
Innovative regulatory and legislative measures to stim-
ulate and facilitate the development of new antimicrobial
drugs are needed. We discuss research approaches that
can aid regulatory decision making on the treatment of
resistant infections and minimization of resistance selec-
tion. We also outline current and future measures that reg-
ulatory agencies may employ to help control resistance and
promote drug development. Pharmacokinetic/pharmacody-
namic research models offer promising approaches to
define the determinants of resistance selection and drug
doses that optimize efficacy and reduce resistance selec-
tion. Internationally, variations exist in how regulators use
drug scheduling, subsidy restrictions, central directives,
educational guidelines, amendments to prescribing infor-
mation, and indication review. Recent consultations and
collaborations between regulators, academics, and indus-
try are welcome. Efforts to coordinate regulatory measures
would benefit from greater levels of international dialogue. 

Strategies for addressing antimicrobial drug resistance
stress the need for new drugs (1–3), and yet the rate of

drug development is in decline (Figure 1) (4). The
Infectious Diseases Society of America (IDSA) (5), the
World Health Organization (6), and other experts (7) have
drawn attention to this potentially serious threat to public
health. Possible reasons include the slow growth in antimi-
crobial drug sales, caused in part by guidelines for conser-
vative and generic drug prescribing. Resistance limits the
market life of antimicrobial drugs, while limited markets
exist for agents only active against resistant pathogens.
Developers face challenges in demonstrating that new
drugs are as safe as established agents. Finally, researchers

have found converting pharmacologic targets into com-
mercially viable drugs to be difficult.

Regulatory bodies have roles within collaborative
responses to improve the prevention and treatment of
infections caused by resistant bacteria. However, in an era
of emerging drug resistance, controlled clinical data are
often not available to guide regulatory policy. In the first
half of this article, we discuss pharmacokinetic/pharmaco-
dynamic (PK/PD) research approaches that can aid regula-
tory decision making on the treatment of resistant
infections and minimization of resistance selection. In the
second half, we outline measures that regulatory agencies
may use to help control resistance and facilitate drug
development.

Scientific Basis for Regulatory 
Responses to Resistance

Measures to control resistance should be based on sci-
entific evidence concerning its effect on human health and
the effectiveness of available interventions. Unfortunately,
quantitative data concerning the clinical implications of
resistance are lacking for many common infections (8).
PK/PD models may be used to identify the determinants
and implications of resistance, although clinical data on
symptom resolution or survival remain the standard (9).

PK/PD research aims to identify antimicrobial drug
exposures relative to the in vitro MIC that best predicts
efficacy and reduced selection of resistance, i.e., the
PK/PD index (Figure 2) (10–13). The PK/PD index is
influenced by bacterial, host, and experimental factors
(12,14) but tends not to vary among strains of a bacterial
species. While absolute doses (in milligrams per kilogram)
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associated with efficacy correlate poorly between animal
models and humans, parameters of antimicrobial drug
exposure relative to MIC can generate clinically relevant
PK/PD indices (11).

Applying PK/PD Analyses to Doses and Breakpoints
Many existing in vitro MIC susceptibility breakpoints

were established both for epidemiologic surveillance and
to guide therapy in individual persons. Accumulating evi-
dence supports the use of separate breakpoints for these
purposes.

PK/PD data may aid the selection of clinical break-
points. PK/PD breakpoints represent the highest MIC for
which the unbound plasma concentrations of the antimi-
crobial drug (following standard doses) are sufficient to
achieve the PK/PD target against a defined organism and
for which adequate clinical data support their use
(Figure 3). PK/PD targets are usually derived in vivo by
using susceptible strains. The targets for strains with cer-
tain resistance mechanisms may differ. However, in sever-
al cases, studies have verified that these PK/PD targets
apply in less susceptible strains (15). 

The effects of variability within populations on attain-
ing PK/PD targets can be probed by using Monte Carlo
simulation of numerous drug exposures (10,16,17). The
fraction of exposures that attain the PK/PD target can be
determined across the MIC range of the pathogen and used
to help select MIC breakpoints (17,18). The optimal dose
can also be selected by analyzing PK/PD target attainment
rates for fixed doses across the MIC range.

