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Abstract
The intensity of acute and chronic pain depends on interactions between peripheral impulse input
and CNS pain mechanisms, including facilitation and inhibition. Whereas tonic pain inhibition is a
characteristic of most pain-free individuals, pain facilitation can be detected in many chronic pain
patients. The capability to inhibit pain is normally distributed along a wide continuum in the
general population and can be used to predict chronic pain. Accumulating evidence suggests that
endogenous pain inhibition depends on activation of the prefrontal cortex, periaqueductal gray and
rostral ventral medulla. Quantitative sensory test paradigms have been designed to acquire detailed
information regarding each individual’s endogenous pain inhibition and facilitation. Such tests
include: temporal summation of pain, which is mostly used to assess facilitatory pain modulation
by measuring the change in pain perception during a series of identical nociceptive stimuli; and
conditioned pain modulation, which tests pain inhibition by utilizing two simultaneously applied
painful stimuli (the ‘pain inhibits pain’ paradigm). Considerable indirect evidence seems to
indicate that not only increased pain facilitation but also ineffective pain inhibition represents a
predisposition for chronic pain. This view is supported by the fact that many chronic pain
syndromes (e.g., fibromyalgia, temporomandibular joint disorder, irritable bowel syndrome,
headache and chronic fatigue syndrome) are associated with hypersensitivity to painful stimuli and
reduced endogenous pain inhibition. However, future prospective studies will be necessary to
provide definitive evidence for this relationship. Such research would not only provide important
information about mechanisms relevant to chronic pain but would also permit identification of
individuals at high risk for future chronic pain.

Keywords
central sensitization; chronic pain; facilitation; fibromyalgia; inhibition; osteoarthritis; pain
modulation

Nociceptive signals that are transmitted from the periphery to the brain require integration
and processing within the spinal cord, brainstem and brain. Increased pain sensitivity, a
characteristic of chronic pain, may develop either through peripheral mechanisms
(peripheral sensitization) or as a consequence of neuroplastic changes in the CNS (central
sensitization) [1]. Central sensitization involves: upregulation of sensory neuron-specific
sodium channels; NMDA and vanilloid receptors; phenotype switching of large myelinated
axons; sprouting within the dorsal horn; and loss of inhibitory interneurons [2]. Although a
number of treatment options are available, therapy for chronic pain is less effective than for
acute pain, commonly providing significant pain relief for less than 50% of patients [3].

Epidemiologic surveys have estimated the prevalence of chronic pain to be approximately
31% in the general population [4], with low rates of recovery over long-term follow-up
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periods [5,6]. The total cost of chronic pain is exceeds US$200 billion annually in the USA
[7,8]. Primary care providers, as well as pain specialists, face increasing numbers of patients
with chronic pain syndromes, including headache, temporomandibular joint pain (TMD),
back pain, osteoarthritis (OA), fibromyalgia (FM), chronic fatigue syndrome and irritable
bowel syndrome (IBS). Owing to the negative impact of chronic pain on patients’ quality of
life and function, as well as increased mortality rates [9–11], optimal treatment of
individuals with current chronic pain and identification of persons at high risk for future
chronic pain have become increasingly important [12].

Although many chronic pain syndromes are currently defined on the basis of anatomic
location, they seem to share numerous common features that could be used for grouping
these conditions on the basis of mechanisms rather than anatomy. Such mechanistic
classifications include nociceptive pain (pain evoked by a noxious stimulus), pain
hypersensitivity syndromes, neuropathic pain and spontaneous pain [13,14]. Pain
hypersensitivity syndromes depend on activation of sensitized nociceptors in the periphery
by low-intensity mechanical–thermal stimuli (often combined with central sensitization).
Neuropathic pain results from ectopic discharge in nociceptors after peripheral nerve injury,
and central pain is related to spontaneous activity in neurons of the dorsal horn, thalamus or
cortex. Although many chronic nonmalignant pain syndromes such as FM, TMD, OA,
chronic headache, idiopathic low back pain, IBS and endometriosis are classified as pain
hypersensitivity syndromes, their pathogenesis is only partially understood and physical
findings in patients with these disorders are poor predictors for self-reported pain severity
and dysfunction. In general, the extent of tissue abnormalities appears to be poorly
correlated with the pain intensity reported by chronic pain patients [15,16]. For example,
minor radiographic abnormalities of the spine or presence of endometrial tissue in the pelvic
cavity may be painless in some individuals but may be associated with severe chronic pain
in others [17,18]. Such findings indicate substantial individual differences in pain
sensitivity, pain processing and endogenous pain modulation [19].

