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Abstract
We propose a new algorithm for obtaining proton titration curves of ionizable residues. The
algorithm is a pH replica-exchange method (PHREM) which is based on the constant pH
algorithm of Mongan et al. [1]. In the original replica-exchange method, simulations of different
replicas are performed at different temperature, and the temperatures are exchanged between the
replicas. In our pH replica-exchange method, simulations of different replicas are performed at
different pH values, and the pHs are exchanged between the replicas. The PHREM was applied to
a blocked amino acid and to two protein systems (Snake Cardiotoxin and Turkey Ovomucoid
Third Domain), in conjunction with a generalized Born implicit solvent. The performance and
accuracy of this algorithm and the original constant pH method (PHMD) were compared. For a
single set of simulations at different pHs, the use of PHREM yields more accurate Hill coefficients
of titratable residues. By performing multiple sets of constant pH simulations started with different
initial states the accuracy of predicted pKa values and Hill coefficients obtained with PHREM and
PHMD methods becomes comparable. However, the PHREM algorithm exhibits better samplings
of the protonation states of titratable residues and less scatter of the titration points and thus better
precision of measured pKa values and Hill coefficients. In addition, PHREM exhibits faster
convergence of individual simulations than the original constant pH algorithm.
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I. INTRODUCTION
Cellular pH can have profound effects on the structure, physical properties and function of
proteins and nucleic acids. In some cellular compartments, changes in pH as small as 0.1 can
have physiological consequences [2]. Thus, the pH in cellular compartments needs to be
tightly regulated. In spite of this tight regulation, the actual pH may vary between different
cellular compartments: in vacuoles and lysosomes it is more acidic, while in the nucleus and
the peroxisomes it is more basic. Some proteins, such as some viral proteins, or human
hemoglobin harness the differences in cellular pH for their functions.
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The subcellular pH can affect the charged state of ionizable residues in proteins, i.e., Asp,
Glu, His, Lys, Cys, Tyr and Arg. The charged states of these residues can modulate the
protein’s stability, solubility, enzymatic activity, interactions with small molecules or other
proteins [2]. The charged state of an ionizable residue is a function of its pKa value. The pKa
values of ionizable residues in proteins can be shifted significantly relative to the pKa values
that ionizable residues exhibit in water. The shifts in the pKa values are caused by the
removal from the aqueous environment, as well as through interactions with polar and
charged groups of the protein. Sometimes, when titratable residues are near each other, such
as in active sites of proteins, they can titrate in a coupled fashion. To complicate things
further, titrations of internal ionizable groups are often coupled to structural relaxation of the
protein [3–6].

The measurements of pKa values of functionally important ionizable residues in proteins are
not always straightforward. Carefully calibrated computational methods offer a possibility of
obtaining these pKa values. Some popular theoretical methods for calculations of pKa values
are based on static protein structures (usually crystallographic or NMR structures) and rely
on either the macroscopic description of the protein and solutions of the Poisson-Boltzmann
equation [7–11], or are empirical in nature [12]. The pKa values obtained through continuum
electrostatics methods are highly dependent on the choice of the protein’s dielectric
constant. It has been shown that such methods cannot self-consistently reproduce the pKa
values of internal groups if a single protein dielectric constant is used [13–16]. This is
because proteins are heterogeneous and anisotropic and because protonation/deprotonation
of internal groups can be coupled with structural transitions. Attempts to improve structure-
based pKa calculations with methods that account for multiple structures are promising [17–
19]. One of the problems with these approaches is that contributions related to
conformational relaxation (including backbone relaxation) associated with charging or
uncharging of the internal groups, is not accounted for properly. Methods that combine
molecular dynamics (MD) simulations with free energy perturbation [20–22] are useful at
simultaneously treating the coupling between protonation and conformational changes in a
more correct way. However, within the framework of these methods, titration of only one
group is performed.

To account simultaneously for the coupling between protonation, conformational transitions,
and possible coupling of various ionizable groups with each other, several methods for MD
simulations at a constant pH have been developed [23]. The methods for constant pH
simulations fall into two categories - the discrete protonation state methods, and the
continuous protonation state models. In constant pH simulations with discrete protonation
states, titratable groups are modeled as either protonated or deprotonated. Molecular
dynamics simulations with certain set of charges on ionizable groups are periodically
intercepted with Monte Carlo (MC) trials to change the protonation states of the titratable
groups. The MD simulations with new sets of charges are then continued. Several flavors of
constant pH simulations with discrete protonation states were developed that use either
implicit solvents [1, 24], explicit solvents [25], or a combination of explicit and implicit
solvents [26]. These methods also differ in the frequency with which protonation states are
updated, or in the way the free energy difference between protonated and deprotonated
states are determined.

Within the framework of continuous protonation state models, titratable groups can have
protonation states that can take any value in between fully protonated and deprotonated. In
the method of Baptista et al. [27] MD simulations are performed with “average” charges on
titratable groups (determined with continuum electrostatics) that get periodically updated
during simulations. Other methods include the extended Hamiltonian approach [28], the
acidostat method [29], the λ-dynamics approach [30–32].
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All of the methods for constant pH simulations face a common problem: the accuracy of
calculated pKa values depends on the accuracy of conformational sampling. Sampling is
especially difficult for groups found in protein interiors, where water penetration can be a
key determinant that is often difficult to explore in simulations [5, 33]. Protonation/
deprotonation of internal ionizable groups can be accompanied by significant
conformational relaxation [5, 34]. Large conformational relaxation accompanied with
changes in secondary structure is not easily sampled even with standard MD methods, and
additional methods for enhanced sampling, such as those based on coarse graining [35–39],
smoothing protocols [40–43], generalized ensembles [44–51], optimization of actions [52],
or additions of constraints or forces [53–55] need to be employed. Recently, two constant
pH methods have been coupled with the temperature replica-exchange method (REM) for
enhanced sampling [56, 57], while the method of Mongan et al. [1] has been coupled with
accelerated molecular dynamics [58]. The methods have been shown to exhibit better
accuracy than the original constant pH methods [59].

To determine the titration curves and the pKa values, simulations at several different pH
values need to be performed. Often the titration curves resulting from such calculations have
a large scatter when fitted with the Henderson-Hasselbalch or Hill equation. Note that for
multi-site systems, the titration curves need not follow the Hill equation. Thus, fairly
converged curves would be needed to identify the non-Hill behavior and distinguish it from
a simple lack of sampling. To speed up and improve the convergence of titration curves, we
have implemented a new method that combines constant pH simulations with replica-
exchange simulations in the pH space, which we refer to as the pH replica-exchange method
(PHREM). This method is based on the constant pH method by Mongan et al. [1]. The
original method by Mongan et al. has been implemented in the program AMBER [60], and
uses the AMBER force field. Our method has been implemented in the program CHARMM
[61] and uses the CHARMM force field [62]. Another constant pH-replica exchange
method, based on continuous protonation states, has been recently implemented in
CHARMM [63].

