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Abstract: It is tempting to assume that confounding bias is eliminated by choosing controls 

that are identical to the cases on the matched confounder(s). We used causal diagrams to 

explain why such matching not only fails to remove confounding bias, but also adds colliding 

bias, and why both types of bias are removed by conditioning on the matched confounder(s). 

As in some publications, we trace the logic of matching to a possible tradeoff between effort 

and variance, not between effort and bias. Lastly, we explain why the analysis of a matched 

case-control study – regardless of the method of matching – is not conceptually different from 

that of an unmatched study.
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Introduction
“To match or not to match?” is a question that often arises when a case-control study 

is designed. Unfortunately, neither the logic of matching controls to cases nor the 

drawbacks of this procedure are widely understood. Sometimes, researchers assume 

that matching prevents confounding bias by choosing controls that are identical to the 

cases with respect to the matched confounder(s).1 This truth-like argument is almost 

always false. Other times, the true benefit of matching – smaller variance of theoretical 

estimates – is correctly identified, but the mechanism for such a gain is not explained. 

Moreover, not many researchers know that matching does not guarantee a tradeoff 

between effort and variance. The variance is not always reduced in return for the extra 

effort that should be invested to find matched controls.

We used causal diagrams to demystify the logic and analysis of frequency-matched 

and individually-matched case-control studies.

Causal diagrams
A full explanation of causal diagrams in the context of bias can be found elsewhere.2 

The most relevant ideas are summarized below. We write the names of variables and 

draw single-headed arrows between causes and their presumed effects (Figure 1). 

Since a cause always precedes its effects, a loop of self-causation does not exist. The 

effect of interest (ED throughout this article) is identified by a question mark above 

the arrow (Figure 1).

A natural path between two variables is any sequence of causal arrows –   regardless 

of their directionality – that connects the two, and does not pass more than once 
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through each variable. In Figure 1, for example, E and D 

are connected by three natural paths: ED; ECD and 

ECSD. A common cause of E and D is called a con-

founder (eg, C in Figure 1). If two arrows on a path point 

at one variable, that variable is called a collider on the path 

(because the arrowheads collide there). For instance, S is a 

collider on the path ECSD (Figure 1). By definition, 

a collider is a common effect of two variables (eg, C and D) – 

the colliding variables.

We distinguish among three types of natural paths 

between E and D: causal paths, confounding paths, and 

colliding paths. A causal path, as its name implies, is any 

path by which E affects D. For example, ED (Figure 1); 

and EXYD. A confounding path is any path in which 

E and D share a common cause (a confounder). For example, 

ECD (Figure 1); and EXYZD. A colliding path 

is any path that contains at least one pair of colliding variables 

and their collider, for example, ECSD (Figure 1) and 

EXYZD.

The theorems of causal diagrams build a solid bridge 

between a causal structure and expected associations. Both 

causal paths and confounding paths contribute to the mar-

ginal (crude) association between two variables; they are, 

therefore, called “open” paths. In contrast, colliding paths 

are “blocked”; they do not add anything to the association 

between the variables they connect. Referring again to 

Figure 1, the marginal association between E and D is the 

“sum” of the causal path, ED, and the confounding path, 

ECD (Figure 2). The colliding path (ECSD) is 

an innocent bystander.

If we estimate the magnitude of the effect of E on 

D by their marginal association, the estimator contains 

 confounding bias – the unwanted contribution of the con-

founding path (Figure 2). To get an unbiased estimator of the 

effect of E on D, the confounding path must be blocked.

All methods to block a confounding path (to deconfound) 

are based on conditioning, which means (in its basic form) 

restricting a variable to one of its values. Since a value is 

not associated with any variable, conditioning dissociates a 

variable from both its causes and its effects. For example, 

after conditioning on the confounder C (Figures 1 and 2), it 

will not be associated with E and D, so the confounding path 

will no longer exist. As will be seen, however, new paths 

and new associations might be created.

Figure 3 illustrates the consequences of conditioning, 

using new notation. Conditioning on S, denoted by a box, 

dissociates S from its three causes (X, Y, and Z) and its 

three effects (L, M, and N), and is denoted by two lines 

over each arrow. But more might happen: under certain 

conditions,2 new associations (denoted by dashed lines) 

will be created between variables that collide at S (that 

is, between causes of S). As a result, we observe new 

connecting paths, some of which are composed of dashed 

lines alone (eg, X--Y, and X--Y--Z), whereas others are 

composed of dashed lines and arrows (eg, EX--ZD). 

