 ( ), Gly-88 (+), and
Leu-89 (×). Lines indicate a global fit to the apparent titration of all residues.
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Figure 4.
Far-UV CD spectra of at pH 4 (A) and pH 7 (B). Series are Δ+PHS (▾), Δ+PHS/L38E ( ),
Δ+PHS/L38E/D77N ( ), Δ+PHS/L38E/E122Q ( ), Δ+PHS/L38E/E122D ( ), Δ+PHS/
L38E/R126Q ( ), Δ+PHS/L38D ( ), and Δ+PHS/L38D/E122Q ( ).

Harms et al. Page 22

J Mol Biol. Author manuscript; available in PMC 2012 June 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
HSQC spectra of the Δ+PHS (black), Δ+PHS/L38D (red), Δ+PHS/L38E (green), and Δ
+PHS/L38K variants (blue) at pH 4.6-4.7. The four spectra are overall quite similar. Arrows
highlight 4 of the 12 residues that are seen in every spectrum except that of Δ+PHS/L38K.
Boxes identify residues used in global fits to extract pKa values of groups at position 38.
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Figure 6.
Distance dependence of apparent Coulomb interactions for the current study (•), and for data
published previously by Lee et al. ( ),30 and Baran et al. ( ).31 The dashed line is a fit to
the data from the current study only, the solid line a fit to all available data.
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Table 2
pKa values and hill coefficients of His residues measured using NMR spectroscopy

His-8 His-121

variant pKa
* n pKa

* n

Δ+PHS 6.6 1.0 5.4 0.8

Δ+PHS/E122Q 6.5 1.0 5.3 0.9

Δ+PHS/L38K 6.5 1.0 5.6 1.0

Δ+PHS/L38E 6.5 1.0 5.7 0.9

Δ+PHS/L38E/E122Q 6.4 1.1 5.7 0.9

Δ+PHS/L38D 6.5 1.0 5.7 0.9

Δ+PHS/L38D/E122Q 6.5 1.1 5.8 0.9

*
uncertainty in pKa value is +/- 0.1
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Table 4
pKa values of Asp-38 and Glu-38 measured using global fit to 1HN chemical shift data

variant residue n pKa
* ΔpKa

Δ+PHS/L38E Glu-38 0.8 7.0 0.0

Δ+PHS/L38E/D77N Glu-38 0.7 6.1 -0.9

Δ+PHS/L38E/E122Q Glu-38 0.9 6.2 -0.8

Δ+PHS/L38E/E122D Glu-38 0.8 7.4 0.4

Δ+PHS/L38E/R126Q Glu-38 0.9 7.2 0.2

Δ+PHS/L38D Asp-38 0.9 7.2 0.0

Δ+PHS/L38D/E122Q Asp-38 1.0 6.6 -0.6

*
uncertainty in pKa value is +/- 0.1
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