II. MATERIALS AND METHODS
A. Constant pH algorithm

The constant pH algorithm is based on the method proposed by Mongan et al. [1] which
employs a combination of molecular dynamics (MD) simulations with periodic Monte Carlo
(MC) samplings of protonation states. We will refer to this method as PHMD. The
generalized Born implicit solvent model is used to model the aqueous environment. Protein
conformations are sampled with standard MD simulations. At regular intervals, trials to
change the protonation state of a titratable residue are performed with an MC scheme [64].

For the MC sampling of protonation states of titratable residues at a given pH value, the free
energy difference between protonated and deprotonated states (ΔF) is needed. Within this
scheme ΔF is approximated by [1, 25, 26]

(1)

Here kB is the Boltzmann constant, T is a temperature, and pKa,w is the experimentally
determined pKa value of a model compound in aqueous solution. The experimental pKa,w
values that we employ are listed in Table I. ΔFele and ΔFele,w are the electrostatic
components of the free energy differences between the protonated and deprotonated states of
the titratable residue in the protein and of the model compound (a blocked amino acid) in
aqueous solution, respectively. As discussed in more detail by Mongan et al. [1], Equation
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(1) is based on the division of the total transition free energy into electrostatic and non-
electrostatic components. The non-electrostatic components, including the free energy of the
bond between the proton and the titratable residue, and the proton solvation free energy are
assumed to cancel out between the titratable residue in the protein and in aqueous solution.
In the current model the electrostatic components of the free energy ΔFele,w is the difference
in the electrostatic energy calculated with the charges of the current state and the charges of
the proposed state. Van der Waals radii are not changed during titration.

In the grand canonical ensemble of protons the ratio of the protonated and deprotonated
states of a titratable residue at a given pH is exp(−βΔF), where ΔF is given by Equation 1.
Here, β = 1/kBT. Changes of the protonation states of the titratable residue through the
Metropolis scheme [64] are carried out on the basis of this ratio. The transition probability
w(d → p) from the deprotonated state to the protonated state is defined by [1, 25]

(2)

If the transition is accepted MD simulations are continued with the new protonation state,
and if it is rejected MD simulations are continued with the old protonation state.

B. Replica exchanges in the pH space
In order to realize effective sampling of protonation states in constant pH simulations, we
couple the constant pH algorithm with the REM. Let us consider M non-interacting replicas
of a system, where the replica i (i = 1, ···, M) has a coordinate vector qi and a momentum
vector pi at a temperature T and a pH value of pHl (l = 1, ···, M) in the grand canonical

ensemble of protons. Moreover, the system has Nt titratable residues, and  titratable
residues are protonated in the replica i. In our new replica-exchange method, we exchange
pH values between replicas instead of temperatures which are exchanged between replicas
in the original REM. These exchanges are carried out so that detailed balance condition is
satisfied for all exchanges. For an exchange between the replica i at pHl and the replica j at
pHm, the detailed balance condition is defined by

(3)

where P is the equilibrium probability, , and w is the transition
probability. In the grand canonical ensemble of protons, the equilibrium probability P with a
kinetic energy K and a potential energy V at the temperature T is given by [65]

(4)

where Ξ is the grand canonical partition function. From Eqs. (3) and (4), the ratio of the
transition probabilities is calculated from

(5)

and
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(6)

The exchange probability is obtained as

(7)

Note that acceptance ratio of pH exchanges between replicas decreases exponentially with
the difference of the two pH values as seen from these equations. Therefore, the pH values
at which the simulations are performed must be empirically adjusted to keep sufficient
acceptance ratio, for example, more than 20 %.

We remark that a change in protonation states should not be attempted when a replica
exchange trial was performed in order to keep the replica-exchange Markov chain
uncoupled from the constant pH Markov chain.

C. Simulation protocols
Our constant pH method was implemented within the program CHARMM [61]. The
CHARMM 22 force field [62] was employed. We employed the GB/SA model [66, 67].
More details about the implicit solvent model are given in Section II E. During the constant
pH MD simulations the SHAKE algorithm [68] was used to constrain bond lengths with
hydrogen atoms. The time step was taken to be 1.0 fs. The temperature of 300 K was
maintained with the Nosé-Hoover thermostat [69–71]. Electrostatic and vdW interactions
were truncated with a switching function that starts at 16 Å and ends at 18Å.

Trials of changing protonation states were performed every 10 MD steps. Trials to exchange
replicas were performed every 50 MD steps.

D. Protonation State Models
The following groups were treated as titratable in our constant pH simulations: aspartate,
glutamate, histidine, lysine and tyrosine. Following Mongan et al. [1], the only difference
between the protonated and deprotonated states was in the charge distributions. The bonded
and van der Waals parameters are those corresponding to the protonated species. Thus, even
in the deprotonated state the groups contain a hydrogen atom which has a van der Waals
radius of the protonated species, and a non-zero mass. Mongan et al. [1] discussed this
approximation in their original constant pH paper and argued that this approximation does
not substantially affect the results. However, in the future we will replace this model with a
more realistic model in which van der Waals radii and mass are changed as well. The
charges of the titratable residue atoms in the protonated and deprotonated states were taken
from Ref. [30] for the CHARMM 22 parameter set.

E. GB/SA model
We employed the GB/SA model [66, 67] as the implicit solvent model for our simulations.
In the GB/SA model, the total solvation free energy Gsolv is given by the sum of a
generalized-Born term GGB and a solvent accessible surface area term GSA:

(8)

The generalized-Born term GGB is defined by
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(9)

where εs is the dielectric constant of bulk water (we took εs = 80.0), Qi is the partial charge
of the atom i, rij is the distance between the atoms i and j, , αi is the so-called

Born radius of the atom i, and . The Born radii were calculated from the GB
molecular volume method (GBMV2) [72]. The solvent accessible surface area term GSA is
defined by

(10)

where Ak is the total solvent-accessible surface area of the atom k and σk is an empirically
determined proportionality constant, which was taken to be 20.0 cal/mol/Å2 as suggested in
[30].

F. Calculation of ΔFele,w

To perform constant pH simulations the free energy differences ΔFele,w in Eq. (1) of
reference compounds need to be provided. As the reference compounds we employed amino
acids, Asp, Glu, His, Lys, and Tyr with their N-termini and C-termini blocked by the acetyl
groups and the N-methyl groups, respectively. The free energy differences ΔFele,w were
determined following procedure in Ref. [1]; constant pH simulations were performed for 2.5
ns after the equilibration of 0.5 ns for an arbitrary value of ΔFele,w. In an iterative fashion,
ΔFele,w was adjusted until the populations of the protonated and deprotonated states
obtained at pH = pKa,w were equal. For all of the reference compounds we list the calculated
free energy differences ΔFele,w at T=300 K in Table I.

