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†ETH Zurich, Laboratorium für Physikalische Chemie, Wolfgang-Pauli-Str. 10, CH-8093 Zurich, Switzerland
‡Wigner Research Centre, P.O. Box 49, H-1525 Budapest, Hungary

*S Supporting Information

ABSTRACT: We present an approach for the calculation of spin density distributions for molecules that require very large
active spaces for a qualitatively correct description of their electronic structure. Our approach is based on the density-matrix
renormalization group (DMRG) algorithm to calculate the spin density matrix elements as a basic quantity for the spatially
resolved spin density distribution. The spin density matrix elements are directly determined from the second-quantized
elementary operators optimized by the DMRG algorithm. As an analytic convergence criterion for the spin density distribution,
we employ our recently developed sampling-reconstruction scheme [J. Chem. Phys. 2011, 134, 224101] to build an accurate
complete-active-space configuration-interaction (CASCI) wave function from the optimized matrix product states. The spin
density matrix elements can then also be determined as an expectation value employing the reconstructed wave function
expansion. Furthermore, the explicit reconstruction of a CASCI-type wave function provides insight into chemically interesting
features of the molecule under study such as the distribution of α and β electrons in terms of Slater determinants, CI coefficients,
and natural orbitals. The methodology is applied to an iron nitrosyl complex which we have identified as a challenging system for
standard approaches [J. Chem. Theory Comput. 2011, 7, 2740].

1. INTRODUCTION
In quantum chemistry, the electronic structure of molecules is
described by either ab initio wave function methods or density-
functional theory (DFT). For large molecular systems such as
transition metal complexes, however, wave function based
methods are rarely employed due to the corresponding high
computational cost (for counterexamples, see refs 1−5). Hence,
the application of DFT became instrumental in theoretical
studies of mechanisms in metal-mediated catalysis.6−14 Yet, the
treatment of open-shell systems16,18,19 and (near-)degenerate
states remains a challenge for DFT.15 Failures of approximate
exchange−correlation density functionals in predicting proper-
ties of open-shell systems have been traced to the delocalization
error and static correlation error,17,20 which are rooted in an
inappropriate behavior of the energy with respect to fractional
charges and fractional spins.21 In addition to the difficult
prediction of ground states from states of different spin,18,22−30

spin density distributions considerably depend on the
approximate exchange−correlation density functional if tran-
sition metal complexes containing noninnocent ligands are
considered.31 Qualitatively correct spin density distributions are
difficult to obtain within the standard Kohn−Sham formalism
that has not been formulated to also produce accurate spin
densities.32

However, accurate spin densities are desirable for various
reasons. (1) In electron paramagnetic resonance spectroscopy
(EPR),33 the spin density is the central quantity on which EPR
parameters explicitly depend.34 Obviously, reliable spin density
distributions are important for an accurate calculation of EPR
properties, but this remains a difficult task to achieve for
theoretical chemistry.35−39 (2) The question of which
approximate exchange−correlation density functional yields
sufficiently accurate spin densities remains inconclusive.31,40 If
accurate reference spin density distributions were available, a

more detailed analysis of the spin density distribution in terms
of spin density difference plots could be used as a qualitative
and quantitative benchmark for the validation of approximate
exchange−correlation density functionals. (3) According to the
Hohenberg−Kohn theorem,41 the spin density is not needed to
calculate the electronic energy or any other expectation value.
However, in open-shell systems, it is often introduced as an
additional variable which leads to a spin-DFT formalism42

first
introduced by von Barth and Hedin.43 In spin-DFT, the spin
density becomes a fundamental quantity, and reliable reference
spin densities could be used to construct proper approx-
imations to the exact exchange−correlation density functional.
For accurate spin densities in cases for which a DFT

description fails, ab initio electron correlation methods need to
be applied. Pierloot et al. presented complete-active-space self-
consistent-field (CASSCF) studies for large transition metal
complexes which provided deeper insights into the quality of
DFT spin density distributions.2,44 The large molecular size of
these systems requires large active orbital spaces, but the
standard CASSCF approach restricts their dimension, which
represents the most crucial approximation in such calcula-
tions.40 It is therefore important to understand whether the
spin density is converged with respect to the dimension of the
active orbital spaces used so far. This is a task that is difficult to
study within a standard CAS-type approach.
In general, up to about 18 electrons correlated in 18 spatial

orbitals are computationally feasible for standard CASSCF.
These limitations may restrict the accurate description of
electronic structures which could be approved only by enlarging
the dimension of the active orbital space. Reliable reference
spin density distributions for complicated open-shell structures
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as found, for instance, in iron complexes with noninnocent
ligands require capabilities beyond those of standard correlation
methods.
A different approach for the calculation of correlated ab initio

spin densities for large molecules was recently presented by
Kossmann and Neese45 who discussed the performance of
orbital-optimized Mo̷ller−Plesset perturbation theory in
calculating hyperfine coupling constants for atoms and small
molecules. In this approach, isotropic hyperfine constants of
coupled-cluster singles-doubles quality could be obtained,
which could be further improved by applying spin-component
scaling.
Here, we pursue a different route for the calculation of ab

initio spin densities by applying the density-matrix renormaliza-
tion group (DMRG) algorithm. With the DMRG algorithm,
introduced by White46,47 in 1992, much larger active orbital
spaces can be considered beyond the limit of, say, 18 electrons
correlated in 18 molecular orbitals. It was shown that DMRG is
capable of providing accurate wave functions and energies, even
for complicated electronic structures (see refs 48−51 for
reviews). Moreover, we first showed that the DMRG algorithm
yields reliable relative electronic energies between different spin
states or isomers of transition metal complexes and clusters for
which DMRG was not meant to work and which are a very
challenging task for any other multireference quantum chemical
method52 (see also ref 53 for latest results and further
references). We shall demonstrate in this work that also
accurate DMRG spin density distributions can be determined
for very large active orbital spaces.
Recently, we presented a convergence analysis of the spin

density distribution for a small iron nitrosyl model complex
[Fe(NO)]2+ in a field of point charges, which demonstrated
that medium-sized active orbital spaces are sufficient for
quantitatively correct spin densities.40 However, a quantitative
analysis that can explore truly large active spaces is still lacking
for this complex, which shall therefore be the target system in
this work. In such cases, DMRG spin densities can be
considered as reliable references which can serve as benchmark
results for approximate exchange−correlation density func-
tionals.
This work is organized as follows. In section 2, we discuss the

spin density matrix and its spatially resolved counterpart, the
spin density distribution, employing the formalism of second
quantization. Then, we continue with the introduction of
DMRG spin densities. In section 2.2, we present our approach
of approximating the DMRG spin density distribution via one
from a complete-active-space configuration-interaction-
(CASCI)-type wave function which allows us to compare
DMRG spin densities from calculations with different DMRG
parameter sets. In order to validate our approach, we study the
spin densities of a medium-sized active orbital space in section
3. This is then extended by considering up to 29 active orbitals
in section 4. Finally, a summary and concluding remarks are
given in section 5.