Clinical breakpoints may differ substantially from in
vitro MIC breakpoints (Figure 3). In 2000, the National
Committee for Clinical Laboratory Standards revised the
recommended MIC breakpoints for oral β-lactams against
Streptococcus pneumoniae in light of clinical and PK/PD
data (19). PK/PD analyses have recently been applied to
other breakpoint determinations (10,16,19,20). Controlled
trials regarding the clinical relevance of discrepancies
between current and proposed breakpoints are unavailable.
However, case reports indicate a potential increase in treat-
ment failures with some drug classes (and a potential fail-
ure to detect these mechanisms with reference micro-

biologic methods) and suggest the need for better clinical
data to reassess susceptibility breakpoints for these agents.

We may also have to challenge the paradigm that inter-
prets breakpoints as dichotomous variables associated with
categoric responses such as success and failure.
Reductions in susceptibility have graded effects and
should instead be interpreted in terms of a reduced relative
likelihood of positive outcomes. 

PK/PD Targets To Suppress Resistance
Intermediate PK/PD index values may produce antibac-

terial effects but also select for resistant bacteria
(Figure 4). This phenomenon can be conceptually
described by considering an infectious bacterial inoculum
as a swarm, rather than a clone. A large bacterial load is
likely to contain a resistant subpopulation at baseline that
is selected during antimicrobial drug therapy. This occur-
rence can be studied by using a mixed inoculum made up
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Figure 1. US Food and Drug
Administration approvals of systemic
antibacterial new molecular entities,
1980–2004. Adapted with permis-
sion from Blackwell Scientific (4).

Figure 2. Defining the pharmacodynamic target for therapy.
Adapted with permission from Blackwell Scientific (13).



of a susceptible population and a small resistant subpopu-
lation (Figure 5) (16,18).

Mixed-inoculum studies show that the time when the
antimicrobial drug concentration exceeds the MIC is the
dominant PK/PD index for the selection of penicillin-resist-
ant S. pneumoniae (22,23). The ratio of the area under the
concentration-time curve to the MIC (AUC/MIC) predicts
fluoroquinolone resistance in this species (21,24), while the
ratio of the maximum concentration and the MIC, and the
AUC/MIC, predicts the selection of fluoroquinolone resist-
ance in Pseudomonas aeruginosa (16,25,26). In each case,
the PK/PD index for resistance selection is the same as that
associated with microbiologic activity, although its magni-
tude may exceed values that can be supplied with usual or
safe dosage regimens (25,27).

Jumbe et al. (16) calculated fluoroquinolone PK/PD
targets that would amplify or suppress susceptible and
resistant populations of P. aeruginosa in mice and prospec-
tively validated the resulting dose regimens. These and
other data (23) underscore the need to determine in clini-
cal studies whether drug regimens should be directed
against resistant subpopulations as well as susceptible pop-
ulations. Such studies would need to correlate bacteriolog-
ic treatment failures with initial and posttreatment
susceptibility data and antimicrobial drug exposure.
Ultimately, they could assess the emergence of resistance
among commensal flora. 

Future Directions
Although PK/PD data are increasingly valuable,

detailed information on the selection and effect of resist-

ance in patients can only be provided by studies designed
for this purpose. Such studies should be disease specific
and should control for the confounding effect of coexisting
conditions (28,29). Outcomes research would benefit from
standardized scoring systems for severity of illness (30)
and from careful analyses of outcome data in relation to
drug exposure. Recent developments in culture sampling,
such as nasal catheterization in patients with bacterial
sinusitis (31), may allow serial observations of antimicro-
bial drug effects over time and avoid the bias introduced
by solely evaluating treatment failures. In principle, con-
tinuous sampling of urine in patients with urinary tract
infections and the analogous monitoring of drug concen-
trations and outcomes in middle-ear and lower respiratory
infections may also be possible. However, the invasive
nature of such studies may preclude a mandatory role in
routine antibacterial drug development and licensing.