In constant pH simulations of the reference compound only one group is titrated. Thus, the
values of ΔFele,w obtained through the constant pH simulations should coincide with the
results obtained from thermodynamic integration (TI):

(11)

Here λ is the coupling parameter between the protonated and deprotonated states of the
titratable residue, and Vele is the electrostatic potential energy. When the electrostatic
potential energies of the protonated and the deprotonation state are described by Vele,p and
Vele,d, respectively, the potential energy Vele (λ) can be defined as

(12)

We evaluated the free energy difference ΔFele,w in Eq. (11) for all titratable residues by
performing REM simulations in the λ space for 3.0 ns including 0.5 ns equilibration. The
number of replicas was 8 with equal increments 1/7 of λ. Trials of replica exchanges were
carried out every 500 fs. The free energy differences ΔFele,w calculated from Eq. (11) were
in good agreement with those calculated from the adjusting process for all of the titratable
residues. The largest observed difference between the two free energy differences was less
than 0.15 kcal/mol.
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III. RESULTS AND DISCUSSION
A. Blocked aspartic acid

As the first model system for testing the performance and accuracy of PHREM we use the
blocked aspartic acid. We compared results of simulations with the original method, PHMD,
with those obtained with PHREM. For PHREM simulations we used 8 replicas at pH values
ranging from 1 to 8 in increments of 1. The PHMD simulations were also performed at pH
values ranging from 1 to 8 with an increment of 1. All simulations were carried out for 4.5
ns after the equilibration of 0.5 ns.

Figure 1 shows the deprotonated fraction of the titratable residue Asp at 300 K obtained
from the PHMD and PHREM simulations. Two different initial conformations of the Asp
system were employed. For each initial conformation the PHMD and PHREM simulations
were performed. Red lines in this figure are titration curves based on the Henderson-
Hasselbalch (HH) equation, and these curves are expressed by

(13)

where fd is the deprotonated fraction of the titratable residue and for an Asp residue pKa =
4.0 (Table I).

This equation is valid as long as the titratable group interacts negligibly with other titratable
groups. For the case of a single titratable residue this is fulfilled. By comparing the
simulation results with this equation we can evaluate the accuracy of the calculations. Figure
1 indicates that deprotonated fractions obtained with both the PHMD and PHREM
simulations agree well with this equation. Thus, for simple systems such as a single
titratable residue in aqueous solution accurate results can be obtained even without the use
of PHREM.

For a titratable group that has no interaction or weak interactions with other titratable
groups, the pKa can be calculated from constant pH MD simulations by rewriting the
equation (13) as follows:

(14)

Here fd(t) represents the deprotonated fraction obtained as an average from time 0 to the
time t, and the pKa(t) is the corresponding time series of pKa values. pKa(t) was calculated
from the deprotonated fractions fd(t) for each pH value according to Eq. (14). pH dependent
pKa(t) values for the blocked Asp residue are for each initial conformation shown in Fig. 2.
The predicted pKa values obtained from the deprotonated fractions at pH values that were
far from 4.0 were converging more slowly. This is because the frequency of changing the
protonation state is smaller when the pH of the system is farther from the pKa value, and it is
difficult to sample changes of the protonation states sufficiently. Figure 2 shows that the pKa
values obtained with the PHREM simulations were converging faster than those obtained
with the PHMD simulations, suggesting that PHREM provides more effective sampling of
the protonation states than PHMD.

Figure 2(c) indicates that the pKa value obtained with the PHMD simulation at pH = 7.0 was
shifted from 4.0. This is because the proton of the Asp residue became trapped in the anti
location. This is an artifact caused by the fact that the zero charge “ghost” proton was
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employed to describe the deprotonated state. Because it has zero charge, this “ghost” proton
can more easily become trapped in some conformations. In the protonated state, the syn
conformation is much more favorable than the anti conformation. However, if the proton
gets trapped in the anti conformation, the deprotonated state appears to be more favorable
than the protonated state. In the PHREM simulations, however, Asp readily escaped from
the anti conformation due to pH exchanges between replicas, shortening the convergence
times.

B. Snake Cardiotoxin
We employed cardiotoxin V from Naja naja atra (CTX A5) to test the PHREM algorithm.
CTX A5 has 62 residues and only four ionizable residues, His4, Glu17, Asp42, and Asp59.
The pKa values of these residues are available experimentally [73, 74]. To increase
conformational sampling, and to test the accuracy of the simulations we generated six initial
conformations, labeled IC1-6. These initial conformations were generated starting from the
pdb structure in the 1CVO PDB file [75]. To generate conformations IC1-6, six different
seed numbers were used to assign initial velocities during the heating process. The heating
to the temperature of 300 K was 100 ps long. The PHMD and PHREM simulations were 3
ns long including 0.5 ns equilibration for each initial conformation. The simulations were
performed at 16 different pH values which ranged from 1.0 to 8.5 with an increment of 0.5.

The predicted pKa values and experimental pKa values of the four ionizable residues are
listed in Table II. The pKa values were calculated through the fitting of the deprotonated
fractions to the Hill equation:

(15)

where nH is the Hill coefficient. The pKa values and Hill coefficients in Table II were
obtained through the following averaging methods:

• Method I: The fittings were performed separately for each simulation (IC1-6), and
the averages of the six pKa values and of six Hill coefficients were taken to be the
predicted values. The physical meaning of the averages obtained with Method I are
the most probable pKa values and Hill coefficients that would be obtained from a
single set of short MD simulation performed at different pH values.

• Method II: The deprotonated fractions were averaged over the six constant pH
simulations (IC1-6). The fittings were performed based on the averaged
deprotonated fractions, and pKa values and Hill coefficients determined only once.
This approach corresponds more closely to the titration experiments which
effectively measure the ensemble averaged deprotonated fractions. We note that
with Method II, the statistical errors of the deprotonated fractions are not taken into
account during the fitting procedure. The Newton’s method was employed to
perform non-linear least square fitting for Method I and Method II.

• Method III: this method is the same as Method II, however, the statistical errors of
the deprotonated fractions (based on the six simulations, IC1-6) are taken into
account during the fitting procedure. If the error was smaller than 0.01, we set the
error to 0.01. This is due to the fact that the systematic errors due to uncertainties in
the forcefield, approximations in the method, and possibly insufficient sampling are
not accounted for. The uncertainties in the errors are the reason why we present
both Method II and Method III. Method II will give equal statistical weight to all
points, while Method III will weight them according to the error. To fit the data
points in Method III, χ2 that takes into account errors on each data points is
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minimized with respect to fit parameters pKa and nH using the gradient search
method implemented in package ROOT [76].

For Method I, we determined the root-mean-square deviation of pKa values and Hill
coefficients

(16)

Here, Ai is a pKa value or a Hill coefficient obtained from a single set of simulations, and Ā
is the average of Ai, determined with method I. For Method II, as a measurement of the
scattering of pKa values and Hill coefficients we determines the modified root-mean-square
deviation

(17)

Here, Ā′ is the pKa value or Hill coefficient determined with Method II. Ais are the same as
in Eq. 16. With Method III the errors on the fit parameters are computed using the parabolic
approximation from the shape of the χ2 [77]. The root-mean-square deviations of individual
pKa values and of Hill coefficients obtained with Method I and Method II, as well as the
errors obtained with Method III are given in Table II.

The pKa values of His4, Glu17 and Asp59 obtained with the two constant pH methods were
within 0.3 pH units of each other. The difference of the pKa value of Asp42 obtained with
the two constant pH methods was larger than in other residues. The pKa value obtained with
the PHREM simulations was closer to the experimental value than the pKa obtained with the
PHMD simulations. For Method I, the Hill coefficients obtained with the two methods were
close to each other for His4 and Glu17, but differed considerably for Asp42 and Asp59. On
the other hand, the differences of the calculated Hill coefficients were not large when
Method II and Method III were used, suggesting that the averaging method used does impact
on the results.