2. SPATIALLY RESOLVED, NONRELATIVISTIC SPIN
DENSITIES

Since DMRG is based on the second quantized formalism, we
briefly discuss how the spin density in spatial coordinates can
be written in second quantization. In first quantization, the
operator for the spin density reads

∑ δδ̂ = − ̂
=

sr r r( ) ( )
i

N

i z i
spin

1
,

(1)

where sẑ,i is the z component of the one-electron spin operator,
ri is the spatial coordinate of electron i, and N is the total
number of electrons in the system. Applying an orbital basis,
the corresponding operator expression in second quantization
is given by
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where p,q run over the total orbital basis {ϕi} with ϕi(r)
representing the spatial part of a spin orbital. The operators aiσ

†

and aiσ are the creation and annihilation operators, respectively,
for an electron of spin σ in orbital i. In eq 2, the spin density
operator δ ̂spin(r) is defined in terms of the spin tensor excitation
operators

̂ = −α α β β
† †T a a a a

1
2

( )pq p q p q (3)

in the orbital basis (see ref 54 for details). The spatially resolved
spin density ρspin(r) is calculated as the expectation value of
δ ̂spin(r):

∑
ρ
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where |ΨM⟩ represents some normalized reference state

∑|Ψ ⟩ = | ⟩C nM
M

n
n

{ }
{ }
( )

(5)

|n⟩ = |n1n2...nk⟩ is an occupation number vector with elements
np ∈ {0,1}. {n} represents the set of all occupation number
vectors constructed from k one-particle states. The expectation
value on the right-hand side of eq 4 is a spin density matrix
element Tpq

(M):

= ⟨Ψ | ̂ |Ψ ⟩ = ⟨Ψ | − |Ψ ⟩α α β β
† †T T a a a a

1
2pq M pq M M p q p q M

(M)
(6)

2.1. DMRG Spin Densities from Second-Quantized
Elementary Operators. If the reference state |ΨM⟩ is a
DMRG wave function in eq 6, the corresponding DMRG spin
density matrix elements Tpq

(M[DMRG]) are obtained. The matrix
representations of the creation and annihilation operators are
available in every step of the DMRG algorithm, and each spin
density matrix element can thus be easily determined.
The operator apσ

† aqσ in its matrix representation is calculated
as a tensor product for which we have to distinguish two
different cases. The molecular orbitals p and q are defined
either (i) on the same or (ii) on different subsystems of the
DMRG partitioning of the active orbital space into the active
(sub)system, its environment (the complementary subsystem),
and one or two explicitly treated orbitals in between. While the
former case is straightforward to handle, for an operator
expression in the latter case, however, we need to build
operators for the superblock where all three subsystems, i.e., the
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active subsystem, the exactly represented sites, and the
environment, are combined as tensor products.
To illustrate this concept, let us consider two operators a1

and a2 defined on three different subspaces 1̃, ̃
2, and ̃

3.

Then, the combined subspace ̃ is defined as ̃ = 1̃ ⊗ ̃
2 ⊗

̃
3, where ̃ as well as 1̃, ̃

2, and ̃
3 are all subspaces of the

N-particle Fock space ̃
N . For instance, the operator

expressions for the combined subspace are given by

⊗ ⊗̃
̃ ̃a a: 1 11 1 2 3 (7)

⊗ ⊗̃
̃ ̃a aA: 12 21 3 (8)

where ̃A
i
is the anticommutation matrix of the corresponding

subspace ĩ . For the product of two operators, we obtain

· = · ⊗ ⊗̃ ̃
̃ ̃a a a aA( ) ( ) (1 )1 2 1 21 3 (9)

where we have used the mixed-product property for the right-
hand side of the above equation, which mixes the ordinary
matrix product with the tensor product. All remaining operator
products can be derived in a similar way. After the spin density
matrix is determined, the spatially resolved spin density
distribution can be calculated from eq 4. If the wave function
is real, the spin density matrix is symmetric and the calculation
can be speed up by calculating the upper triangular part of the
spin density matrix only.
2.2. Spin Density from a Reduced Dimensional CASCI-

Type Wave Function. Since CI vectors are in general
sparse55−57if contributions below a predefined threshold are
neglectedCASCI-type wave functions can be efficiently and
accurately projected onto a smaller set of Slater determinants,
which only represent the most important contributions to the
wave function expansion. We recently reported the sampling-
reconstruction algorithm for CASCI-type wave functions
defined in a complete active orbital space from a previously
optimized DMRG wave function (SRCAS algorithm).57 An
approximate CASCI-type expansion |Ψ̃M⟩ for any wave function
|ΨM⟩ consisting of k one-particle states can thus be written as

∑|Ψ̃ ⟩ = | ̃⟩̃
∼
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M

n
n

{ }
{ }
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where the sum runs over all occupation number vectors ñ living
in the sampled subspace of the total many-particle Hilbert
space. Using eq 6, we can calculate the spin density matrix by
substituting the reference state |ΨM⟩ with the approximate state
|Ψ̃M⟩:
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Since the occupation number vectors are orthonormal to
each other, the expectation value on the right-hand side of eq
11 can be easily evaluated, and we obtain
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where ̃ σ ̂n p represents the occupation number vector where
orbital p lacks one electron with σ spin. Furthermore, we
introduced a phase factor εσ to account for the annihilation
operations of apσ

† acting on the bra-state and aqσ acting on the
ket-state.
On the basis of this approximate expression for the spin

density matrix, we can determine spin density distributions for
subspaces of the many-particle Hilbert space of different
dimensions and study the sensitivity of the spin density
distribution to the number of active-system states in DMRG
calculations.