Since both types of paths arose after conditioning, we call 

them induced paths.

An induced path, just like a natural path, may be blocked 

or open, depending on whether it contains a collider. For 

example, the induced path HI--JKL is blocked – not 

contributing to the association between H and L – because the 

path contains the collider K. All induced paths in  Figure 3 are 

open; they create, or contribute to, the association between 

the variables they connect. Just like a confounding path, an 

open induced path between the cause-and-effect of interest 

E

C

D

S

?

Confounder Collider

Figure 1 A causal structure.
Note: The question mark denotes the effect of interest.

E

C

DE D
?

+

Figure 2 Components of the marginal association between E and D.
Note: The question mark denotes the effect of interest.

S

Z

X Y
L

N M

E D?

Figure 3 Consequences of conditioning on S.
Note: The question mark denotes the effect of interest.
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(here, E and D) is a source of bias. We call that bias colliding 

bias,2 because the culprit is an open path through colliding 

variables.

Deconfounding in an unmatched 
case-control study
With these principles in mind, we first depict the causal 

structure of an unmatched case-control study, assuming only 

one confounder (Figure 4, Diagram A). As before, the effect 

of interest is the causal path ED.

Imagining all people, let the variable S indicate whether 

a person is selected for a particular study. Since only the 

selected people are eventually studied, conditioning on S is 

built into all research designs (Figure 4, Diagram A). The 

distinguishing feature of a case-control study is the arrow 

DS, which shows that disease status affects selection status: 

your chances of being selected into the sample are higher 

if you have the disease than if you do not have it, at some 

index time. (This is also true for case-cohort sampling and 

incidence density sampling). Here, however, conditioning 

on S carries no consequences for the estimated odds ratio, 

because no new paths are induced (so long as C does not 

modify E’s effect on S).2 To deconfound, we condition on C 

(Figure 4, Diagram B).

Conditioning, as described so far, is often just the first 

step in the computation. Rather than estimating the odds ratio 

for only one value of C, we may estimate the odds ratio for 

each value of C and compute a weighted average of all the 

estimates. If E and C are binary variables, the deconfounded 

estimator of the effect of E is computed as follows:

 OR
deconfounded

 = (w
1
OR

1
 + w

2
OR

2
)/(w

1
 + w

2
) (1)

where OR denotes the odds ratio, w denotes the weight, and 

the subscript denotes the value (stratum) of C. The classic 

weights in equation (1) are the inverse of the variances of the 

C-specific estimates. Such weights minimize the variance of 

the deconfounded odds ratio.

Sometimes, weighting is done on the log scale:

 ln(OR
deconfounded

) = [w
1
ln(OR

1
) + w

2
 ln(OR

2
)]/(w

1
 + w

2
)

OR
deconfounded

 = exp {[w
1
ln(OR

1
) + w

2
ln(OR

2
)]/(w

1
 + w

2
)} 

(2)

In equation (2), the classic weights are the inverse of 

the variances of the log of the C-specific estimates. Those 

weights minimize the variance of the log of the deconfounded 

odds ratio.3

Alternatively, we may condition on C by adding the vari-

able to an unconditional logistic regression model:

 ln [odds(D = case)] = β
0
 + β

1
E + β

2
C

 OR
deconfounded

 = exp(β
1
) (3)

Whichever computation is used, deconfounding is a 

tradeoff between variance and bias, because the variance 

of the odds ratio always increases after conditioning. If the 

sample is restricted to only one value of C, the variance 

increases because the estimate is computed from a smaller 

sample. That is also the case for deconfounding by a weighted 

average or by regression.4 As far as the variance is concerned, 

breaking the sample and reassembling the pieces does not 

perfectly restore the intact sample size.

Of course, it is not necessary to compromise the variance. 

We may keep the sample intact – that is, not condition on 

the confounder – and tolerate the bias in return for a smaller 

variance.