The titration curves obtained from individual PHREM and PHMD simulations (Method I)
are shown in Figs. 3 and 4, respectively. For the PHMD simulations, both the individual data
points as well as the fitting curves exhibit more scatter than the PHREM data points and the
fitting curves, suggesting a better convergence of the data obtained with the PHREM
method. Table II is also showing that pKa values and Hill coefficients obtained from the
PHMD simulations had larger scatter than those obtained with PHREM. For the PHREM
simulations the deprotonated fractions exhibit very small or no noticeable scatter from the
fitting curves in Fig. 3 suggesting an excellent convergence of individual simulations.
However, for three of the four titratable residues, the fitting curves that correspond to
different initial conformations are shifted from each other. This suggests that global
convergence is not achieved, and that the results are dependent on the initial conformation.
Therefore, more accurate results will be expected through additional sampling, possibly
through the coupling of PHREM with other methods that increase conformational sampling
such as the self-guided Langevin dynamics method, or the temperature REM.

Titration curves obtained with Method III are shown in Figs. 5 and 6. The data points
obtained with PHREM method are in much better agreement with the fitting function, than
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the data points obtained with the PHMD simulations. The χ2 values, which are a measure of
the dispersion of the data points are much smaller for PHREM simulations than for PHMD
simulations.

One may ask whether the smoothness of the individual titration curves obtained with the
PHREM method in Figs. 3 and 5 is due to the strong coupling between the replicas which
could end up keeping them confined to the same conformational region. In order to
investigate this, the principle component analysis (PCA) [78] was employed. This PCA was
performed with respect to the Cα atoms in CTX A5 as follows: First, all structures (Cα
atoms) in the trajectory of the PHREM and PHMD simulations starting from the same IC
were superposed by the rigid translations and rigid rotations on the IC. This superposition
was performed to remove the translational and rotational degrees of freedom. From these
superposed structures, the variance-covariance matrix Sij was calculated. This variance-
covariance matrix Sij is given by

(18)

where qi is the coordinate of the Cα atoms. The Sij matrix was determined based on
structures resulting from 2.5 ns long simulations at all 16 pH values, for IC1, and for IC2.
We also performed the same analysis on structures taken during all of the simulations, i.e.,
2.5 ns long simulations at all 16 pH values and for all ICs. For this latest analysis, the
structure used for the alignment was the IC1 structure. The first and second principal
component axes were defined as the eigenvectors with the largest and second-largest
eigenvalues, respectively. The ith principal component of a structure is the inner product of
ith eigenvectors and coordinate vector (qi − 〈qi〉). In Figure 7 we show the distributions of
the first and second principal components in the PHREM and PHMD simulations starting
from IC1 and IC2 as well as for all ICs. The figure suggests that the PHREM and the PHMD
methods have the same effectiveness of conformational samplings.

To investigate this issue further, we look in detail into the coupling between conformations
and protonation states of one of the titratable residues in PHMD and PHREM simulations.
We take an example of His4 at pH = 4.0. The deprotonated fraction of His4 at pH = 4.0
obtained from the PHMD simulation with IC1 was almost zero, as shown in Fig. 4(a). The
time series of the distances between the C atom of C-terminus and the Nδ atom of His4 is
shown (Fig. 8). In simulations with the PHMD at pH = 4.0, and with the initial conformation
IC1, this distance was approximately 3.3 Å. Because the C-terminus is negatively charged,
the probability of deprotonation of His4 was small, and the protonation state was fixed to the
protonated form. This in turn resulted in favoring of conformations with short distances
between these two atoms. In the PHREM simulation at pH = 4.0 with IC1, due to the ability
to exchange conformations with replicas simulated at other pH values, the distance between
these two atoms varied, as shown in Fig. 8(a). When the distance was larger than 6.0 Å, the
deprotonated form was favored as shown in Fig. 8(c). This in turn allowed His4 to sample
the deprotonated states even at distances of 3.3 Å. Figures 8(c) and (d) thus clearly
demonstrate how replica-exchange methodology can increase the efficiency of sampling of
protonation and conformational states for a given pH value. This increase in sampling
results in smoother titration curves in Fig. 3.

To estimate the speed of convergence of simulations we examined the time series of the
average of the predicted pKa values for the titratable residues of CTX A5 in Figs. 9 and 10.
From Eq. (15), the predicted pKa values are given by
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(19)

From this equation, pKa(t) is obtained from the averaged deprotonated fraction (fd(t)) from 0
to the time t at the corresponding pH value for each initial conformation. Each Hill
coefficient nH in Eq. (19) was estimated from the entire 2.5 ns simulation. The predicted
pKa(t) values were then averaged over six PHREM/PHMD simulations started with the six
initial conformations (averaging Method I). Figures 9 and 10 are showing the results from
the PHREM simulations and the PHMD simulations, respectively, with the averaging
Method I. If Method II was used to perform the averaging, the pKa(t) values are shown in
Figures 11 and 12 for the PHREM simulations and the PHMD simulations, respectively. We
employed pH values 4.0–5.0 for His4, 3.5–4.5 for Glu17, 1.0–2.0 for Asp42, and 1.0–2.0 for
Asp59 in these figures. These pH values are in the neighborhood of the predicted pKa values
obtained from the PHREM and PHMD simulations (see Table II), and thus the sampling of
both protonation states is high. Accurate pKa values could not be obtained from simulations
at pH values which were far from the pKa value, because the protonation states rarely
changed.

Figs. 9 and 10 show that the pKa values obtained from individual simulations with PHREM
for all titratable residues of CTX A5 converged faster than those obtained with the PHMD
simulations. Moreover, the predicted pKa values obtained from the PHREM simulations at
different pH values coincide, suggesting that the sampling in the pH space has converged. If
Method II was used for averaging (Figs. 11 and 12), the pKa values appear to converge
faster than with method I, however, the predicted pKa values obtained at different pH values
still do not coincide, especially in case of Asp42 and Asp59.

C. Turkey ovomucoid third domain
We employed turkey ovomucoid third domain (OMTKY3) to compare PHREM with PHMD
for a more complicated system. OMTKY3 has thirteen ionizable residues, and both the pKa
values and the Hill coefficients of these ionizable residues are available experimentally [79,
80]. We performed constant pH MD simulations in two pH regions, the low pH region and
the high pH region. The division into two regions is not necessary, however, by using two
pH regions the number of required replicas in the PHREM simulation can be cut in half.
However, two PHREM simulations, one for each pH region need to be performed. The
following residues were modeled as titratable in the simulations in the low pH region: Asp7,
Glu10, Glu19, Asp27, Glu42, His52, as well as the N-terminus and the C-terminus. All of
the basic residues were fixed to the protonated states during these simulations. In the
simulations in the high pH region, the following residues were modeled as titratable: Tyr11,
Lys13, Tyr20, Lys29, Tyr31, Lys34, and Lys55, His52 as well as the N-terminus. The
protonation states of the acidic residues were fixed to the deprotonated states during these
simulations. Six initial conformations were prepared for PHREM and PHMD simulations in
each pH region. These were obtained by equilibrating the model 1 structure in the 1OMT
PDB file [81] for 100 ps at 300 K with different initial velocities. Additional simulation
details were as described in the Methods section.