2.3. Measures for Spin Density Comparisons. For
various reasons, we need suitable measures to assess the
similarity of different spin densities. For instance, such a
measure would be required to assess the accuracy of a given
spin density compared to a reference spin density.
Monitoring the evolution of the spin density for an

increasing number of active-system states58 can illustrate the
convergence behavior of the spin density distribution with
respect to the number of active-system states m. Isosurface
plots of the difference in spin density distributions for
calculations with different m values can only serve as a
qualitative convergence measure. As quantitative measures,
however, we introduce two distances which quantify how far
two spin densities are apart from each other. Both distance
measures are defined with the absolute error in the spin density
difference distribution. The accumulated absolute error Δabs is
given by

∫ ρ ρΔ = | − |r r r( ) ( ) dabs 1
spin

2
spin

(13)

and the root-square error Δrs reads

∫ ρ ρΔ = | − |r r r( ) ( ) drs 1
spin

2
spin 2

(14)

where ρi
spin(r) refers to the spin density distribution

corresponding to some calculation i, e.g., to a CASSCF or
DMRG spin density when different chemical methods are
compared, or to some parameter sets if different spin densities
are determined with the same method. If two spin densities
ρi
spin(r) and ρj

spin(r) are similar, both Δabs and Δrs approach
zero. For accurate ab initio spin densities, we shall require both
error measures to be smaller than 0.005 (Δabs) or 0.001 (Δrs),
respectively (in view of the results discussed in section 3.1).
A different similarity measure can be applied by employing

directly the knowledge of the reconstructed CASCI-type wave
function expansion. This procedure relies on the closeness
measure of two quantum states, namely the quantum
fidelity.59,60 The importance and potential application of the
quantum fidelity within the DMRG framework was first
discussed by some of us61 in the context of quantum error
correction and was also utilized in our SRCAS approach.57 Two
CASCI-type wave function expansions reconstructed for
different numbers of DMRG active-system states, m1 and m2,
can be explicitly compared by calculating their quantum fidelity

= |⟨Ψ̃ |Ψ̃ ⟩|Fm m M
m

M
m

,
( ) ( ) 2

1 2

1 2
(15)

as an overlap measure.

3. A NONINNOCENT MODEL SYSTEM
In a previous study, we reported DFT and CASSCF spin
density distributions in iron nitrosyl complexes as well as for
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the [Fe(NO)]2+ molecule embedded in a square-planar field of
point-charges to emulate the one-electron states of the full
complexes.40 Since DFT spin densities of iron nitrosyl
complexes remain ambiguous, we choose the small [Fe(NO)]2+

molecule in its doublet state for our analysis here. The point
charges facilitate a dynamic change of the character of the
electronic wave function by shortening the distances dpc of the
point charges to the metal center. Depending on this distance
dpc, both single-reference and multireference situations can be
created for [Fe(NO)]2+. When the four point charges are
located at a distance of 1.131 Å from the iron atom, the
electronic structure of the [Fe(NO)]2+ molecule represents a
single-reference problem, while for dpc = 0.598 Å, a multi-
reference case is generated.
The [Fe(NO)]2+ structure features a Fe−N bond length of

1.707 Å and a N−O bond distance of 1.177 Å with a Fe−N−O
angle of 146°. The four negative point charges of −0.5e each
are located as depicted in Figure 1e. Due to the small size of the

[Fe(NO)]2+ molecule, we can efficiently study the dependence
of the spin density distribution on different DMRG parameter
sets such as the number of DMRG active-system states m.
Thereby, we are able to define appropriate convergence
measures for the spin density in order to reach a predefined
accuracy.
3.1. The Single-Reference Case. As already discussed in

great detail in ref 40, the minimal active orbital space for
[Fe(NO)]2+ with dpc = 1.131 Å comprises seven electrons
correlated in seven orbitals for qualitatively reliable spin density

distributions. It consists of Fe 3d (dxy, dyz, dxz, dx2−y2 and dz2)
and both NO π* orbitals. As an orbital basis in our DMRG
calculations, the natural orbitals from a CAS(7,7)SCF
calculation performed with the Molpro program package62

using Dunning’s cc-pVTZ basis set for all atoms63,64 were
taken. The one-electron and two-electron integrals in the
natural orbital basis were also calculated with the Molpro
program package.62 All DMRG calculations reported in this
section were carried out with the Zurich DMRG program.65

Random noise was added to the density matrix in order to force
the mixing of configurations that would have not been captured
otherwise if the number of active-system states m was too
small.66,67

We performed DMRG calculations for different numbers of
DMRG active-system states m abbreviated as DMRG(x,y)[m],
where x corresponds to the number of active electrons and y is
the number of active orbitals for m renormalized active-system
states. Starting with m = 16, m is further increased to 32 and 48
until the CAS(7,7)SCF reference energy is reproduced for m =
64 active-system states (see Table 1). Note that the number of

active-system states needed to reproduce the CASSCF result is
very small in this case. This can be explained employing
concepts of quantum information theory illustrated in section
4. The DMRG calculations reported in this section do not
employ these concepts to enforce better convergence. This
decision is deliberately made in order to produce nonconverged
low-m results to compare with the m = 64 calculation. We
should note that this artifact could be cured by the dynamical
block state selection (DBSS) procedure,68,69 while the strong
dependence on small m values and the convergence to local
minima can be overcome by applying the configuration
interaction-based dynamically extended active space (CI-
DEAS) procedure.61

The spin density distributions for our four DMRG
calculations (m = 16, 32, 48, 64) are shown in Figure 1a and
were determined as discussed in section 2.1. To emphasize the
dependence on m, the corresponding spin density difference
plots with respect to the CAS(7,7)SCF reference spin density
distribution (shown in Figure 1b) are displayed. Note that all
isosurface plots are shown for the same isosurface value of
0.0003, where a blue surface corresponds to an excess of α-
electron density, while a yellow surface corresponds to an
excess of β-electron density for all spin density isosurface plots
shown. All DMRG calculations yield qualitatively similar spin
density distributions; only minor quantitative differences can be
observed. The CAS(7,7)SCF reference spin density can be

Figure 1. (a and c) Spin density difference plots for DMRG(7,7)[m]
spin densities calculated for a different number of DMRG active-
system states m with respect to the CAS(7,7)SCF reference spin
densities shown in (b) and (d), respectively, for [Fe(NO)]2+ in a
quadratic-planar point-charge field. Two different distances are
considered, namely, dpc = 1.131 Å (a and b) and dpc = 0.598 Å (c
and d). For both distances, the spin density could be perfectly
reproduced in a DMRG(7,7)[64] calculation and is therefore not
depicted here. An isosurface value of 0.0003 in (a) and (b) and 0.003
in (c) and (d), respectively, is chosen. (e) Structure of [Fe(NO)]2+

with the four point charges of −0.5e. In this and in the following
figures, the blue (yellow) color denotes an excess of α-electron density,
while yellow (blue) represents an excess of β-electron density in the
spin density (difference) plots.