Over the last few years, the poor correlation of patients’ peripheral tissue abnormalities with
chronic pain intensity has shifted the research focus away from peripheral to central pain
processing abnormalities [20]. Widespread hyperalgesia and dysfunctional endogenous pain
inhibition have been identified as characteristics of many musculoskeletal [21,22] and
neuropathic pain conditions [23–25]. These similarities suggest common CNS abnormalities
in pain processing among many chronic pain conditions [20,26,27].

Endogenous pain modulation
Pain is a complex sensory, affective, sociocultural phenomenon under the control of CNS
facilitatory and inhibitory modulation. Although the intensity of nociceptive input is relevant
for pain, subsequent modulation of peripheral impulses in the peripheral and CNS can
dramatically reduce the intensity of resultant sensations to almost imperceptible levels or
increase pain to nearly unbearable levels. The pain modulatory system includes a CNS
network linking multiple brain areas (prefrontal cortex, cingulate cortex and insula) [28], the
periaqueductal gray (PAG) and the rostral ventromedial medulla with the spinal cord [29].
The resultant descending modulation of dorsal horn neurons of the spinal cord is thought to
provide a protective function [30], because early inhibition can enhance escape behaviors
while late facilitation may create conditions that are optimal for healing of tissue injuries
[31]. Inhibitory modulation of noxious peripheral signals occurs at both spinal and
supraspinal levels and is strongly influenced by psychological features [32]. The capability
of human subjects for endogenous pain modulation can be assessed using quantitative
sensory tests (QST) sensitive to pain facilitation or pain inhibition. Some of the most
frequently used psychophysical tests of endogenous pain inhibition include: conditioned
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pain modulation (CPM); offset analgesia (Offset); and habituation. On the other hand, pain
facilitation can be assessed by testing temporal summation of second pain (TSSP). Whereas
TSSP uses repetitive nociceptive (electrical, mechanical or thermal) pulses at frequencies of
≥0.33 Hz to assess pain facilitation, CPM utilizes two concurrent stimuli (conditioning and
test stimulus) to measure the resultant experimental pain inhibition (i.e., counter-irritation)
[33–37]. Thus, combinations of these QST measures are commonly used for characterizing
CNS pain modulation in pain patients and healthy pain-free individuals.

Pain facilitation
Molecular mechanisms in the dorsal horn of the spinal cord that contribute to augmented
pain transmission (facilitation) are well known [38]. Low-level stimulation of nociceptors
triggers release of glutamate from the central terminals of primary afferent neurons
terminating in laminae I, II and V of the dorsal horn. During intense or sustained nociceptive
stimulation, substance P and glutamate are co-released from afferent neurons, enabling
TSSP through activation of NMDA receptors. As a result, intracellular calcium levels
increase, which activate signaling cascades that lower the firing threshold of dorsal horn
neurons. Supporting evidence for this mechanism comes from pharmacological experiments
that blocked NMDA channels with dextromethorphan or ketamine, which have been shown
to reliably decrease TSSP in laboratory animals and human subjects [39,40]. Although
NMDA receptor antagonists have provided some clinical benefits for patients with chronic
pain disorders [41], they are generally not well tolerated because of unacceptable side
effects including memory problems, dizziness and sedation [42].

Pain inhibition
It has been known for over 100 years that descending inhibition of nociceptive activity in the
spinal cord relies on involvement of the prefrontal cortex, midbrain and brainstem [43,44].
Animal and human studies not only emphasize the important role of the ventrolateral PAG
for integration of input from the spinal cord, brainstem and cerebral cortex [45,46], but also
for pain inhibition [47,48]. Pain modulatory signals from the PAG can reach dorsal horn
neurons of the spinal cord either directly or indirectly via the rostroventral medulla [49,50].
Compelling evidence suggests that spinal input to the PAG can elicit pain inhibition through
a spinal–supraspinal–spinal loop [51] whose functionality can be assessed by various QST
methods including CPM, Offset and pain habituation. This review of endogenous pain
inhibition, however, will mostly focus on CPM because of its widespread use in pain
research. For more information about other QST of pain inhibition, including Offset and
habituation, see [52–54].