Both the PHREM and PHMD simulations were run for 3.0 ns including 0.5 ns equilibration.
In the low pH region, the PHREM and PHMD simulations were carried out at 16 different
pH values which ranged from 1.0 to 8.5 with an increment of 0.5 for each of the six initial
conformations. In the high pH region, the PHREM and PHMD simulations were carried out
at 16 different pH values which ranged from 6.0 to 13.5 with an increment of 0.5.
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The predicted and experimental pKa values and Hill coefficients of the ionizable residues in
the low pH region and the high pH region are shown in tables III and IV, respectively.
Results with Method I, Method II and Method III for calculation of the pKa values and Hill
coefficients are shown. The pKa values and Hill coefficients predicted for OMTKY3
displayed the same trends as the pKa values and Hill coefficients predicted in the case of
CTX A5; for most residues the difference between the predicted pKa values obtained from
the PHREM and PHMD simulations were small, i.e., mostly less than 0.3 pKa units with the
three averaging methods. The largest observed difference was for Lys13 (0.4 pKa units) with
Method III. For some residues, the Hill coefficients predicted with Method I differed
substantially between PHMD and PHREM methods, while the Hill coefficients predicted
with Method II and Method III were comparable between PHMD and PHREM. However,
the Hill coefficients obtained from the PHMD simulations had larger scatter compared to
those obtained with the PHREM simulations. This is due to the fact that individual
simulations are better converged with PHREM than with PHMD. We note that the pKa
value for Tyr31 could not be estimated because the residue titrated outside the high pH
region. The same was true for Tyr11, but only for the PHMD simulations.

We employ the RMSD to estimate the difference between results obtained from simulations
and experimental data. This RMSD R is calculated from

(20)

where N is the number of ionizable residues, Ai is the predicted pKa value or Hill coefficient

of the ionizable residue i obtained from simulations, and  is the experimental pKa value or
Hill coefficient of the ionizable residue i. RMDS values with respect to pKa values and Hill
coefficients are listed in Table V. As shown in this table, the predicted pKa values obtained
with both PHREM and PHMD simulations displayed a similar average RMSD, of about 1,
with all averaging methods. With Method I, the Hill coefficients predicted from PHREM
simulations were in much better agreement with the experimental data than those obtained
from the PHMD simulations. With Method II and Method III, the Hill coefficients predicted
with PHREM and PHMD were of comparable accuracy. Furthermore, the pKa values and
Hill coefficients predicted with Method II and Method III were comparable to each other.

IV. CONCLUSIONS
We propose a new constant pH algorithm that is a combination of the constant pH algorithm
by Mongan et. al. [23] with the replica-exchange method. In this algorithm, replicas
exchange their pH values instead of their temperatures. We applied PHREM to proteins, and
compared the results obtained with PHREM and PHMD. To increase sampling, multiple
simulations started with six different initial velocities were performed with both PHREM
and PHMD methods.

When pKa values and Hill coefficients were determined from individual simulations and the
resulting pKa values and Hill coefficients then averaged (averaging Method I) the PHREM
yielded significantly better Hill coefficients, and in some cases better pKa values than the
PHMD results. This suggests that if only one set of constant pH simulations is performed, on
average, the PHREM will yield better Hill coefficients. However, when the fractions of
deprotonated species for each pH value were averaged between the six simulations started
with different initial velocities, and the pKa values and Hill coefficients determined based on
those averages (averaging Method II and III), the Hill coefficients determined with PHREM
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and PHMD were of comparable accuracy. Methods II and III differed among each other in
the way errors were treated during the fitting procedure. Both methods yielded comparable
results. The result suggests that the accuracy of predicted pKa values and Hill coefficients
can be improved by running multiple simulations, and by using Method II or III to do the
averaging. However, from the observed lower scatter of the calculated pKa values and Hill
coefficients, as well as faster convergence, we conclude that the PHREM method is more
efficient than the PHMD method.

In individual simulations at a given pH value, the PHREM realizes more effective sampling
of both conformations and protonation states of titratable residues than the PHMD. This is
because conformations and protonation states are coupled. When replicas are exchanged,
new conformations and new protonation states can be sampled. However, the increase in
conformational sampling offered through the pH replica exchange is, in some cases, still
insufficient for accurate pKa calculations. In the future we will combine the PHREM with
other methods for enhanced conformational sampling in order to obtain more accurate pKa
values and Hill coefficients, as well as apply this method to more challenging systems, such
as lysozyme or variants of staphylococcal nuclease with internal ionizable groups.

Acknowledgments
This research was supported by the Intramural Research Program of the NIH, NHLBI. A.D. was partially supported
by NIH Grant RO1 GM073838 to Bertrand Garcia-Moreno at Johns Hopkins University. The authors thank
Bertrand Garcia-Moreno for comments on the manuscript, and Petar Maksimovic for help with the program ROOT.

References
1. Mongan J, Case DA, McCammon JA. Constant pH molecular dynamics in generalized Born implicit

solvent. J Comput Chem. 2004; 25:2038–2048. [PubMed: 15481090]

2. García-Moreno B. Adaptations of proteins to cellular and subcellular pH. J Biol. 2009; 8:98.
[PubMed: 20017887]

3. Denisov VP, Schlessman JL, García-Moreno B, Halle B. Stabilization of internal charges in a
protein: Water penetration or conformational change? Biophys J. 2004; 87:3982–3994. [PubMed:
15377517]

4. Karp DA, Gittis AG Gittis R, Lattman EE, García-Moreno B. Structural and thermodynamic
characterization of local conformational changes triggered by the ionization of an internal residue in
a protein. Biophys J. 2004; 86:86–87.

5. Damjanović A, Wu X, García-Moreno B, Brooks BR. Backbone relaxation coupled to the ionization
of internal groups in proteins: A self-guided langevin dynamics study. Biophys J. 2008; 95:4091–
4101. [PubMed: 18641078]

6. Karp DA, Stahley MA, García-Moreno EB. Conformational consequences of ionization of Lys,
Asp, and Glu buried at position 66 in Staphylococcal Nuclease. Biochemistry. 2010; 49:4138–4146.
[PubMed: 20329780]

7. Tanford C, Kirkwood JG. Theory of protein titration curves. I. General equations for impenetrable
spheres. J Am Chem Soc. 1957; 79:5333–5339.

8. Bashford D, Karplus M. pKas of ionizable groups in proteins - atomic detail from a continuum
electrostatic model. Biochemistry. 1990; 29:10219–10225. [PubMed: 2271649]

9. Nicholls A, Honig B. A rapid finite difference algorithm, utilizing successive over-relaxation to
solve the Poisson-Boltzmann equation. J Comput Chem. 1991; 12:435–445.