Table 1. Ground State Energy for [FeNO]2+ Surrounded by
Four Point Charges at Two Different Distance Sets dpc in
Hartree Atomic Units for CAS(7,7)SCF and DMRG(7,7)[m]
Calculations for Different Numbers of DMRG Active-System
States m

dpc = 1.131 Å dpc = 0.598 Å

method E/Hartree method E/Hartree

HF −1392.844043 HF −1396.821220
CAS(7,7)SCF −1392.887247 CAS(7,7)SCF −1396.858313
DMRG(7,7)[16] −1392.881067 DMRG(7,7)[16] −1396.762709
DMRG(7,7)[32] −1392.885462 DMRG(7,7)[32] −1396.818651
DMRG(7,7)[48] −1392.886893 DMRG(7,7)[48] −1396.840018
DMRG(7,7)[64] −1392.887247 DMRG(7,7)[64] −1396.858313
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perfectly well reproduced for m = 64 DMRG active-system
states and is, hence, not shown in Figure 1a.
To calculate approximate spin density distributions from

reconstructed CASCI-type wave functions, we first have to
sample the most important configurations of the N-particle
Hilbert space. For this purpose, we applied our SRCAS
method.57 Due to the small size of the active space, the N-
particle Hilbert space is spanned by only 1225 Slater
determinants, and all corresponding CI coefficients can be
determined directly from the CASSCF reference calculation. In
general, similar CI coefficients are obtained for all DMRG
calculations and the CASSCF reference; i.e., similar wave
functions are converged, resulting in small differences in the
spin density distributions. The distribution of the CI
coefficients is depicted in Figure 1 of the Supporting
Information.
Spin density distributions determined for different sampled

subspaces of the N-particle Hilbert space are in good agreement
with the corresponding DMRG spin density. Note that the
sampled subspaces are defined by the threshold value of the
completeness measure (COM) introduced in ref 57 with COM
= (1 − ΣICI

2), where I runs over all sampled configurations
with CI coefficients CI. In general, threshold values of 0.01 to
0.001 turned out to be sufficient for obtaining quantitatively
reliable spin densities in this single-reference case. The
corresponding isosurface plots and excitation histograms with
respect to the COM are summarized in the Supporting
Information.
The spin density difference plots in Figure 1a illustrate the

convergence of the spin density distribution with respect to the
number of DMRG active-system states m. The absolute error
Δabs and the root-square error Δrs of the spin density difference
distributions provide a quantitive measure for the accuracy (see
Table 2). The differences in the spin densities calculated for m
= 48 DMRG active-system states is small compared to the
CAS(7,7)SCF reference. For 48 active-system states upward,
both Δabs and Δrs are below their threshold values, given in
section 2.3. The set of quantum fidelity measures Fmi,mi+1

for our
four DMRG calculations with mi ∈ {16, 32, 48, 64} is
{0.980000, 0.994395, 0.999012}. Increasing m from 48 to 64
DMRG active-system states corresponds to F48,64 = 0.999012,
which illustrates the similarity of both DMRG wave functions
and results in reliable spin density distributions for m ≥ 48.
3.2. The Multireference Case. A multireference character

of the [Fe(NO)]2+ molecule can be induced by decreasing the
distances of the point charges to the iron atom. In the squeezed
model complex, the point charges are placed at a distance of dpc
= 0.598 Å from the iron center in the same configuration as
before. Similar to the single-reference problem, the minimum
active orbital space considered here comprises seven electrons
correlated in seven orbitals. Yet, it consists of four Fe dxy, dyz,

dxz, and dz2 (dx2−y2 is excluded due to the compressed point
charge environment), two NO π*, and one NO σ orbital which
interacts with the Fe dz2 orbital. Again, the natural orbitals from
a CAS(7,7)SCF calculation were taken as orbital bases in our
DMRG calculations and determined with the Molpro program
package62 using Dunning’s cc-pVTZ basis set for all atoms63,64

The calculation of the one-electron and two-electron integrals
in this natural orbital basis was also performed with the Molpro
program package.62 All DMRG calculations were carried out
with the Zurich DMRG program.65 As before, we performed
DMRG calculations for four different numbers of DMRG
active-system states m. Starting with m = 16, m is further
increased to 32 and 48 until the CAS(7,7)SCF reference energy
is obtained for m = 64 active-system states (see Table 1). The
small-m calculations are designed not to reproduce the
CAS(7,7)SCF reference for this analysis. Note, however, that
a small number of active-system states was sufficient to
reproduce the CASSCF result as observed in the single-
reference problem.
In Figure 1d, the CAS(7,7)SCF spin density distribution is

shown, which is taken as the reference distribution, while
Figure 1c illustrates the spatially resolved differences in the
DMRG(7,7)[m] and CAS(7,7)SCF spin density distributions.
Note that the same isosurface value of 0.003 was chosen for all
spin densities shown. For small m values, qualitatively different
spin density distributions are obtained. The β-electron density
around the nitrosyl ligand is underestimated and a dumbbell-
shaped β-electron density is obtained in contrast to the
cylindric shape of the reference β-electron density. The α-
electron density around the Fe atom is underestimated.
Increasing m to 48 results in a cylindric β-electron density
around the NO ligand which differs only little from the
reference spin density. The spin density can be exactly
reproduced for m = 64 active-system state for which also the
CAS(7,7)SCF reference energy is obtained. The convergence
properties of the DMRG(7,7)[m] spin density with respect to
m can be quantified by the Δabs and Δrs values where
significantly large values (>0.005 and >0.001, respectively) are
obtained for spin density distributions determined in small-m
calculations (see Table 2).
In Figure 2, the distribution of CI coefficients for the DMRG

and CASSCF wave functions is shown. Since only the position
of the point charges has been modified, the N-particle
Hilbert space remains spanned by 1225 Slater determinants,
and all corresponding CI coefficients can be determined
directly from the CASSCF reference calculation as in the single-
reference case. Similar CI coefficients are obtained for the
DMRG(7,7)[64] calculation and the CAS(7,7)SCF reference;
i.e., similar wave functions are converged. However, signifi-
cantly different CI coefficients are obtainedas expectedfor
smaller m values. In particular, the deviations are most
significant for configurations corresponding to the largest

Table 2. The Absolute Error Δabs and the Root-Square Error Δrs of the DMRG(7,7)[m] Spin Densities with Respect to the
CAS(7,7)SCF Reference for [FeNO]2+ Surrounded by Four Point Charges at Two Different Distance Sets dpc Employing
Different Numbers of DMRG Active-System States m

dpc = 1.131 Å dpc = 0.598 Å

method Δabs Δrs Δabs Δrs

DMRG(7,7)[16] 0.007678 0.002147 0.213543 0.052168
DMRG(7,7)[32] 0.004392 0.001285 0.221198 0.052144
DMRG(7,7)[48] 0.001397 0.000412 0.081631 0.020418
DMRG(7,7)[64] 1.34 × 10−5 5.40 × 10−6 9.69 × 10−6 3.66 × 10−6
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(absolute) CI weights. Additional information on the
distribution of CI coefficients can be found in the Supporting
Information.
Similarly to the single-reference problem discussed above,

reliable spin densities obtained from reduced dimensional
CASCI-type wave function expansions can be determined for a
COM ≥ 0.001 independent of m. A complete collection of spin
density distributions for different CASCI-type wave function
expansions and DMRG parameter sets can be found in the
Supporting Information. Figure 3 shows the ratio of Slater
determinants with respect to the complete N-particle Hilbert
space which have been picked up in the sampling procedure
and sorted by their corresponding CI weights for the
DMRG(7,7)[32] and DMRG(7,7)[64] calculation. For COM