CPM testing generally involves the use of two concurrent stimuli (conditioning and test
stimulus) to estimate the resultant pain inhibition of the test stimulus. Although not required,
some of the most frequently used test sites include the upper and lower extremities.
Importantly, CPM effects are only observed in individuals with intact spinal cords [55]
because CPM activates spinal–supraspinal–spinal pathways, with ascending information
projecting from the spinal cord toward supraspinal centers and descending projections from
the brain via the dorsal columns of the spinal cord, to neurons in the dorsal horns [55,56].
Within the spinal–supraspinal–spinal loop, not only the PAG but also the subnucleus
reticularis dorsalis (SRD) of the medulla appears to be critically important for CPM [57,58].
The SRD not only plays an important part in the processing of ascending nociceptive
information from peripheral tissues, but also signals back to dorsal horn neurons of the
spinal cord [59]. Furthermore, the SRD appears to receive information from several cortical
structures including the prefrontal cortex and anterior cingulate cortex, which might explain
the influence of psychological factors on CPM [60–62].
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Individual differences
Pain is actively modulated by the nervous system at multiple levels of the neuroaxis (see
above), and individual variation in pain modulation almost certainly contributes to the well-
known variability of clinical and experimental pain [19,34,63]. Individual differences in
responses to experimental pain stimuli are normally distributed in the general population and
do not seem to significantly change over time [64,65]. Moreover, neuroimaging studies
suggest that variability of experimental pain ratings is closely correlated with CNS activity
in brain regions associated with pain processing and modulation [66].

Individual differences in pain ratings seem to depend on genetic and environmental factors.
Animal work in inbred mice provided evidence for a substantial genetic contribution not
only to acute but also to chronic pain and pain inhibition [67–69]. Human genetic studies
suggest that single nucleotide polymorphisms of pain-associated genes explain some of the
variance in pain, including polymorphisms of the β-adrenergic receptor [70], Δ-opioid
receptor [71], GABA receptor [72], Nav1.7 [73] and catechol-O-methyltransferase (COMT)
genes [74]. Additionally, environmental factors seem to have profound effects on human
pain intensity, including early life stressors, which have been shown to alter future pain
sensitivity [75–77] and may place individuals at risk for considerable acute [78] and chronic
pain [79,80]. Furthermore, pain intensity is influenced by cognitive factors such as
catastrophizing, which is associated with lower pain thresholds [81] and increased
hyperalgesia/allodynia [82].

Genetic factors in pain modulation
Studies in rodents have provided indirect evidence for the important role of descending
serotonergic (5-hydroxytryptophan [5-HT]) pain inhibition [83]. While spinal applications
of 5-HT resulted in increased pain inhibition, serotonin receptor antagonists reversed this
effect [84]. Effective synaptic concentrations of 5-HT are strongly dependent on the activity
of the 5-HT transporter (5-HTT) [85], whose gene (SLC6A4) is located on the long arm of
chromosome 17 [86]. Polymorphisms of this gene have been associated with many
psychiatric disorders [87], including migraine [88], depression [89] and FM [90,91].
Similarly, several mutations of SLC6A4 have been implicated in CPM effectiveness [92] but
this association is controversial at this time. Although one study reported strong genetic
association of CPM effectiveness with polymorphisms of the 5-HT promoter region in
healthy individuals [92], another study found no significant associations [93]. Although
these findings are puzzling, some discrepancies may be explained by methodological
differences in CPM techniques. Further research will be necessary to resolve these important
issues.

Role of pain modulation in acute & chronic pain
Acute pain

Postsurgical pain has been utilized as a model for the evaluation of endogenous pain
modulation. Preoperative experimental pain sensitivity was used to predict postoperative
pain in individuals after thoracotomy [94], limb amputation [95], cesarean section [96,97],
anterior cruciate ligament repair [98] and laparoscopic cholecystectomy [99]. Presurgical
experimental pain sensitivity predicted up to 50% of the variance observed in postoperative
pain [97]. The usefulness of this model as a predictor of endogenous pain modulation,
however, is controversial at this time. When the CPM of patients was tested before
thoracotomy surgery, one study found no correlation between CPM and acute postoperative
pain [100]. By contrast, another study reported significant correlations between these
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parameters [101]. This discrepancy was most likely related to multiple study-related factors
including variability of patients, surgical techniques and test methods.

Chronic pain
A growing volume of animal literature strongly suggests genetic influences on pain
sensitivity and pain modulation [102], with highly pain-sensitive animals demonstrating less
responsiveness to analgesics [103–105]. Several studies indicate that various biochemical
and neural pathways appear to be responsible for individual differences in analgesia, which
also influence pain sensitivity [105]. Most of these pathways originate from the medullar
raphe nuclei and project serotonergic or non-serotonergic fibers to the dorsal horn of the
spinal cord [106]. These findings suggest that high pain sensitivity may place individuals at
risk for prolonged pain not only by enhancing pain intensity but also by reducing the general
effectiveness of endogenous and exogenous analgesia.