Deconfounding in a matched  
case-control study
Figure 5 shows the causal structure of a matched case-control 

study, under the same conditions and notation: ED is the 

effect of interest; C is a single confounder; and S indicates 

selection status. One theoretical exception aside, a matched 

design is distinguished from its unmatched counterpart by 

the arrow CS. The value of the matched confounder also 

E

C

D

S

Diagram A

? E

C

D

S

?

Diagram B

Figure 4 Confounding (A) and deconfounding (B) in an unmatched case-control 
study.
Note: The question mark denotes the effect of interest.

E D

S

?

C

Figure 5 The causal structure of a matched case-control study.
Note: The question mark denotes the effect of interest.
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plays a role in deciding whether a person will be selected 

into the sample. For instance, a disease-free person will be 

selected for a 1:1 matched study only if a yet-to-be-matched 

case shares his (or her) value of C. Similarly, a diseased per-

son will not be retained in the sample if no C-matched control 

is found. That is also true for a frequency-matched case-

control study, in which groups of disease-free people are 

periodically selected to match the distribution of confounders 

in accumulated groups of cases.

Adding the arrow CS turns S into a collider: CSD 

(Figure 5). Following inevitable conditioning on S, an asso-

ciation is created between C and D, the colliding variables, 

and an open induced path now connects the cause-and-effect 

of interest (EC--D). Matching not only failed to block a 

confounding path, but also added colliding bias (EC--D) on 

top of confounding bias (ECD). The magnitude of the net 

bias depends on the strength and direction of each path.

Before discussing the remedy, and later, the wisdom of 

matching, an intriguing question might be asked. Having 

nullified the association between C and D, how can match-

ing result in net bias? Do the paths CD and C--D not sum 

to a null association? Figure 6 reveals the answer. The null 

association between C and D is the sum of three paths – not 

two – the third of which is CED. Assuming the effect 

CED is not null, the arrow CD and the dashed line 

C--D do not add up to a null association (Figure 6). Colliding 

bias was indeed mixed with confounding bias (Figure 7). We 

note, in passing, that matching in a cohort study (CSE) 

removes both types of bias, because the associational sum 

of CE and C--E is null.2

One exception exists, as noted above. The paths CD 

and C--D sum to a null association (no net bias), if the 

causal path CED is precisely null – that is, no third path 

exists. That can happen if E is not a cause of D (Figure 8, 

Diagram A), or if C is not a cause of E (Figure 8, Diagram B). 

In those circumstances, there is no net bias upon matching, 

although matching is worthless in the second case (C is not 

a confounder in Diagram B). Notice that if C is a cause of E, 

but the arrow CD is absent, matching adds colliding bias in 

the absence of confounding bias (Figure 8, Diagram C).

Figure 9 shows the simple, standard remedy when 

matching results in net bias. Conditioning on the matched 

confounder, C, removes both colliding bias (denoted by the 

deletion of the dashed line) and confounding bias. Whatever 

the motivation for matching might be, it has nothing to do 

with circumventing the need to deconfound: we still have to 

condition on a matched confounder. Why match, then? Why 

invest the extra effort that goes along with finding matched 

controls instead of recruiting unmatched controls?

The answer comes from the domain of variance. Given a 

fixed sample size, the variance of theoretical estimates from 

a matched design will often, but not always, be smaller than 

the variance of estimates from an unmatched design. And 

even when the variance is reduced by matching, it might not 

be reduced by much.

E D

C

D

C

D

+ +
?

C

= null

C

D

C

D

+ ≠ nullIf C E D is

not null, then

Figure 6 Contributors to the null association between the confounder (C) and 
disease status (D) in a matched case-control study.
Note: The question mark denotes the effect of interest.

E

C

D

S

?

Non-null association

Figure 7 Colliding bias superimposed on confounding bias in a matched case-
control study.
Note: The question mark denotes the effect of interest.
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Diagram A Diagram B

E

C

D

S

Diagram C

?

Figure 8 Special cases of matching: no net bias under the precise null (A); no 
colliding bias in the absence of confounding bias (B); colliding bias in the absence of 
confounding bias (C).
Note: The question mark denotes the effect of interest.
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Matching and variance
To follow the logic of matching, we should first recall that 

the variance of the (log) odds ratio (marginal association) 

may be estimated as follows:

 Var [ln(OR)] = 1/a + 1/b + 1/c + 1/d (4)

where a, b, c, and d are the cell counts in the 2 × 2 table 

(cross-classification by E and D, two binary variables).