≥ 0.001, the reconstructed CASCI-type wave function contains
the major part of the important Slater determinants, while for a
further decreased threshold value of 10−5 almost all significant
Slater determinants have been picked up. Note that the
sampling procedure was restricted to accept only configurations
with (absolute) CI coefficients larger than the threshold value
for COM. Although all possible excitations are included in the
CASCI-type wave function in the limit of COM → 0 (see also
Figure 4 of the Supporting Information), the pattern of the CI
coefficients of the DMRG(7,7)[64] calculation is different from
the CI pattern of the CAS(7,7)SCF reference. While large CI
coefficients (|CI | > 0.0001) are reproduced within sufficient
accuracy, smaller CI weights are underestimated. The
maximum of the curve is shifted toward smaller CI weights
<10−7. Hence, the DMRG algorithm disregards an exact
weighting of unimportant configurations with small CI
coefficients, which is a feature of matrix product and tensor
network states where large CI coefficients should be
reproduced and unimportant configurations are neglected70,71

A complete collection of excitation histograms for different
CASCI-type wave functions can be found in the Supporting
Information. To quantify the differences in the underlying wave
functions for our four DMRG calculations employing mi ∈ {16,
32, 48, 64} active-system states, we calculated the quantum
fidelity Fmi,mi+1

, which forms in this case a set of overlap

measures of {0.831887, 0.897445, 0.955669}.
We conclude that reliable spin density distributions can be

calculated either from converged DMRG ground state wave
functions or from the reconstructed CASCI-type wave function
expansions. In particular, a fully converged DMRG wave
function is not mandatory to obtain qualitatively correct spin
density distributions if the CI weights of the most important
configurations are well reproduced for a given m value. This
holds for both the single-reference and the multireference case.
A representative set of Slater determinants, i.e., the most
important ones (|CI| > 0.001), is sufficient for a qualitatively
correct spin density distribution.

Figure 2. Distribution of the absolute value of the CI coefficients
corresponding to the Slater determinants in the DMRG(7,7)[m]
calculations with different renormalized active-system states m and in
the CAS(7,7)SCF reference calculation for [Fe(NO)]2+ surrounded by
four point charges at a distance of dpc = 0.598 Å from the iron atom.
All Slater determinants are ordered according to the CI weights of the
CAS(7,7)SCF calculation.

Figure 3. CI histogram of the absolute values of the CI coefficients for the Slater determinants for reconstructed CASCI-type wave function
expansions from the DMRG(7,7)[m] calculations with different renormalized active-system states m for the [Fe(NO)]2+ molecule surrounded by
four point charges at a distance of dpc = 0.598 Å from the iron atom. The CAS(7,7)SCF reference calculation is also shown for comparison. thr
corresponds to the threshold value of COM in the sampling-reconstruction procedure and denotes the accuracy of the reconstructed CASCI-type
wave function. All Slater determinants with CI coefficients in an interval as indicated on the abscissa are grouped together.
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4. SPIN DENSITY DISTRIBUTIONS FOR LARGE ACTIVE
SPACES

While we have studied the convergence features of DMRG
calculations for small active spaces, for which we could obtain
an exact CASSCF reference result, we shall now proceed to
explore territory with DMRG that is not accessible to the
CASSCF approach. In our recent analysis of CASSCF spin
densities for the [Fe(NO)]2+ molecule,40 the spin density
distribution was qualitatively converged with respect to the
dimension of the active orbital space. For quantitatively
accurate spin densities, we need to increase the dimension of

the active orbital space so that important iron and ligand
orbitals which are missing in the standard CASSCF
calculations, e.g., the Fe dx2−y2 double-shell orbital, could also
be included in the active orbital space. Here, we extend the
convergence series presented in ref 40 by considering active
orbital spaces containing up to 29 active orbitals. Starting with
an active orbital space comprising 13 active electrons correlated
in 20 active orbitals, the number of active orbitals is further
increased to 24 and 29, respectively. The two largest active
orbital spaces do also contain the fifth dx2−y2-double-shell orbital
which could not be included in all CASSCF calculations
presented in ref 40. The [Fe(NO)]2+ molecular structure

Figure 4. Mutual information and single orbital entropies s(1) for the DMRG(13,y)[64] calculations determined for different numbers of active
orbitals in the [Fe(NO)]2+ molecule surrounded by four point charges at a distance of dpc = 1.131 Å from the iron center.
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features the same bond distances and angles as presented in
section 3. The four point charges of −0.5e are located at a
distance of 1.131 Å from the metal center in order to properly
model the square-planar ligand field of the full-fledged
complexes in a doublet spin state.
For all DMRG calculations, the natural orbitals from a

CAS(11,14)SCF calculation are employed as orbital bases.72−74

Similarly, the CASSCF calculation as well as the calculations of
the one-electron and two-electron integrals in the natural
orbital basis were performed with the Molpro program
package62 using Dunning’s cc-pVTZ basis set for all
atoms,63,64 while the DMRG calculations are performed with
the Budapest DMRG program.75 In addition, the DMRG
orbital orderings were optimized for all three active orbital
spaces, and the CI-DEAS starting guess was performed. Figure
4 displays the corresponding single orbital entropies given by

∑ ω ω= −
α

α αs(1) lni i i, ,
(16)

and mutual information determined by

= − −I s s s(2) (1) (1)i j i j i j, , (17)

where i = 1...k is the orbital index and runs over all k one-
particle states and ωα,i is the α eigenvalue of the reduced
density matrix of orbital i,61 while s(2)i,j is the two-orbital
entropy between a pair (i,j) of sites introduced by Rissler et al.
to the quantum chemical DMRG algorithm.76 Note that the
mutual information and single orbital entropies are confined to
the first 10 natural orbitals for all considered dimensions of the
active orbital space. These natural orbitals are highly entangled
and represent the most important orbitals comprised in the
active orbital space. Therefore, accurate DMRG spin densities
can be obtained already for a reasonably small number of
active-system states. Similar entropy profiles can be obtained
for smaller dimensions of the active orbital space.
The number of DMRG active-system states m was set to 128,

256, 512, 1024, and 2048, respectively. The ground state
energies for all DMRG calculations are summarized in Table 3.

