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Interleukin-18: The Master Regulator Driving
Destructive and Remodeling Processes in the Lungs of
Patients with Chronic Obstructive Pulmonary Disease?

Chronic obstructive pulmonary disease (COPD) is characterized
by an abnormal lung inflammatory response to inhaled noxious
particles or gas including those present in cigarette smoke.
Patients with COPD can have destructive processes (airspace en-
largement) in their lungs alongside seemingly disparate chronic
remodeling processes in their airways and pulmonary vasculature
(1, 2). However, it has not been clear whether similar or distinct
signaling pathways drive the development of the destructive versus
remodeling lung pathologies in COPD lungs. A common feature
of the pulmonary lesions associated with COPD is inflammation,
and exaggerated T helper type 1 (Th1), Th2 cytokine, and Th17
responses have been linked to COPD pathogenesis (3–7). How-
ever, it has not been clear to what extent Th1, Th2, and Th17
cytokine responses contribute to individual pathologies in COPD
lungs, or whether they interact synergistically or otherwise to pro-
mote the development of COPD. The article by Kang and col-
leagues in this issue of the Journal (pp. 1205–1217) addresses these
knowledge gaps by showing for the first time that interleukin-18
(IL-18) is an upstream, master regulator that promotes a complex
pattern of Th1 and Th17/Th2 cytokine responses in the lungs of
mice (8). The IL-18–driven increases in Th1 cytokine responses
are responsible for the airspace enlargement developing in the
IL-18 transgenic mice, whereas the IL-18–driven increases in
Th17/Th2 cytokine responses cause chronic remodeling in the
airways and pulmonary vessels in the IL-18 transgenic mice.
The authors also identify novel reciprocal regulation of the
Th1 versus Th17/Th2 cytokine responses in the lungs and the

development of the distinct lung pathologies associated with each
cytokine response.

IL-18 is produced by myeloid leukocytes and lung epithelial
cells (9) and binds to its receptor (IL-18R), which is expressed at
low levels on naive T cells. In the presence of IL-12, IL-18 acts
as a Th1 cytokine because IL-12 increases IL-18R expression
by Th1 cells, which enables IL-18 to promote Th1-cell polariza-
tion and proliferation, secretion of interferon-g (IFN-g), and
macrophage and polymorphonuclear neutrophil accumulation
in tissues (9). However, in the absence of IL-12, IL-18 induces
the release of Th2 and Th17 cytokines from activated Th1 cells
and other leukocytes (9). Prior studies have linked IL-18 to
COPD pathogenesis because IL-18 levels are increased in blood
and lung samples from patients with COPD and correlate neg-
atively with lung function (10–12), and IL-18R-a2/2 mice are
protected from cigarette smoke–induced airspace enlargement
(10). However, until now, it has not been clear whether IL-18
contributes to other COPD lung pathologies. To address this
issue, Kang and coworkers generated and evaluated dual con-
struct transgenic mice that overexpress IL-18 in a doxycycline-
inducible manner in the adult murine lung using the CC10
promoter. After 4 months of IL-18 overexpression in the
lung, the mice developed robust lung inflammation and air-
space enlargement along with impressive small fibrosis, air-
way mucus metaplasia, and vascular remodeling associated
with pulmonary hypertension and right ventricular hypertro-
phy. The authors genetically deleted IFN-g, IL-13, and IL-17A
in IL-18 transgenic mice and thereby identified activities for
IFN-g in promoting cytotoxic lymphocyte responses in the
lung, alveolar septal cell apoptosis, and airspace enlargement
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(Figure 1). Additionally, they found that: (1) IL-17A is required
for IL-18-induced increases in lung IL-13 levels; and (2) IL-17A
and IL-13 together promote lung inflammation, airway mucus
metaplasia, and airway and vascular remodeling in IL-18 trans-
genic mice (Figure 1). Kang and colleagues also found that
IFN-g reduces lung levels of IL-17A and IL-13 to thereby
abrogate IL-17A/IL-13–driven lung remodeling processes,
and IL-17A and IL-13 both lower lung levels of IFN-g
to reduce airspace enlargement in IL-18 transgenic mice
(Figure 1).

The article by Kang and colleagues is noteworthy for several
reasons. First, the investigators identify a novel master cytokine
regulator that can drive all of the key pathologies found in COPD
lungs. Second, the authors demonstrate for the first time that Th1
and Th17/Th2 cytokine responses counterregulate both each
other and the lung pathologies associated with each response
in IL-18 transgenic mice. Third, IL-18 transgenic mice represent
a new murine model of COPD characterized by robust airspace
enlargement as well as impressive COPD-like remodeling pro-
cesses in their airways and vasculature, unlike C57BL/6 wild-
type mice exposed to smoke, which is the mostly commonly used
murine model of COPD (13). Other strengths of the article are
the use of the inducible transgenic system to avoid potential
effects of IL-18 overexpression on lung development and the
targeting overexpression of IL-18 to lung epithelial cells, which
endogenously produce IL-18 in the COPD lung (11).