10. Antosiewicz J, McCammon JA, Gilson MK. Prediction of pH-dependent properties of proteins. J
Mol Biol. 1994; 238:415–436. [PubMed: 8176733]

11. Madura JD, Briggs JM, Wade RC, Davis ME, Luty BA, Ilin A, Antosiewicz J, Gilson MK,
Bagheri B, Scott LR, McCammon JA. Electrostatics and diffusion of molecules in solution-
simulations with the university-of-houston brownian dynamics program. Comput Phys Commun.
1995; 91:57–95.

Itoh et al. Page 13

Proteins. Author manuscript; available in PMC 2012 June 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



12. Li H, Robertson AD, Jensen JH. Very fast empirical prediction and rationalization of protein pK(a)
values. Proteins: Struct Funct Bio. 2005; 61:704–721.

13. García-Moreno BE, Dwyer JJ, Gittis AG, Lattman EE, Spencer DS, Stites WE. Experimental
measurement of the effective dielectric in the hydrophobic core of a protein. Biophys Chem. 1997;
64:211–224. [PubMed: 9127946]

14. Schutz CN, Warshel A. What are the dielectric “constants” of proteins and how to validate
electrostatic models? Proteins: Struct Funct Gen. 2001; 44:400–417.

15. Fitch CA, Karp DA, Lee KK, Stites WE, Lattman EE, García-Moreno B. Experimental pK(a)
values of buried residues: Analysis with continuum methods and role of water penetration.
Biophys J. 2002; 82:3289–3304. [PubMed: 12023252]

16. Isom DG, Castañeda CA, Cannon BR, Velu PD, García-Moreno B. to be published in Proc Natl
Acad Sci USA.

17. Antosiewicz J, McCammon JA, Gilson MK. The determinants of pK(a)s in proteins. Biochemistry.
1996; 35:7819–7833. [PubMed: 8672483]

18. van Vlijmen HWT, Schaefer M, Karplus M. Improving the accuracy of protein pK(a) calculations:
Conformational averaging versus the average structure. Proteins: Struct Func Gen. 1998; 33:145–
158.

19. Georgescu RE, Alexov EG, Gunner MR. Combining conformational flexibility and continuum
electrostatics for calculating pK(a)s in proteins. Biophys J. 2002; 83:1731–1748. [PubMed:
12324397]

20. Simonson T, Carlsson J, Case DA. Proton binding to proteins: pK(a) calculations with explicit and
implicit solvent models. J Am Chem Soc. 2004; 126:4167–4180. [PubMed: 15053606]

21. Ghosh N, Cui Q. pK(a) of residue 66 in Staphylococal nuclease. I. Insights from QM/MM
simulations with conventional sampling. J Phys Chem B. 2008; 112:8387–8397. [PubMed:
18540669]

22. Zheng L, Chen M, Yang W. Random walk in orthogonal space to achieve efficient free-energy
simulation of complex systems. Proc Natl Acad Sci USA. 2008; 105:20227–20232. [PubMed:
19075242]

23. Mongan J, Case DA. Biomolecular simulations at constant pH. Curr Op Struct Biol. 2005; 15:157–
163.

24. Dlugosz M, Antosiewicz JM. Constant-pH molecular dynamics simulations: a test case of succinic
acid. Chem Phys. 2004; 302:161–170.

25. Bürgi R, Kollman PA, van Gunsteren WF. Simulating proteins at constant pH: An approach
combining molecular dynamics and Monte Carlo simulation. Proteins Struct Func Bio. 2002;
47:469–480.

26. Baptista AM, Teixeira VH, Soares CM. Constant-pH molecular dynamics using stochastic
titration. J Chem Phys. 2002; 117:4184–4200.

27. Baptista AM, Martel PJ, Petersen SB. Simulation of protein conformational freedom as a function
of pH: Constant-pH molecular dynamics using implicit titration. Proteins Struct Func Gen. 1997;
27:523–544.

28. Mertz JE, Pettitt BM. Molecular-dynamics at a constant pH. Int J Supercomput Appl High Perform
Comput. 1994; 8:47–53.

29. Börjesson U, Hünenberger PH. Explicit-solvent molecular dynamics simulation at constant pH:
Methodology and application to small amines. J Chem Phys. 2001; 114:9706–9719.

30. Lee MS, Salsbury FR Jr, Brooks CL III. Constant-pH molecular dynamics using continuous
titration coordinates. Proteins Struct Func Bio. 2004; 56:738–752.

31. Khandogin J, Brooks CL III. Constant pH molecular dynamics with proton tautomerism. Biophys
J. 2005; 89:141–157. [PubMed: 15863480]

32. Donnini S, Tegeler F, Groenhof G, Grubmüller H. Constant pH Molecular Dynamics in Explicit
Solvent with λ-Dynamics. J Chem Theory Comput. 2011; 7(6):1962–1978. [PubMed: 21687785]

33. Damjanović A, Miller BT, Wenaus TJ, Maksimović P, García-Moreno BE, Brooks BR. Open
science grid study of the coupling between conformation and water content in the interior of a
protein. J Chem Inf Model. 2008; 48:2021–2029. [PubMed: 18834189]

Itoh et al. Page 14

Proteins. Author manuscript; available in PMC 2012 June 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



34. Damjanović A, Brooks BR, García-Moreno B. Conformational relaxation and water penetration
coupled to ionization of internal groups in proteins. J Phys Chem. 2011; 115:4042–4053.

35. Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci USA. 2002; 99:12562–
12566. [PubMed: 12271136]

36. Hummer G, Kevrekidis IG. Coarse molecular dynamics of a peptide fragment: Free energy,
kinetics, and long-time dynamics computations. J Chem Phys. 2003; 118:10762–10773.

37. Bahar I, Rader AJ. Coarse-grained normal mode analysis in structural biology. Curr Op Struct
Biol. 2005; 15:586–592.

38. Zheng W, Brooks BR. Normal-modes-based prediction of protein conformational changes guided
by distance constraints. Biophys J. 2005; 88:3109–3117. [PubMed: 15722427]

39. Chu JW, Voth GA. Allostery of actin filaments: Molecular dynamics simulations and coarse-
grained analysis. Proc Natl Acad Sci USA. 2005; 102:13111–13116. [PubMed: 16135566]

40. Torrie GM, Valleau JP. Nonphysical sampling distributions in Monte Carlo free-energy estimation:
Umbrella sampling. J Comput Phys. 1977; 23:187–199.

41. Grubmüller H. Predicting slow structural transitions in macromolecular systems - conformational
flooding. Phys Rev E. 1995; 52:2893–2096.

42. Voter AF. Hyperdynamics: Accelerated molecular dynamics of infrequent events. Phys Rev Lett.
1997; 78:3908–3911.

43. Hamelberg D, Mongan J, McCammon JA. Accelerated molecular dynamics: A promising and
efficient simulation method for biomolecules. J Chem Phys. 2004; 120:11919–11929. [PubMed:
15268227]

44. Mitsutake A, Sugita Y, Okamoto Y. Generalized-ensemble algorithms for molecular simulations of
biopolymers. Biopolymers. 2001; 60:96–123. [PubMed: 11455545]

45. Itoh SG, Okumura H, Okamoto Y. Generalized-ensemble algorithms for molecular dynamics
simulations. Mol Sim. 2007; 33:47–56.