Considering the DMRG(13,20)[m] calculations, an energy
convergence of 0.135 mH (0.4 kJ/mol) is reached with respect
to m. For the largest active orbital space, the DMRG(13,29)
[1024] energy is converged to 1.195 mH (3.1 kJ/mol) when
compared to the DMRG(13,29)[2048] reference.
4.1. Convergence of DMRG Spin Densities. The

dependence of the spin density distribution on the number of
DMRG active-system states m is shown in Figure 5 where the

differences in spin density distribution are plotted for
DMRG(13,y)[m] calculations with respect to the converged
DMRG(13,29)[2048] reference calculation. For increasing m
values, the differences in the spin density distribution decrease
(see each row in Figure 5 from the left to the right). Similarly,
we observe that the spin density gradually converges with
respect to the dimension of the active orbital space (see last
column from the top to the bottom of Figure 5). In particular,
changes in the spin density are negligible when m is increased
from 1024 to 2048, and hence, reliable spin density
distributions can be obtained even if the total energy is not
yet converged with respect to m (the difference is 1.195 mH,
see above).
Furthermore, the Δabs and Δrs values quantify the

convergence series of the determined DMRG spin density
distributions. In Table 4, both error quantities are listed for
each DMRG(x,y)[m] spin density with respect to the
DMRG(13,29)[2048] reference spin density. In general, the
absolute error Δabs and the root-square error Δrs decrease for
increasing m, keeping the dimension of the active orbital space
fixed. Note that larger active orbital spaces require a larger m
value to obtain the same accuracy as achieved in smaller active
space calculations. This is not immediately evident from the
error data presented in Table 4 since different dimensions of
the active orbital space are compared, which result in nonzero
error values, while error values determined for different
parameter sets, but the same dimension of the active orbital
space, could vanish. The large error values for the DMRG-
(13,24)[128] calculation indicate that important states were
not picked up by the DMRG algorithm, resulting in the large
differences in the spin density distribution displayed in Figure
5. Furthermore, since both error values determined for the
DMRG(13,29)[1024] calculation are below the threshold
values, no considerable improvement in the accuracy of the
spin density distribution can be expected when m is further
increased to more than 2048 active-system states.
In order to demonstrate the convergence of the DMRG-

(13,29) wave function with respect to m (and thus the
convergence of the obtained DMRG(13,29)[2048] reference
spin density distribution), the CASCI-type wave function
expansions are reconstructed and compared for all m values. In
particular, the influence of the missing dx2−y2-double-shell orbital
can be assessed by examining the CI coefficients corresponding
to Slater determinants with an occupied dx2−y2-double-shell
orbital. Following the conclusions of a benchmark study for
intermediate CAS sizes (see Supporting Information), only the
most important configurations (|CI| ≥ 0.00001) are necessary
to obtain an accurate wave function expansion. As the
convergence threshold for the sampling procedure, a value of
0.001 is sufficient. With this threshold, similar CASCI-type
wave function expansions are obtained for a quantum fidelity
measure close to 0.998. The set of quantum fidelity measures
Fmi,mi+1

for our five DMRG calculations with mi ∈ {128, 256,
512, 1024, 2048} is {0.991800, 0.995510, 0.996983, 0.997639}.
As the number of DMRG active-system states is enlarged, the
CI coefficients of the reconstructed wave function expansion
converge gradually, which is indicated by the increasing
quantum fidelity measure. Note that Fm1,m2

is close to the
ideal value of 0.998 already for a small number of DMRG
active-system states m, and hence, only minor variations in the
large CI coefficients occur when m is increased, which explains

Table 3. Ground State Energy for [Fe(NO)]2+ Surrounded
by Four Point Charges at a Distance of dpc = 1.131 Å from
the Iron Center in Hartree Atomic Units for Our
DMRG(x,y)[m] Calculations Employing Different Numbers
of DMRG Active-System States ma

E/Hartree

method DMRG(13,20) DMRG(13,24) DMRG(13,29)

m = 128 −1393.014662 −1392.991085 −1393.014010
m = 256 −1393.018626 −1393.019309 −1393.024883
m = 512 −1393.020065 −1393.021876 −1393.030374
m = 1024 −1393.020511 −1393.022946 −1393.033001
m = 2048 −1393.020646 −1393.023294 −1393.034196

aThe CAS(11,14)SCF energy is −1393.013 396 Hartree.
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the slight differences in the spin density distributions displayed
in Figure 5c.
To demonstrate that this is indeed the case, the CI

coefficients of the most important Slater determinants (|CI| >
0.0001) corresponding to the m = 128 and m = 1024
calculations are shown in Figure 6. Slater determinants with
large CI weights (|CI| > 0.05) are similar for both DMRG
parameter sets; only minor deviations can be observed. Note
that all of these Slater determinants have been incorporated in
the DMRG wave function already for m = 128. Considerable
differences in CI weights are present for Slater determinants
corresponding to small-valued CI coefficients (|CI| < 0.015),
while some Slater determinants with |CI| < 0.01 have not been
incorporated in the DMRG wave function for m = 128. These
off-size or missing configurations lead to the different spin
density distributions for small m values.
From the reconstructed CASCI-type wave function, the

influence of the dx2−y2-double-shell orbital as well as of the
empty ligand orbitals on the spin density distribution can be
analyzed. In the upper part of Table 5, configurations
containing an occupied dx2−y2-double-shell orbital and corre-
sponding to the largest CI coefficients are presented. In the
lower part of Table 5, some selected configurations with large
CI coefficients carrying excitations to empty ligand orbitals that
cannot be included in standard CASSCF calculations are
presented and compared for the DMRG(13,29)[128] and
DMRG(13,29)[1024] calculations. In general, Slater determi-
nants with an occupied dx2−y2-double-shell orbital feature small
CI weights (|CI| ≤ 0.003) and are hence of minor importance,

while Slater determinants bearing occupied ligand orbitals
feature large CI coefficients. Configurations containing
occupied ligand orbitals that are only included in the
DMRG(13,29)[m] calculations (marked in bold face in Table
5) possess considerably large CI weights. All other Slater
determinants with excitations to different empty ligand orbitals
have smaller CI coefficients. Hence, those ligand orbitals pose a
significant contribution in obtaining accurate spin density
distributions for the small model complex and cannot be
neglected from the active orbital space.