The variance depends, in part, on the ratio (k) of the 

number of controls (m) to the number of cases (n). Given a 

fixed number of cases, the larger the number of controls, the 

smaller the variance by equation (4), because the cell counts 

in controls (b, d) are also expected to be larger (b + d = m). 

Close to the null (OR = 1), the variance in a large study with 

n cases and m = kn controls is approximately (k + 1)/k times 

the variance in a theoretical study with an infinite number 

of controls.5 For example, with as many controls as cases 

(k = 1), the variance is twice as large, but with four times as 

many controls (k = 4), the variance is only 1.25 times larger. 

That is not always a good approximation, however – for 

example, when the odds ratio is large. Unfortunately, no 

general formula links the variance to k alone.

A case-control study is often designed under two 

constraints that fix the value of k. All available cases are 

retained (n), and the sample size (T) is limited due to 

cost: k = (T − n)/n. In the absence of confounding, the 

causal path ED is estimated by the marginal odds ratio, 

and its variance can be reduced only by recruiting more 

controls (larger k). Later, when k is fixed but deconfound-

ing is needed, we will examine another option to reduce the 

variance – matching.

Again, let C denote a binary confounder (C = 1 or C = 2), 

and let k
1
 and k

2
 denote, respectively, the control-to-case ratio 

in the strata C = 1 and C = 2. The variance of the deconfounded 

estimator, regardless of matching, is related to the variance of 

C-specific odds ratios (Var
1
 and Var

2
) as follows:6

 Var [ln(OR
deconfounded

)] = 1/(1/Var
1
 + 1/Var

2
) (5)

As previously seen, Var
1
 and Var

2
 are functions, in part, of k

1
 

and k
2
, respectively. In an unmatched design with a fixed k, we 

do not control the values of k
1
 and k

2
, and therefore, we cannot 

influence the values of Var
1
 and Var

2
 which, in turn, determine 

the value of Var [ln(OR
deconfounded

)]. Most important, k
1
 and k

2
 

are expected to be different if C is a confounder.

To realize the last key point, first consider the associa-

tion between C (the confounder) and D (disease status) in an 

unmatched study. Assuming no confounders, that association 

estimates the effect of C on D via the causal paths CED 

and CD (Figure 4, Diagram A). Notice that the paths CE 

(which is part of CED) and CD also determine the 

magnitude of confounding bias for the effect of E on D.2

Next, let us consider a hypothetical unmatched study 

of 100 cases and 400 controls (k = 4). Suppose that the 

estimated odds ratio for the effect of C on D is 11 for the 

contrast between C = 1 and C = 2 (Figure 10). Then, the odds 

of being a control when C = 2 are eleven times the odds of 

being a control when C = 1 (Figure 10). However, the last 

statement simply describes the ratio of k
2
 to k

1
! The control-

to-case ratio in the stratum C = 2 (k
2
 = 22) is eleven times 

that of the ratio in the stratum C = 1 (k
1
 = 2). We therefore 

conclude: the stronger the combined effect of CED and 

CD, the larger the difference between k
1
 and k

2
. And often, 

though not always, a stronger effect of C on D is accompanied 

by more confounding bias.

Although matching does not eliminate the need to 

condition on the confounder, C, it does allow us to con-

trol the values of k
1
 and k

2
 by forcing the equality k

1
 = k

2
. 

If the distribution of C in controls is identical to the 

 distribution of C in cases, the control-to-case ratio will be 

identical in the two strata of C (Figure 11). Of course, it 

E D

S

?

C

Figure 9 Deconfounding in a matched case-control study.
Note: The question mark denotes the effect of interest.

Cases Controls Odds of being
a control

C = 1 180/90 =  2

C = 2 220/10 =  22

90
(90%)

10
(10%)

100

180
(45%)

220
(55%)

400 400/100 =  4

Cases Controls k1

E = 1 a1 b1

E = 2 c1 d1

90 180 2

C = 1 C = 2

Cases Controls k2

E = 1 a2 b2

E = 2 c2 d2

10 220 22

Figure 10 Association between an unmatched confounder (C) and disease status 
(top table); counts of cases and controls in C-specific associations of E and disease 
status (bottom tables).
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will also be identical to the control-to-case ratio in the entire 

sample (k
1
 = k

2
 = 4).