46. Hukushima K, Nemoto K. Exchange Monte Carlo method and application to spin glass
simulations. J Phys Soc Jpn. 1996; 65:1604–1608.

47. Sugita Y, Okamoto Y. Replica-exchange molecular dynamics method for protein folding. Chem
Phys Lett. 1999; 314:141–151.

48. Itoh SG, Okamoto Y. Theoretical studies of transition states by the multioverlap molecular
dynamics methods. J Chem Phys. 2006; 124:104103. [PubMed: 16542064]

49. Itoh SG, Okamoto Y. Effective sampling in the configurational space of a small peptide by the
multicanonical-multioverlap algorithm. Phys Rev E. 2007; 76:026705.

50. Itoh SG, Okumura H, Okamoto Y. Replica-exchange method in van der Waals radius space:
Overcoming steric restrictions for biomolecules. J Chem Phys. 2010; 132:134105. [PubMed:
20387919]

51. Sanbonmatsu KY, García AE. Structure of Met-enkephalin in explicit aqueous solution using
replica exchange molecular dynamics. Proteins Struct Func Gen. 2002; 46:225–234.

52. Olender R, Elber R. Calculation of classical trajectories with a very large time step: Formalism and
numerical examples. J Chem Phys. 1996; 105:9299–9315.

53. Schlitter J, Engels M, Krüger P, Jacoby E, Wollmer A. Targeted molecular-dynamics simulation of
conformational change - application to the T ↔ R transition in Insulin. Mol Sim. 1993; 10:291.

54. Izrailev S, Stepaniants S, Balsera M, Oono Y, Schulten K. Molecular dynamics study of unbinding
of the avidin-biotin complex. Biophys J. 1997; 72:1568–1581. [PubMed: 9083662]

55. Wu XW, Brooks BR. Self-guided Langevin dynamics simulation method. Chem Phys Lett. 2003;
381:512–518.

56. Khandogin J, Brooks CL III. Toward the accurate first-principles prediction of ionization equilibria
in proteins. Biochemistry. 2006; 45:9363–9373. [PubMed: 16878971]

57. Meng Y, Roitberg AE. Constant pH replica exchange molecular dynamics in biomolecules using a
discrete protonation model. J Chem Theo Comput. 2010; 6:1401–1412.

58. Williams SL, de Oliveira CA, McCammon JA. Coupling constant pH molecular dynamics with
accelerated molecular dynamics. J Chem Theory Comput. 2010; 9:560–568. [PubMed: 20148176]

Itoh et al. Page 15

Proteins. Author manuscript; available in PMC 2012 June 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



59. Wallace J, Shen JK. Predicting pKa values with continuous constant pH molecular dynamics. Meth
Enzym. 2009; 466:455–475. [PubMed: 21609872]

60. Case DA, Cheatham TE III, Darden T, Gohlke H, Luo R, Merz KM Jr, Onufriev A, Simmer-ling
C, Wang B, Woods R. The Amber biomolecular simulation programs. J Computat Chem. 2005;
26:1668–1688.

61. Brooks BR, Brooks CL III, Mackerell AD, Nilsson L, Petrella RJ, Roux B, Won Y, Archontis G,
Bartels C, Boresch S, Caflisch A, Caves L, Cui Q, Dinner AR, Feig M, Fischer S, Gao J,
Hodoscek M, Im W, Kuczera K, Lazaridis T, Ma J, Ovchinnikov V, Paci E, Pastor RW, Post CB,
Pu JZ, Schaefer M, Tidor B, Venable RM, Woodcock HL, Wu X, Yang W, York DM, Karplus M.
CHARMM: The biomolecular simulation program. J Comp Chem. 2009; 30:1545–1614.
[PubMed: 19444816]

62. MacKerell AD Jr, Bashford D, Bellott M, Dunbrack RL Jr, Evanseck JD, Field MJ, Fischer S, Gao
J, Guo H, Ha S, Joseph-McCarthy D, Kuchnir L, Kuczera K, Lau FTK, Mattos C, Michnick S,
Ngo T, Nguyen DT, Prodhom B, Reiher WE III, Roux B, Schlenkrich M, Smith JC, Stote R,
Straub J, Watanabe M, Wiórkiewicz-Kuczera J, Yin D, Karplus M. All-atom empirical potential
for molecular modeling and dynamics studies of proteins. J Phys Chem B. 1998; 102:3586–3616.

63. Shen JK, Wallace JA. Continuous constant pH molecular dynamics in explicit solvent with pH-
based replica exchange. Journal of Chemical Theory and Computation. in press.

64. Metropolis N, Rosenbluth AW, Rosenbluth MN, Teller AH, Teller E. Equation of state
calculations by fast computing machines. J Chem Phys. 1953; 21:1087–1092.

65. Yamaguchi T, Kiuchi T, Matsuoka T, Koda S. Multi-pH Monte Carlo simulation of coil-globule
transition of weak polyelectrolyte. Bull Chem Soc Jpn. 2005; 78:2098–2104.

66. Still WC, Tempczyk A, Hawley RC, Hendrickson TJ. Semianalytical treatment of solvation for
molecular mechanics and dynamics. J Am Chem Soc. 1990; 112:6127–6129.

67. Qiu D, Shenkin PS, Hollinger FP, Still WC. The GB/SA continuum model for solvation. A fast
analytical method for the calculation of approximate. Born radii J Phys Chem A. 1997; 101:3005–
3014.

68. van Gunsteren WF, Berendsen HJC. Algorithms for macromolecular dynamics and constraint
dynamics. Mol Phys. 1977; 34:1311–1327.

69. Nosé S. A molecular-dynamics method for simulations in the canonical ensemble. Mol Phys. 1984;
52:255–268.

70. Nosé S. A unified formulation of the constant temperature molecular-dynamics methods. J Chem
Phys. 1984; 81:511–519.

71. Hoover WG. Canonical dynamics - equilibrium phase-space distributions. Phys Rev A. 1985;
31:1695–1697. [PubMed: 9895674]

72. Lee MS, Feig M, Salsbury FR Jr, Brooks CL III. New analytic approximation to the standard
molecular volume definition and its application to generalized born calculations. J Comput Chem.
2003; 24:1348–1356. [PubMed: 12827676]

73. Chiang CM, Chien KY, Lin HJ, Lin JF, Yeh HC, Ho PL, Wu WG. Change and inactivation of
membrane phospholipid-related activity of cardiotoxin V from Taiwan cobra venom at acidic pH.
Biochemistry. 1996; 35:9167–9176. [PubMed: 8703922]

74. Chiang CM, Chang SL, Lin HJ, Wu WG. The role of acidic amino acid residues in the structural
stability of snake cardiotoxins. Biochemistry. 1996; 35:9177–9186. [PubMed: 8703923]

75. Singhal AK, Chien KY, Wu WG, Rule GS. Solution structure of cardiotoxin-V from aja-naja-atra.
Biochemistry. 1993; 32:8036–8044. [PubMed: 8347605]

76. Brun, R.; Rademakers, F. ROOT - An Object Oriented Data Analysis Framework. Nucl Inst and
Meth in Phys Res A; Proceedings AIHENP’96 Workshop; Lausanne. Sep. 1996; 1997. p. 81-86.