Although endogenous pain modulation seems to play an important role in chronic pain,
multiple other factors appear to be involved. For example, the incidence of chronic
postoperative pain seems to vary greatly depending on the type of surgeries performed.
Chronic postsurgical pain has been reported in up to 12% of patients after cesarean section
[107], while 19% of patients complained of chronic pain 6 months following knee
arthroplasty [108]. Approximately 28% of patients undergoing inguinal herniorrhaphy [109]
and 52% of patients undergoing mastectomy experienced persistent pain [110]. The
incidence of chronic post-thoracotomy pain syndrome has been estimated to occur in 50–
80% of patients [111]. This variability in chronic postoperative pain may be dependent on
multiple factors including type of surgery, tissue as well as nerve injury and individual pain
modulation.

A large prospective NIH-funded cohort study of orofacial pain (OPPERA) is currently
underway to determine whether variability in basal pain sensitivity and pain modulation can
predict the development of chronic pain in subjects at risk for TMD [112]. Results from this
study are expected to be published in 2012. Information from a small pilot study related to
this project has revealed that pain sensitivity and genetic factors predicted the occurrence of
TMD in previously pain-free individuals [70]. Significant associations were noted between
COMT haplotypes predicting pain sensitivity and future TMD.

Long-term studies that assess the contributions of pain sensitivity and endogenous pain
modulation to future chronic pain are currently lacking. At this time, the most consistent risk
factor for the development of chronic pain appears to be the severity of acute pain after
injury. This relationship has been established for chronic pain after arthroplasty, amputation,
thoracotomy, spinal cord injury, breast cancer surgery, cholecystectomy, herniorraphy,
prostatectomy and cesarean section [97,113–119]. A similar association has also been
demonstrated in several prospective studies of patients with herpes zoster infections
[120,121]. High pain intensity during the acute episode of herpes zoster infection reliably
predicted the development of chronic postherpetic neuralgia after resolution of the zoster
rash [121]. By contrast, severity, duration or extent of the zoster rash were much less
predictive for postherpetic neuralgia than acute pain intensity [122]. Future prospective
well-designed studies will be necessary to assess the role of endogenous pain modulation for
chronic pain after injury.

Pain modulation in central sensitivity syndromes
Whereas postoperative chronic pain syndromes appear to be related to tissue damage
associated with illness and/or surgery, such associations are not apparent in many chronic
nonmalignant pain disorders such as FM, chronic fatigue syndrome, IBS and TMD. Patients
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with these disorders generally do not present with consistent tissue abnormalities that could
explain chronic pain and localized or widespread hyperalgesia/allodynia. Specifically, the
presence of central sensitization and other common features including fatigue, insomnia and
distress, have resulted in labeling these chronic musculoskeletal conditions as central
sensitivity syndromes (CSS) [123].

CSS are often debilitating illnesses associated with widespread musculoskeletal pain and
hyperalgesia. Similar to other chronic pain conditions, such as OA [124] or back pain [125],
detectable tissue abnormalities only poorly correlate with CSS pain [126]. A consistent
aspect of CSS, however, seems to be augmented CNS processing of nociceptive signals
[127,128] and dysfunctional endogenous pain modulation [61,129–131]. Specifically,
descending pain inhibition as assessed by CPM has been found to be ineffective in patients
with CSS [132,133]. However, this deficiency of CSS patients seems to be relative and not
absolute. At least some forms of endogenous pain modulation have been found to be
functional in patients with CSS, including spatial summation [134,135] and pain relief
through expectation [136]. Thus, failure to appropriately modulate nociception and
hyperalgesia may be one of the hallmarks of CSS.

Abnormal pain inhibition can be reversible
Clinical OA pain is thought to depend on ongoing nociceptive afferent input from abnormal
joint structures. Central sensitization is frequently detectable in OA patients with resultant
hyperalgesia and enlarged receptive fields of nociceptive neurons [137]. Although central
hypersensitivity is usually reversible following cessation of nociceptive peripheral input,
prolonged afferent barrage can result in persistent central sensitization [138–141]. Whether
chronic clinical pain associated with central sensitization is dependent on tonic afferent
impulse input, is controversial at this time. Several studies seem to indicate that at least
some forms of chronic pain and central sensitization are dependent on tonic nociceptive
input [37,142–144]. In one study QST was performed in 12 patients with painful hip OA
before and at 6–14 months after successful arthroplasty, showing that pain and mechanical
hyperalgesia associated with hip OA normalized after surgery [142]. In a second study, not
only central sensitization but also central pain inhibition were assessed in 13 patients with
painful OA of the hip [37]. Before hip arthroplasty, OA patients demonstrated evidence of
mechanical central sensitization and ineffective CPM – using tourniquet forearm pain as the
conditioning stimulus and mechanical pain as the test stimulus – which normalized after hip
arthroplasty. Lack of central pain inhibition of OA patients before surgery suggests
dysfunctional pain modulation (facilitation or inhibition) that normalized after replacement
of the abnormal joint. In addition, mechanical hyperalgesia also returned to normal after
surgery.