In April 2004, a workshop cosponsored by the US Food
and Drug Administration (FDA) concluded that PK/PD
research is useful in dose selection, that modeling and sim-
ulation tools may be used to quantitatively predict micro-
biologic outcomes and account for PK variability, and that
PK/PD relationships generated from nonclinical studies
should be confirmed in well-designed clinical studies
(www.fda.gov/cder/drug/antimicrobial/FDA_IDSA_ISAP
_Presentations.htm). As a tool for both regulatory agencies
and the pharmaceutical industry, PK/PD studies can pro-
vide critical information to help 1) guide the development
of optimal dosing schedules for clinical trials and mini-
mize the selection of resistant bacteria during routine clin-
ical use; 2) translate evolving MIC susceptibility data into
dosing and treatment recommendations in the absence of
data on the clinical effect of resistance; and 3) identify
areas where resistance patterns most threaten the efficacy
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Figure 3. Relationship between MIC and attainment of the phar-
macokinetic/pharmacodynamic (PK/PD) target for effect.
Accumulating evidence supports the use of separate PK/PD
breakpoints for clinical decision making, distinct from in vitro
breakpoints used for epidemiologic surveillance. A breakpoint
derived from PK/PD data represents the highest MIC for which the
unbound plasma concentrations of the drug (after standard doses)
are sufficient to achieve the target PK/PD exposure.

Figure 4. Relationship between the dominant pharmacokinetic/
pharmacodynamic (PK/PD) index, efficacy, and resistance emer-
gence in vitro (both quantified by the number of bacterial colony-
forming units). The PK/PD index is related to efficacy in a sigmoid
curve and the resistance emergence by an inverted U-shaped
curve (21).



of existing therapies and help identify priorities for new
drug development.

Regulatory Responses to Resistance
Regulators are primarily concerned with licensing new

drugs by verifying their safety, efficacy, and quality.
Regulators also have roles that relate to the long-term safe-
ty of established agents by responding to postlaunch data.
In some countries, licensing authorities regulate the fiscal
effect of new therapies, while other countries rely on mar-
ket forces or employ other agencies to assess cost-effec-
tiveness. In addition, regulators share some responsibility
for the sustainability of licensed agents through refinement
of indications and recommendations.

The activities of 4 regulatory agencies were discussed
during the International Forum on Antibiotic Resistance
(IFAR) 2003 colloquium, namely those of Australia, the
United States, France, and the European Union (EU)

(Table). These activities represent a range of approaches to
antimicrobial drug regulation but do not represent a com-
prehensive sample. 

In Australia, registration of drugs for human use is
undertaken by the Therapeutic Goods Administration,
which is supported by the Australian Drug Evaluation
Committee. Both groups are advised by the Expert
Advisory Group on Antimicrobial Resistance. In the
United States, FDA is responsible for reviewing the safety
and efficacy of antimicrobial drugs. When appropriate,
FDA solicits input from its Anti-infective Drugs Advisory
Committee. The wider issues involving antimicrobial drug
resistance, such as surveillance and appropriate use, are the
purview of a number of agencies, including FDA, the
Centers for Disease Control and Prevention (CDC), and
the National Institutes of Health (NIH) (2). 

Antimicrobial drug licensing at the French Health
Products Safety Agency involves an external, multidisci-
plinary antiinfectives working group, the Groupe de
Travail Anti-infectieux. Drug licensing at the EU level is
performed either through a centralized procedure mediated
by the European Medicines Evaluation Agency (EMEA)
or a decentralized procedure based on mutual recognition
among member states after the initial step of a national
market authorization in a state. Information on drugs reg-
istered at the EU level is described in a common European
summary of product characteristics document. The EU
Committee for Human Medicinal Products guides industry
in developing medicines and identifies key information
required for licensing (32). FDA supplies similar guidance
to drug developers (http://www.fda.gov/cder/guidance/
index.htm), and guidance on developing agents to treat
resistant pathogens is under development.

EMEA (33) and FDA encourage drug developers to
submit supportive PK/PD data. For example, if in vitro and
PK/PD studies show that a drug has similar activity against
strains that are susceptible or resistant to existing agents,
clinical data against susceptible strains may support effica-
cy against resistant strains (although clinical data against
resistant strains will ultimately be necessary).