77. Cowan, G. Statistical data analysis. Oxford, UK: Clarendon; 1998. p. 197

78. Karplus M, Kushick JN. Method for estimating the configurational entropy of macromolecules.
Macromolecules. 1981; 14:325–332.

79. Schaller W, Robertson AD. pH, ionic-strength, and temperature dependences of ionization
equilibria for the carboxyl groups in turkey ovomucoid 3rd domain. Biochemistry. 1995; 34:4714–
4723. [PubMed: 7718577]

Itoh et al. Page 16

Proteins. Author manuscript; available in PMC 2012 June 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



80. Forsyth WR, Gilson MK, Antosiewicz J, Jaren OR, Robertson AD. Theoretical and experimental
analysis of ionization equilibria in ovomucoid third domain. Biochemistry. 1998; 37:8643–8652.
[PubMed: 9628726]

81. Hoogstraten CG, Choe S, Westler WM, Markley JL. Comparison of the accuracy of protein
solution structures derived from conventional and network-edited noesy data. Protein Science.
1995; 4:2289–2299. [PubMed: 8563625]

82. Nozaki Y, Tanford C. Examination of titration behavior. Meth Enzym. 1967; 11:715–734.

83. Kyte, J. Structure in Protein Chemistry. Garland Publishing, Inc; New York: 1995.

84. Quenouille MH. Notes on bias in estimation. Biometrika. 1956; 43:353–360.

85. Miller RG. The jackknife-a review. Biometrika. 1974; 61:1–15.

86. Berg, BA. Markov Chain Monte Carlo Simulations and Their Statistical Analysis. World
Scientific; Singapore: 2004.

Itoh et al. Page 17

Proteins. Author manuscript; available in PMC 2012 June 12.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



FIG. 1.
(a) The deprotonated fractions of the blocked Asp residue obtained from the PHREM
simulations. (b) The deprotonated fractions of the blocked Asp residue obtained from the
PHMD simulations. Open circle and square show the results of two different initial
conformations. The error bars were calculated by the jackknife method [84–86]. The number
of bins was taken to be 8 for the jackknife method. See Ref. [86] for more details on the
jackknife method. The red solid lines are the deprotonated fractions fd in Eq. (13).
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FIG. 2.
(a), (b) The time series of the pKa values for the blocked Asp residue obtained with
PHREM. The difference between (a) and (b) is the initial states. (c), (d) The time series of
the pKa values for the blocked Asp residue obtained with the PHMD simulations. The
difference between (c) and (d) is the initial states.
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FIG. 3.
The deprotonated fractions of titratable residues in CTX A5: (a) His4, (b) Glu17, (c) Asp42,
and (d) Asp59, obtained with the PHREM simulations. Red circles, blue squares, green
triangles, black open circles, magenta open squares, and cyan open triangles are showing the
results with IC1-6, respectively. The solid lines of the corresponding colors are the fitting
curves to Eq. (15) for the results with IC1-6, respectively.
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FIG. 4.
The deprotonated fractions of titratable residues in CTX A5: (a) His4, (b) Glu17, (c) Asp42,
and (d) Asp59, obtained with the PHMD simulations. Red circles, blue squares, green
triangles, black open circles, magenta open squares, and cyan open triangles are showing the
results with IC1-6, respectively. The solid lines of the corresponding colors are the fitting
curves to Eq. (15) for the results with IC1-6, respectively.
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FIG. 5.
The deprotonated fractions, averaged over simulations IC1-6, of titratable residues in CTX
A5: (a) His4, (b) Glu17, (c) Asp42, and (d) Asp59, obtained with the PHREM simulations.
The solid line is the fitting curve to Eq. (15).
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FIG. 6.
The deprotonated fractions, averaged over simulations IC1-6, of titratable residues in CTX
A5: (a) His4, (b) Glu17, (c) Asp42, and (d) Asp59, obtained with the PHMD simulations.
The solid line is the fitting curve to Eq. (15).
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FIG. 7.
The distributions of the first and second principal components in the PHREM simulations
from (a) IC1, (c) IC2, (e) all ICs. The distributions of the first and second principal
component in the PHMD simulations from (b) IC1, (d) IC2, (e) all ICs. The abscissa and
ordinate axes are the first and second principal component axes, respectively.
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FIG. 8.
The time series of the distance between the C atom of the C-terminus and the Nδ atom of
His4. These results were obtained from (a) the PHREM simulation and (b) the PHMD
simulation at pH = 4.0 with IC1. Probability distributions of the distances with protonated
states (blue solid line) and deprotonated states (red solid line). These results were estimated
from (c) the PHREM simulation and (d) the PHMD simulation at pH = 4.0 with IC1.
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FIG. 9.
The time series of the predicted pKa values obtained with the averaging Method I for (a)
His4, (b) Glu17, (c) Asp42, and (d) Asp59 of CTX A5. These results were obtained from the
PHREM simulations at the pH values which were specified in the small windows around the
pKa values.
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FIG. 10.
The time series of the predicted pKa values obtained with the averaging Method I for (a)
His4, (b) Glu17, (c) Asp42, and (d) Asp59 of CTX A5. These results were obtained from the
PHMD simulations at the pH values which were specified in the small windows around the
pKa values.
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FIG. 11.
The time series of the predicted pKa values obtained with the averaging Method II for (a)
His4, (b) Glu17, (c) Asp42, and (d) Asp59 of CTX A5. These results were obtained from the
PHREM simulations at the pH values which were specified in the small windows around the
pKa values.
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FIG. 12.
The time series of the predicted pKa values obtained with the averaging method II for (a)
His4, (b) Glu17, (c) Asp42, and (d) Asp59 of CTX A5. These results were obtained from the
PHMD simulations at the pH values which were specified in the small windows around the
pKa values.
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TABLE I

The pKa values [82, 83] and free energy differences ΔFele,w of titratable residues in aqueous solution.

Titratable residue pKa,w ΔFele,w(kcal/mol)

Asp 4.0 35.80

Glu 4.4 39.90

His-δ 6.5 −18.15

His-ε 7.1 −3.05

Lys 10.4 −27.80

Tyr 9.6 84.25

N-ter 7.5 −97.45

C-ter 3.8 48.90
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TABLE V

RMSD of calculated values from the experimentaly determined data.

pKa Hill coefficient

PHREM PHMD PHREM PHMD

Low pH region 0.97 1.03 0.09 0.91

0.97 1.06 0.19 0.26

1.00 1.05 0.18 0.21

High pH region 1.07 1.08 0.15 8.36

1.07 1.15 0.20 0.20

1.08 1.02 0.15 0.14

Whole region 1.02 1.05 0.12 5.75

1.02 1.10 0.19 0.23

1.04 1.05 0.17 0.18

Upper values, middle and lower values for each residue are calculated with Method I, Method II, and Method III respectively.
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