Expert commentary
The mechanisms of most chronic pain syndromes are only partially understood, including
many nonmalignant conditions such as OA, FM, IBS and TMD. Intense and/or long-lasting
afferent barrage can strongly contribute to central sensitization and often seems to be
associated with abnormal endogenous pain modulation. Many patients with chronic pain
disorders show evidence to suggest increased facilitation and decreased or absent inhibition
of pain. Accumulating evidence has demonstrated that QST of endogenous pain inhibition,
specifically CPM, can be used to predict ongoing pain, as well as the risk for future chronic
pain, including chronic postoperative pain. Dysfunctional pain inhibition has been
associated with chronic pain in patients with CSS or local pain syndromes, such as OA.
Individual assessments of pain modulatory systems can be readily accomplished in the
laboratory and may represent a sensitive biomarker of current and future chronic pains.

Staud Page 6

Expert Rev Neurother. Author manuscript; available in PMC 2013 March 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Further investigations of pain modulation in the general population will help refine our
estimates of who may be at greatest risk for future chronic pain. Treatments designed to
reduce the incidence, severity and impact of chronic pain in susceptible individuals are of
great clinical importance and include pre-emptive analgesia [145] and/or multidisciplinary
pain management programs [146]. Such approaches could have a considerable impact on
acute and/or chronic pain in age-related pain disorders such as OA or after trauma or
surgery, specifically for patients with high pain sensitivity and dysfunctional pain inhibition
who will require timely and effective pain management interventions.

Five-year view
In most chronic musculoskeletal pain conditions, afferent peripheral input is necessary but
not sufficient to explain the presence, duration and intensity of patients’ pain. Central
sensitization appears to be a hallmark of chronic pain, resulting in enhanced functioning of
pain pathways and increased membrane excitability and synaptic efficacy, as well as
reduced inhibition of neurons. It depends on the remarkable plasticity of the somatosensory
nervous system after afferent barrage, inflammation or neural injury and on ineffective
central modulation (increased facilitation or decreased inhibition). Overall, central
sensitization increases synaptic inputs to nociceptive neurons, which respond with
augmented action potentials, resulting in pain facilitation. Central sensitization is
responsible for many, if not most, changes in pain sensitivity observed in chronic pain
conditions. Importantly, central sensitization not only changes the sensory response elicited
by nociceptive afferents, but also the response to stimuli that usually evoke innocuous
sensations. Thus, better understanding of pain pathways that contribute to facilitation or
suppress inhibition of central sensitization, is urgently needed. For the time being,
prevention or rapid modulation of factors that initiate or prolong central sensitization may
represent important strategies. Specifically, prevention and management of injury-related
central sensitization, including effective pre- and post-operative analgesia, will most likely
be beneficial.
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Key issues

• Many chronic pain syndromes such as fibromyalgia, temporomandibular joint
disorder, irritable bowel syndrome, headache and chronic fatigue syndrome are
associated with hypersensitivity to painful stimuli and reduced endogenous pain
inhibition.

• Central sensitization appears to be a hallmark of chronic pain, resulting in
enhanced function of pain pathways and increased membrane excitability and
synaptic efficacy as well as reduced inhibition of neurons.

• Accumulating evidence suggests that endogenous pain inhibition depends on
activation of the prefrontal cortex, periaqueductal gray and rostral ventral
medulla.

• Quantitative sensory test paradigms have been designed to acquire detailed
information of each individual’s endogenous pain inhibition and facilitation.

• Pain inhibition and facilitation can be assessed by testing temporal summation
of pain, which is mostly used for testing of facilitatory pain modulation and
conditioned pain modulation, which tests pain inhibition by utilizing two
simultaneously applied painful stimuli (pain inhibits pain paradigm).

• Treatments designed to reduce the incidence, severity and impact of chronic
pain in susceptible individuals are of great clinical importance and include pre-
emptive analgesia and/or multidisciplinary pain management programs.
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