4.2. Assessment of CASSCF Spin Densities. The
converged DMRG(13,29)[2048] reference spin density can
be used to assess the accuracy of CASSCF spin density
distributions and benchmark the quality of the (restricted)
active orbital spaces in standard CASSCF calculations (see
Figure 7a). Note that the same isosurface value has been taken
to display the DMRG(13,y)[m]−DMRG(13,29)[2048] and
CAS(x,y)SCF−DMRG(13,29)[2048] spin density difference
plots. The CASSCF spin density distributions determined for
medium-sized active orbital spaces oscillate around the
converged DMRG spin density. Depending on which double-
d-shell orbital is included in the active orbital space, the β-
electron density around the NO ligand is either overestimated
or underestimated. This results either in pure spin-polarized
cases with β-electron density found only around the nitrosyl
ligand for CAS(11,11), CAS(11,14), CAS(13,13), and CAS-
(13,14) or some additional α-electron density present around
the NO ligand associated with a simultaneous decrease in the β-

Figure 5. DMRG(13,y)[m] and CAS(x,y)SCF spin density difference plots with respect to the DMRG(13,29)[2048] spin density distribution (d)
for [FeNO]2+ surrounded by four point charges at a distance of dpc = 1.131 Å from the iron center. All spin densities are displayed for an isosurface
value of 0.001. (a) DMRG(13,20)[m]−DMRG(13,29)[2048] spin density difference plots. (b) DMRG(13,24)[m]−DMRG(13,29)[2048] spin
density difference plots. (c) DMRG(13,29)[m]−DMRG(13,29)[2048] spin density difference plots. (d) The DMRG(13,29)[2048] reference spin
density distribution.
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electron density for CAS(11,12), CAS(11,13), CAS(13,15),
and CAS(13,16).
Similarly, the large Δabs and Δrs values stress the differences

in the spin density distributions which are considerably larger
than those from the DMRG(13,y)[m]−DMRG(13,29)[2048]
difference analysis (Table 4). Furthermore, Table 4 indicates

that the CAS(11,11)SCF and CAS(11,12)SCF calculations and
the CAS(11,13)SCF and CAS(11,14)SCF calculations, respec-
tively, are of similar accuracy, as they have similar error values,
but the spin density difference plots emphasize the qualitatively
different spin density distributions. Increasing the dimension of
the active orbital space results in even larger deviations from
the DMRG reference spin density because the active space is
not stable and important orbitals are rotated out of the CAS.
Note that all DMRG calculationsexcept DMRG(13,24)
[128]yield smaller error values and smaller differences in
the spin density difference plots.
Although the CASSCF spin densities are quantitatively

converged with respect to the active orbital space, significant
qualitativebut also non-negligible quantitativedifferences
to the DMRG(13,29)[2048] reference spin density can be
observed. The extension of the active orbital space by including
an additional shell of d orbitals only is not sufficient to obtain a
qualitatively accurate spin density distribution for the small iron
nitrosyl molecule. Our analysis indicates that empty ligand
orbitals are essential for calculating reliable reference spin
densities. This may have severe implications for the standard
CASSCF approach that require further analysis in future work.

4.3. Comparison to DFT Spin Densities. A comparison
of DFT and CASSCF spin density distributions for medium-
sized active orbital spaces for the [FeNO]2+ molecule has
already been discussed in our previous work (see ref 40 for
more details). For an unambiguous benchmark of approximate
exchange−correlation density functionals, the DFT spin
densities of ref 40 can be compared to the DMRG reference
distribution. The qualitative analysis of the DFT−DMRG-
(13,29)[2048] spin density difference distributions is shown in
Figure 7b. When comparing to the results obtained in ref 40,
similar conclusions concerning the performance of approximate

Table 4. The Absolute Error Δabs and the Root-Square Error
Δrs of the DMRG(13,y)[m] Spin Densities with Respect to
the Converged DMRG(13,29)[2048] Reference Spin
Density for a Different Number of Normalized Active-
System States m for [FeNO]2+ Surrounded by Four Point
Charges at a Distance of dpc = 1.131 Å from the Iron Centera

method Δabs Δrs

DMRG(13,20)[128] 0.030642 0.008660
DMRG(13,20)[256] 0.020088 0.004930
DMRG(13,20)[512] 0.016415 0.003564
DMRG(13,20)[1024] 0.015028 0.003162
DMRG(13,20)[2048] 0.014528 0.003028
DMRG(13,24)[128] 0.590022 0.235922
DMRG(13,24)[256] 0.020993 0.003245
DMRG(13,24)[512] 0.014045 0.003633
DMRG(13,24)[1024] 0.011622 0.002668
DMRG(13,24)[2048] 0.010731 0.002361
DMRG(13,29)[128] 0.032171 0.010677
DMRG(13,29)[256] 0.026005 0.006790
DMRG(13,29)[512] 0.010826 0.003406
DMRG(13,29)[1024] 0.003381 0.000975
CAS(11,11)SCF 0.086658 0.024495
CAS(11,12)SCF 0.080249 0.020591
CAS(11,13)SCF 0.046303 0.011402
CAS(11,14)SCF 0.042544 0.010954
CAS(13,13)SCF 0.052239 0.012124
CAS(13,14)SCF 0.073400 0.019850
CAS(13,15)SCF 0.053157 0.011180
CAS(13,16)SCF 0.104928 0.031922

aThe Δabs and Δrs values of the CAS(x,y)SCF calculations of ref 40
with respect to the DMRG(13,29)[2048] reference spin density are
also listed.

Figure 6. Distribution of the absolute value of the CI coefficients for
the DMRG(13,29)[m] calculations with m = 128 and 1024,
respectively, for [FeNO]2+ surrounded by four point charges at a
distance of dpc = 1.131 Å from the iron center. The CI coefficients
reconstructed for both DMRG calculations are always printed for the
same Slater determinants. The determinants are ordered according to
the CI weight of the DMRG(13,29)[2048] reference calculation.

Table 5. Some Important Occupation Number Vectors
(ONV) with the Corresponding CI Weights from
DMRG(13,29)[m] Calculations for [FeNO]2+ Surrounded
by Four Point Charges at a Distance of dpc = 1.131 Å from
the Iron Centera

CI weight

Slater determinant m = 128 m = 1024

b2b222a0a0000000 0000000 a 00000 0.003252 0.003991
bb2222aa00000000 0000000 a 00000 −0.003226 −0.003611
222220ab00000000 0000000 a 00000 −0.002762 −0.003328
ba2222ab00000000 0000000 a 00000 0.002573 0.003022
b2a222a0b0000000 0000000 a 00000 −0.002487 −0.003017
202222ab00000000 0000000 a 00000 0.002405 0.002716
b222a2a0b0000000 0000000 0 0000a 0.010360 0.011558
22b2a2a0a0000000 0000000 0 b0000 0.009849 0.011366
22b2a2a0b0000000 0000000 0 a0000 −0.009532 −0.011457
b2222aab00000000 0000000 0 0000a −0.009490 −0.010991
a2222baa00000000 0000000 0 0000b −0.009014 −0.010017
b2b222a0a0000000 0000000 0 0a000 0.008820 0.010327
b2222aab00000000 00a0000 0 00000 −0.004277 −0.005436
22b2a2a0b0000000 a000000 0 00000 −0.004224 −0.006852

aUpper part: ONVs containing an occupied dx2−y2 double-shell orbital
(marked in bold face). Bottom part: additional selected important
configurations with occupied natural orbitals that cannot be included
in the active orbital space in CASSCF calculations (marked in bold
face), for the same DMRG(13,29)[m] calculations. 2: doubly occupied
natural orbital. a: natural orbital occupied by an α electron. b: natural
orbital occupied by a β electron. 0: empty natural orbital.
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exchange−correlation density functionals can be drawn. The
best agreement is found for BP86, BLYP, and TPSS, while the
remaining approximate exchange−correlation density func-
tionals yield larger deviations and result in too large spin
polarization. We should note that BP86, BLYP, and TPSS
correctly predict the distribution of the α-electron density
around the nitrosyl ligand, although it is overemphasized. In
general, nonhybrid functionals yield spin densities which are in
closest agreement with the DMRG reference distributions. This
observation is supported by both error measures which are
smallest for BP86, BLYP, and TPSS (see Table 1 in the
Supporting Information).