Future studies could address whether the increased lung lev-
els of IL-18 in IL-18 transgenic mice are of similar magnitude to
those occurring in the lungs of patients with COPD to assess
whether the results of this study are relevant to human COPD.
It would be of interest to determine whether IL-18 overexpres-
sion in macrophages would produce similar results given that
macrophages are an important source of IL-18 in COPD
lungs (11). Although this study highlights the activities of
CD41 T cells in COPD-like lung pathologies in IL-18 transgenic
mice, the mice were housed under specific pathogen-free condi-
tions and thus not stimulated by pathogen-derived antigens. It
would be interesting to determine whether the lung pathologies

in IL-18 transgenic mice would be exacerbated by infection of
their respiratory tracts with bacteria or viruses that have been
linked to exacerbations in human patients with COPD. For
reasons that are not clear, human patients with COPD vary
considerably in the extent to which they develop different lung
lesions. Future studies could address whether the latter is re-
lated to genetically or environmentally determined differences
in levels of IL-18 expression or signaling in different cells in
different compartments of the lung.

The results of the study of Kang and coworkers could have

therapeutic implications for COPD. First, they provide evidence
that monotherapy targeting either a Th1 or a Th2 cytokine might
have both deleterious and beneficial effects. Monotherapy target-
ing IFN-g might limit emphysema progression but worsen airway
and vascular remodeling, whereas monotherapy directed against
IL-13 might limit the progression of chronic remodeling pro-
cesses in the lungs but accelerate the progression of emphysema.
Second, the studies identify IL-18 as a potential upstream target
for future COPD therapeutics to limit both the destructive and
remodeling processes occurring in COPD lungs. In this respect, it
is noteworthy that neutralizing antibodies to IL-18 have efficacy
in preclinical models of inflammation and tissue injury in other
organ systems (14, 15). However, IL-18 has crucial host defense
and antitumor activities (16), and gene therapy to increase IL-18
levels in tissues protects experimental animals from infection and
tumor growth and metastasis (17, 18). Given that patients with
COPD can have infective disease exacerbations and are at in-
creased risk from developing lung cancer (19), it would be impor-
tant to determine the safety as well as the efficacy of novel
therapeutics targeting IL-18 in the lungs of patients with COPD.
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Figure 1. IL-18 drives both the destructive and

remodeling processes in the lungs of IL-18 trans-
genic mice. Novel pathways identified by Kang

and coworkers in IL-18 transgenic mice are

highlighted with red arrows and lines. Inducible

overexpression of IL-18 in the adult murine air-
way epithelium induces Th1 cytokine expression,

leading to increased cytotoxic lymphocytes re-

sponses, alveolar septal cell apoptosis, and air-

space enlargement. In addition, IL-18 drives
Th2 cytokines responses in a Th17-dependent

manner, leading to mucus metaplasia, small air-

way fibrosis, and vascular remodeling with pul-
monary hypertension and right ventricular

hypertrophy. There is also reciprocal regulation

of Th1 and Th17/Th2 cytokine responses and

downstream lung pathologies in the lungs of
IL-18 transgenic mice.
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Chronic Obstructive Pulmonary Disease Exacerbations:
Accurate and Easy Measurement Promises Much

An experiment is a question which science poses to Nature, and
a measurement is the recording of Nature’s answer.
—Max Planck, Scientific Autobiography and Other Papers

By definition, acute exacerbations of chronic obstructive pulmo-
nary disease (COPD) are themselves morbid clinical events.
However, investigators have also found that the frequency
and severity of exacerbations are associated with poor long-
term outcomes in patients with COPD, including worsened lung
function (1), a decline in health status (2), and mortality (3).
Indeed, an important benefit associated with many approved
therapies for COPD is a reduction in the frequency of exacer-
bations (4). Therefore, it is reasonable to expect that improved
tools to quantify the frequency and grade the severity of exac-
erbations of COPD might improve our ability to identify
patients at high risk for adverse outcomes and target them for
more intensive interventions.

There is consensus on the treatment of acute exacerbations (4)
with a combination of therapies including bronchodilators, sys-
temic glucocorticoids, and antibiotics. The use of short-acting

bronchodilators is a mainstay of therapy; however, there have
been no randomized trials demonstrating their efficacy, in part
because such trials would be difficult to design in an ethical man-
ner. Therefore, the evidence for this recommendation was graded
level C in the most recent Global Initiative for Chronic Obstruc-
tive Lung Disease (GOLD) guidelines (4). Systemic glucocorti-
coids have been demonstrated in randomized clinical trials to
improve lung function, reduce hypoxemia, and reduce treatment
failures, and are therefore recommended with an evidence grade
level A. Antibiotics are recommended at evidence level B for all
patients in whom all three cardinal symptoms—cough, sputum,
and dyspnea—are present, and in patients who require mechan-
ical ventilation. If only two symptoms are present, antibiotics are
recommended with evidence graded at level C. Apart from gen-
eral support and addressing comorbidities, no other therapies are
recommended in the GOLD guidelines. Clearly, well-designed
trials of novel or existing therapies in patients with COPD exac-
erbations focused on both short- and long-term outcomes are
needed to improve therapy for COPD. Such trials are hampered
by our limited ability to measure exacerbation frequency and
severity. The article by Mackay and colleagues in this issue of
the Journal (pp. 1218–1224) provides a new tool, the COPDAssess-
ment Test (CAT), that may address this limitation (5).
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