Why force the equality k
1
 = k

2
 = k? Does that equality 

guarantee a smaller variance in a matched design than in an 

unmatched design of the same size and number of cases? Will 

the variance expression – equation (5) – be smaller when 

k
1
 = k

2
 than when k

1
 ≠ k

2
? Unfortunately, the answer is not 

unequivocally positive. Often, the variance will be smaller, 

and sometimes, substantially so. Other times, however, the 

variance in a matched design will be similar to, or even larger 

than, the variance in an unmatched design.5 Many predictions 

can be made, but no assumption-free algorithm can tell us 

whether matching will prove to have been the right  decision. 

Despite the intuitive merit in proportionate allocation of 

 controls to the strata of C, the extra effort that matching 

requires does not guarantee a smaller variance.

Qualifications
In retrospect, it is easy to come up with extreme examples 

where we can argue in favor of matching. If an unmatched 

design fails to include controls in one stratum of C, the entire 

table will be discarded, along with precious cases. Successful 

matching precludes that situation, but opposing examples also 

exist. If researchers insist on 1:1 matching, and they fail to find 

matched controls, precious cases will be discarded, too.

Analysis of matched case-control 
studies
Students of epidemiology or biostatistics are taught that 

a matched design requires a special “matched” analysis, 

but nothing so far implies anything special about the 

analysis of a matched case-control study. Indeed, we treat 

frequency-matched confounders just as we treat their 

unmatched counterparts, using equations (1−3) to decon-

found. For instance, if C1 and C2 are a frequency-matched 

confounder and an unmatched confounder, respectively, the 

deconfounded odds ratio may be estimated by the following 

unconditional logistic regression model:

 ln [odds(D = case)] = β
0
 + β

1
E + β

2
C1 + β

3
C2 (6)

The so-called special, “matched” analysis has evolved 

from technical problems of estimation that arise in indi-

vidual matching. But as we will see next, nothing is 

conceptually different. In individual matching, just as 

in frequency matching, we still have to condition on the 

matched confounder(s) to remove the mixture of confound-

ing bias and colliding bias.

Suppose we have matched one control to each case 

on a continuous variable – such as weight – and that each 

case-control pair shares a unique weight. At first glance, 

it seems that we cannot estimate a deconfounded odds 

ratio by  equation (1) or equation (2), because each stratum 

of C  contains only two people, and therefore, stratum-

specif ic odds ratios cannot be estimated  (Figure 12). 

Equation (3) will also fail because the unconditional maxi-

mum  likelihood estimate of β
1
 will be biased.7 Nonetheless, 

solutions can be found for both a weighted average and 

regression.

Let a
i
, b

i
, c

i
, and d

i
, denote the cell counts in the 2 × 2 

table (cross-classification of E and D) in the i-th stratum 

of C (Figure 12).

With this notation, equation (1) may be generalized as 

follows:

Cases Controls Odds of being
a control

C = 1 360/90 =  4

C = 2 40/10 =  4

90
(90%)

10
(10%)

100

360
(90%)

40
(10%)

400 400/100 =  4

Cases Controls k1

E = 1 a1 b1

E = 2 c1 d1

90 360 4

C = 1 C = 2

Cases Controls k2

E = 1 a2 b2

E = 2 c2 d2

10 40 4

Figure 11 Null association between a matched confounder (C) and disease status 
(top table); counts of cases and controls in C-specific associations of E and disease 
status (bottom tables).

CASE CONT

E=1 0 0

E=2 1

1

CASE CONT

E=1 1 1

E=2 0 0

1 1

CASE CONT

E=1 1 1

E=2 0

1

CASE CONT

E=1 0 1

E=2 1 0

1 1

CASE CONT

E=1 0 1

E=2 1 0

1 1

CASE CONT

E=1 0 0

E=2 1 1

1 1

CASE CONT

E = 1 1 1

E=2 0

1

CASE CONT

E = 1 0 1

E=2 0

1

CASE CONT

E = 1 1 0

E=2 0 1

1 1

CASE CONT

E = 1 1 1

E=2 0

1

CASE CONT

E = 1 0 1

E = 2 1 0

Total 1 1

C = 1

C = 2

C = 3

C = 4

C = 5

C = 6
C =

CASE CONT

E = 1 ai bi

E = 2 ci di

Ti

C = i

Figure 12 Stratification on the confounder (C) when each matched pair shares a 
unique value of C.
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 OR
w OR