5. CONCLUSIONS AND OUTLOOK
In this work, we have demonstrated how reliable ab initio spin
density distributions can be calculated for very large active
spaces. Our procedure is based on the DMRG algorithm and
on two different approaches to obtain spin density matrix
elements: (i) on-the-fly directly from the second-quantized
DMRG elementary operators or (ii) from an approximate
CASCI-type wave function expansion which is determined by
our SRCAS algorithm.57 The reconstructed CASCI-type wave
function can also be used as a means to compare a series of

DMRG calculations employing a different number of DMRG
active-system states m.
The small noninnocent molecule [FeNO]2+ surrounded by

four point charges represents a suitable system to validate our
approach. The spin density distributions are highly sensitive to
the nature of the converged state. We deliberately converged
DMRG wave functions that correspond to local minima in the
electronic energy in order to compare with qualitatively wrong
wave functions. The possibility of convergence into local
minima is shown by examining the (largest) CI coefficients of
the SRCAS-reconstructed CASCI-type wave function. Strong
deviations with respect to the absolute value of the CI
coefficients indicate that the number of DMRG active-system
states m is chosen too small, and hence important states have
not been incorporated by the DMRG algorithm. Spin densities
corresponding to such local minima deviate considerably from
the ground state spin density.
The convergence analysis of the spin density distribution for

the [FeNO]2+ molecule considered active orbital spaces
comprising up to 29 active orbitals. Difference plots of the
spin density distribution for different active orbital spaces as
well as the absolute error and the root-square error in the spin
density difference distribution indicate a quantitatively con-
verged spin density with respect to the dimension of the active
orbital space and the number of active-system states m (which
was as large as m = 2048). The DMRG reference spin density
has been used to validate CASSCF spin densities resulting in
significant quantitative and even qualitative differences.
Considering an additional shell of d orbitals is not sufficient
to obtain reliable spin densities for the small model system, and
the active orbital space must be extended by additional
unoccupied ligand orbitals. Similar difficulties are likely to be
present for larger iron nitrosyl complexes where the point
charges are replaced by different ligands, and hence additional
ligand and iron orbitals must be included in the active orbital
space. The DMRG study of larger {FeNO}7 complexes is now
pursued in our laboratory.
A convergence analysis of the spin density in terms of spin

density difference plots with respect to the number of DMRG
active-system states indicates that reliable reference spin
densities can be obtained even if total energies are not
converged with respect to m. A similar conclusion was found in
our previous work regarding the energy splittings of states of
different spin multiplicity.50,52,53 Comparison of CI weights
corresponding to the most important configurations of the
reconstructed CASCI-type wave functions for different m values
furthermore ensures that reliable spin densities are obtained.
The similarities in DMRG wave functions can be quantified by
the quantum fidelity measure, which can be used as an
additional convergence criterion for spin density distributions
in a sequence of DMRG calculations.
Spin densities calculated from approximate CASCI-type wave

functions are in good agreement with the DMRG reference
spin density. Qualitatively reliable spin densities can be
obtained even for large thresholds of COM (0.001) when the
most important configurations have been picked up in the wave
function expansion. For this threshold, the CASCI-type wave
function contains Slater determinants with absolute CI weights
larger than 0.00001 which are important for the spin density.
The comparison of DFT spin densities with the DMRG

reference distributions allows us to benchmark approximate
exchange−correlation density functionals. Although nonhybrid
functionals yield spin density distributions closest to the

Figure 7. (a) CAS(x,y)SCF and (b) DFT spin density difference plots
with respect to the DMRG(13,29)[2048] spin density distribution for
[FeNO]2+ surrounded by four point charges at a distance of dpc =
1.131 Å from the iron center. All spin densities are displayed for an
isosurface value of 0.001.
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DMRG reference, significant qualitative and quantitative
differences to the DMRG reference distributions could be
observed for all investigated density functionals. Similar
conclusions were drawn in our previous study, where DFT
spin densities were assessed against CASSCF spin densities,40

entailing that none of the investigated exchange−correlation
density functionals yields sufficiently accurate spin density
distributions for the [FeNO]2+ molecule.
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(6) Frenking, G.; Fröhlich, N. Chem. Rev. 2000, 100, 717−774.
(7) Ziegler, T.; Autschbach, J. Chem. Rev. 2005, 105, 2695−2722.
(8) Neese, F. Coord. Chem. Rev. 2009, 253, 526−563.
(9) Rozanska, X.; Sauer, J. J. Phys. Chem. A 2009, 113, 11586−11594.
(10) Sillar, K.; Hofmann, A.; Sauer, J. J. Am. Chem. Soc. 2009, 131,
4143−4150.
(11) Trinh, C.; Timoshkin, A. Y.; Frenking, G. J. Phys. Chem. A 2009,
113, 3420−3426.
(12) Duarte, F. J. S.; Cabrita, E. J.; Frenking, G.; Santos, A. G.
Chem.Eur. J. 2009, 15, 1734−1746.
(13) Fan, J.; Autschbach, J.; Ziegler, T. Inorg. Chem. 2010, 49, 1355−
1362.
(14) Podewitz, M.; Reiher, M. Adv. Inorg. Chem. 2010, 62, 177−230.
(15) Savin, A. On degeneracy, neardegenaracy and density functional
theory. In Recent Developments and Applications of Modern Density
Functional Theory, 1st ed.; Seminario, J. M., Ed.; Elsevier Science B.V.:
Amsterdam, The Netherlands, 1996; Vol. 4, pp 327−358.

(16) Reiher, M. Faraday Discuss. 2007, 135, 97−124.
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(61) Legeza, Ö.; Soĺyom, J. Phys. Rev. B 2003, 68, 195116.
(62) Werner, H.-J.; Knowles, P. J.; Lindh, R.; Manby, F. R.; Schütz,
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