Scheduling and Subsidy Restriction
Most developed countries categorize antimicrobial

drugs within a “prescription-only” schedule, thereby pre-
venting over-the-counter sales and giving physicians and
other healthcare professionals responsibility for their dis-
tribution. Restrictions on the subsidization of prescription
costs paid by patients in the community may be a means of
controlling state-funded drug use. In Australia, prescrip-
tions for certain antimicrobial drugs are not subsidized
unless the prescriber gains approval for their use (in spe-
cific indications) from the central Pharmaceutical Benefits
Scheme. This system has resulted in low levels of fluoro-
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Figure 5. Killing pattern for a fluoroquinolone against Pseudo-
monas aeruginosa that illustrates the initial decline and subse-
quent regrowth observed in the total number of colony-forming
units (A) represent the sum of a decline in the susceptible subpop-
ulation and the uninhibited growth of a resistant subpopulation (B).



quinolone use and resistance (34,35). However, differen-
tial subsidy levels may simply shift drug use toward cheap-
er agents, and consequently, subsidy restriction may be
more useful in controlling the types of drugs prescribed,
rather than the gross quantity. In the United States, where
cost controls are not used, a decrease in prescribing has
been accompanied by an increase in the use of newer, more
expensive, and broad-spectrum agents (36). However, this
increase may be the result of industry marketing forces
rather than the lack of subsidy restrictions.

Prescribing Directives and Guidance
Regulators may issue directives to prescribers regard-

ing antimicrobial drug use. However, these must be care-
fully planned and implemented to avoid disadvantageous
effects on prescribing behavior (37). FDA issues licensed
indications and can create mandatory regulatory policies
for certain drugs. It also oversees the content of package
inserts and advertisements. However, as in other countries,
prescribing practices are at the discretion of the individual
clinician. 

Regulatory authorities may be involved in educational
initiatives to improve antimicrobial drug use. In France,
official guidelines on drug use underpin regulation, phar-
maceutical promotion, and education. A recent national

plan to promote judicious use involved amending antimi-
crobial drug summaries of product characteristics, as well
as amending treatment guidelines and the provision of free
streptococcal tests and information for patients and parents
(B. Schlemmer, pers. comm.). In the United States, FDA
and CDC have partnered on the Get Smart program
(www.cdc.gov/getsmart), aimed at fostering appropriate
antimicrobial drug use. 

Prescribing Information
The usefulness of resistance data within current pre-

scribing information labels may be questioned, given the
largely empiric nature of community antimicrobial drug
prescribing. FDA has recognized the need to inform clini-
cians about resistance issues for empirically treated dis-
eases and has designated several drugs, for which adequate
clinical data exist, as safe and effective in the treatment of
community-acquired pneumonia caused by multidrug-
resistant S. pneumoniae. Updating labeling is a substantial
undertaking. In 2003, labels for 669 drugs had to be
changed when FDA amended labeling requirements for
antimicrobial drugs (38). 

In Europe, international disharmony remains in the
summaries of product characteristics for older drugs.
Efforts to update and harmonize these will require
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cooperation between EMEA, national regulatory bodies,
and the pharmaceutical industry. Experience from
Australia, where the registration system for human antimi-
crobial drugs has been revised to incorporate resistance
risk assessment, suggests that this process will be chal-
lenging. As generic manufacturers have no responsibility
to provide resistance data for their products, healthcare
systems may have to provide resources to collect these
data. 

Indication Review
Indication review is the process by which regulatory

authorities reassess the licensed indications of a drug in
light of new data. In some countries (e.g., Australia) indi-
cation review may only be performed on the basis of drug
safety. In others, it may in principle be performed on resist-
ance grounds. Any decision to change a drug’s license
should be based on robust clinical evidence of a public
hazard. In vitro surveillance data may be insufficient in
isolation, as previously discussed. Moreover, uncertainty
exists about the threshold resistance prevalence at which
indications should be withdrawn.