wdeconfounded

i ii

ii

= ∑
∑

 (7)

where

 OR
a c

b d

a d

b ci
i i

i i

i i

i i

= =
/

/

If we use the Mantel–Haenszel weights,8 w
i
 = b

i
c

i
/T

i
 

(where T
i
 = a

i
 + b

i
 + c

i
 + d

i
), equation (7) takes the follow-

ing form:

 OR
a d T

b c Tdeconfounded

i i ii

i i ii

= ∑
∑

/

/

 

(8)

Although we derived equation (8) assuming b
i
c

i 
≠ 0, we 

may still use it, instead of equation (7), when b
i
c

i 
≠ 0 in some, 

but not all, strata of C.

Returning to Figure 12, we observe that T
i
 = 2 for any 

i, and that a
i
, b

i
, c

i
, and d

i
 take the values 0 or 1.  Therefore, 

we can simplify the computation in equation (8) by group-

ing the series of tables in Figure 12 into four types of 

case-control pairs, as shown in Figure 13: A-pairs (a
i
 = 1 

and b
i
 = 1); B-pairs (a

i
 = 1 and d

i
 = 1); C-pairs (b

i
 = 1 and 

c
i
 = 1); and D-pairs (c

i
 = 1 and d

i
 = 1). Notice that neither 

A-pairs nor D-pairs contribute to equation (8), because the 

product of their diagonal cells is zero (a
i
 d

i
 = b

i
 c

i
 = 0). In 

contrast, each B-pair contributes ½ to the numerator of 

equation (8) (and nothing to the denominator), whereas each 

C-pair contributes ½ to the denominator (and nothing to the 

numerator).

Let R and S denote the count of B-pairs and C-pairs, 

respectively. Then,

 

OR
R

S

R

Sdeconfounded = =
1 2

1 2

/

/
 (9)

Equation (9) is called the “matched” odds ratio (often writ-

ten as B/C). As we have just realized, however, it is no more 

than a weighted average of the odds ratio – equation (7) – 

across the values of C, the matched confounder. Similar 

formulae can be developed for 1:k matching (k . 1).

To overcome the sparse data problem in regression, we 

may fit a conditional logistic regression model, in which the 

intercept, which is a nuisance parameter in effect estimation, 

is not estimated. Rather than adding C, the matched con-

founder, as a covariate (equation (3)), it is taken into account 

when the likelihood function is constructed.

If each matched set shares a unique value of the con-

founder C, a unique matched set identifier may substitute 

for C. That is, we may condition on the identifying variable 

instead of conditioning on C. The same is true in individual 

matching on several confounders, for example, C1, C2, and 

C3, where conditioning on a matched set identifier substi-

tutes for simultaneous conditioning on the three matched 

variables. Matched sets that share the same values of the 

matched confounder(s) should be combined under a com-

mon identifier.

To summarize, the so-called “matched” analyses are no 

more than alternative mathematical ways to condition on 

individually-matched confounders.

Conclusion
As shown here and elsewhere,9–12 causal diagrams prove to be 

an indispensible tool in research methodology. A few simple 

principles that connect causation with association were suf-

ficient to explain why matching controls to cases not only 

fails to remove confounding bias, but also adds colliding bias 

on top of confounding bias. The same principles also show 

that both types of bias will be removed by conditioning on the 

matched confounder(s). Tracing the logic of matched case-

control studies reveals a possible tradeoff between effort and 

variance, not between effort and bias. The variance might be 

reduced in return for the extra effort that matching requires. 

Of course, the extra effort, if not trivial, may also be invested 

in recruiting more controls for an unmatched study.

That effort must be invested to gain scientific knowledge 

is well known, but it is also well known that investing extra 
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Figure 13 Stratification on the confounder (C) when each matched pair shares a 
unique value of C, grouping into four possible results.
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effort does not guarantee a substantial gain, or even any gain, 

in knowledge. Matching controls to cases is no exception. 

The merit of matching is often overstated, if not completely 

misstated.
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