Incentives to Antimicrobial Drug Development
In principle, the current decline in drug development

could be reversed by a number of means. Substantial costs
are incurred by the late-stage failure of developmental can-
didates. Costs may be reduced by efficiently identifying
drugs that are more likely to be effective, allowing earlier
decisions on development cessation, which is the focus of
the FDA Critical Path Initiative (www.fda.gov/oc/initia-
tives/criticalpath/). Public-industry risk sharing could also
be considered for phase III trial funding. Detailed PK/PD
investigations could potentially reduce the number of
phase I/II studies required (33) and facilitate dose selection
for phase III trials. Other possible approaches include the
use of data in 1 indication to support a license application
in another (providing the spectrum of causative pathogens,
PK/PD factors, and infection severity is sufficiently simi-
lar). Regulatory authorities have offered fast-track desig-
nation and priority review for narrow-spectrum
antimicrobial drugs and agents active against multidrug-
resistant organisms. However, FDA grants priority reviews
on the basis of results of clinical trials with a drug, not on
in vitro spectrum alone.

Recently, fruitful collaborations have taken place
between regulatory agencies, healthcare systems, acade-
mia, and industry. FDA has consulted with representatives
of the pharmaceutical industry and IDSA and has identi-
fied pathogens of primary public health importance
(www.fda.gov/ohrms/dockets/ac/03/slides/3931S2_03_Po
wers_files/frame.htm). IDSA has held preliminary discus-
sions with NIH to explore ways in which trial funding

could be shared between public bodies and industry.
However, considerable political, logistic, and financial
challenges must be overcome if public-private partnership
models are to be applied.

Financial incentives could be provided to industry by
waiving or reducing the new drug application fee, by
extending or renewing patents for antimicrobial drugs of
public health priority, or by granting orphan drug status for
treatments for serious but rare diseases. “Wild card” meas-
ures are an alternative approach, whereby a company can
choose which drug in its portfolio is granted exclusivity or
patent extension. Considering government contracts with
industry for specific agents or guaranteeing markets for
niche drugs may have value. More widely, opportunities
may exist to reconsider drug pricing structures and tax
incentives related to antimicrobial drug revenues. Because
regulatory bodies can only act within existing legislation,
legislative changes may be required to provide economic
incentives to industry.

The provision of such incentives should be dependent
on responsible marketing and sales activities by pharma-
ceutical companies. In the United States, the Department
of Health and Human Services Office of the Inspector
General has developed guidelines for marketing activities
that have been adopted by many companies
(http://oig.hhs.gov/authorities/docs/03/050503FRCPGPha
rmac.pdf).

The development of narrow-spectrum antimicrobial
drugs or adjunctive agents that target specific resistance
mechanisms will not be viable without effective, low-cost
diagnostic methods available at the point of prescribing.
Thus, incentives must also be considered for the develop-
ment and clinical adoption of diagnostic technologies.

Conclusions
Regulatory authorities must balance the requirements

for safe and effective medicines, and the need for new
antimicrobial drugs effective against resistant pathogens,
with the technologic and commercial realities of drug
development. We do not know whether the development of
new antimicrobial drugs will keep pace with the emer-
gence of resistant pathogens. This uncertainty highlights a
need to identify gaps in available drugs and for govern-
ments to devise innovative regulatory and legislative
measures to stimulate the development of new agents and
diagnostic technologies.

PK/PD models that integrate preclinical and clinical
data offer a promising approach to defining optimal drug
doses for phase III clinical trials. PK/PD data may also
help define the determinants of resistance selection, quan-
tify the clinical effect of resistance, and identify where
resistance patterns most threaten the efficacy of existing
therapies and where priorities for drug development lie.
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However, further clinical research is required to correlate
microbiologic outcomes based on PK/PD data and clinical
outcomes in patients. These trials should exploit recent
advances in novel endpoints, sampling techniques, and PK
modeling. Potentially, these data may be used in conjunc-
tion with outcomes research in determining susceptibility
breakpoints for clinical purposes.

Initiatives in Europe and the United States indicate a
welcome trend toward greater consultation and collabora-
tion between regulatory authorities, the pharmaceutical
industry, and knowledgeable professionals. The role played
by regulatory authorities in controlling drug use varies by
country. In this context, efforts to improve regulatory meas-
ures would benefit from greater international dialogue.
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