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Abstract
T helper (TH) cells integrate biochemical cues present within the tissue microenvironment to
orchestrate immunity via production of cytokines. Prior discoveries reveal a qualitative
understanding of how TH cells process this biochemical information, as frequently depicted as
signaling cartoons. However, the lack of methods for quantifying how well these signaling
cartoons apply to a particular cell type presents a major hurdle for translating our knowledge of
immunity across systems. In this study, we use model-based inference methods, in conjunction
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with quantitative cytometry-based methods, to reason about the relative contributions of different
putative branches within a signaling network. A cellular model of mouse TH1 cells was used to
quantify the functional response to Interleukin-12 (IL-12), a key cytokine that links innate to
adaptive immunity. Our results demonstrate that the response of TH cells to IL-12 exhibits a
hysteresis and engages a positive feedback mechanism via direct activation of signal transducer
and activator of transcription 1. The hysteresis in the dose-response curve to IL-12 creates a
transient “memory” by sustaining cytokine secretion following the withdrawal of the stimuli. In
summary, this combined experimental and computational approach illustrates how model-based
inference can be used to obtain greater fidelity in understanding how cells process and act upon
biochemical cues present within the tissue microenvironment.

Introduction
Cell-mediated immunity is tailored to the perceived threat to the host largely through the
action of CD4+ T helper (TH) cells [1]. When presented in an appropriate context, TH cells
recognize particular antigens associated with the threat and produce a distinct set of
biochemical cues in response (e.g., cytokines). The repertoire of receptors that recognize
specific antigens is selected within the thymus [2] while the pattern of cytokines produced
by TH cells is determined within the periphery [3]. The role that TH cells play within the
periphery is defined based upon the pattern of cytokines produced by and master regulatory
transcription factors expressed within distinct subsets of TH cells [4]. The particular profile
of cytokines produced by TH cells in response to a particular molecular pattern has a strong
influence on the outcome of the immune response [1], where alternatives include tolerance,
resolution, or autoimmunity. However, understanding how biochemical cues present within
the periphery regulate the longevity and phenotype of TH cells (i.e., TH cell fate) remains a
challenge in translating basic knowledge of cellular signaling pathways into practical
application of this knowledge, including stem cell engineering, regenerative medicine, and
immunotherapy.

The fate of TH cells is a quantitative cellular decision making process where biochemical
cues present within the periphery act upon the TH cells by modifying intracellular proteins
that in turn regulate cell response [5]. Our knowledge of this cellular decision making
process is informed by a wealth of experimental data. Generally, the flow of information
within a cell can be considered as a network of biochemical reactions that is governed by a
propensity for productive interaction, local concentration, and conservation principles [6, 7].
The connectivity among interacting proteins (i.e., the topology) is commonly depicted as
graphical signaling pathways. However, the existence of crosstalk among signaling
pathways [8, 9], differences in the relative importance of alternative branches within
signaling pathways among similar cellular systems [10], and cellular alterations that re-wire
signaling pathways [11, 12] complicate interpreting observed data using signaling pathways
as a conceptual framework. Moreover, biological systems exhibit intrinsic uncertainty. The
uncertainty in characterizing a biological state can be attributed to multiple sources,
including the underlying signal-to-noise characteristics of a biological assay [13], the skill of
the experimentalist [14], ethical limitations, or cell-to-cell variability that may become
important when sampling a finite number of states (i.e., stochasticity) [15, 16]. Given the
body of knowledge currently assembled and the intrinsic uncertainty in the data, how do we
infer the relative importance of a particular subset of these pathways within a particular
system of interest?

Interleukin-12 (IL-12) is an important cytokine that is produced by innate immune cells and
acts upon Natural Killer cells, CD8+ Cytotoxic T cells, and TH cells [24, 25]. IL-12 acts via
a member of the Janus kinase (JAK) and signal transducer and activator of transcription
(STAT) family of signaling pathways [26]. The Janus kinases, JAK2 and TYK2, associate
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with their corresponding IL-12 receptor subunits, IL-12Rβ1 and IL-12Rβ2, to create a
signaling complex that phosphorylates STAT4. The post-translational modification of the
STAT family plays a role in both inducing master transcriptional regulators of TH effector
function and cytokine production [3]. Sufficient and sustained IL-12 signaling [27] leads to
polarization of naïve CD4+ T cells into a TH1 phenotype [28]. Phosphorylated STAT4
translocates to the nucleus to promote the transcription of the cytokines, Interferon-γ (IFN-
γ) and IL-10 [29], and the receptor IL-12Rβ2 [30]. IFN-γ is viewed traditionally as a TH1
cytokine while IL-10, produced by TH1 cells, is thought to function as a negative feedback
loop to regulate pathogenic TH1 responses [31]. In addition to the direct feedback loop via
STAT4, IFN-γ regulates IL-12Rβ2 expression [32], although the sensitivity to IFNγ-may
depend on the differentiation state of the TH cell [33, 34]. Recently, Good et al. reported that
pSTAT4 promotes the expression of TNF-α in TH1 cells [35]. In addition, an autocrine
positive feedback loop regulates the expression of TNF-α [36, 37]. However, the dynamic
role of these alternative signaling pathways in shaping the TH1 cell response to IL-12 and in
maintaining a TH1 phenotype remains unclear.

Creating new knowledge as to how information flows within signaling networks from a
statistical analysis of experimental observations – a process called statistical inference -
relies on a spectrum of computational tools [17]. The particular computational approaches
vary in how much previous knowledge is used - from none [18] to detailed knowledge
regarding the relationships between proteins involved in a signaling pathway [19]. In
addition, the particular approach used also influences the quality of inference that can be
made about the signaling network - from binary statements regarding the inclusion of
possible branches within a signaling network (e.g., Bayesian networks [20]) to quantitative
statements about the relative contribution of a specific branch within a defined signaling
network (e.g., ODE models [21]). Frequently, the inference problem is a mixture of these
two extremes: some prior knowledge of the signaling network thought to play a role in a
system exists but there are conflicts in the literature regarding specific details. The lack of
quantitative estimates for parameter values also presents an obstacle against the use of
quantitative models of signaling networks [22]. Although a single set of parameter values
provides a single set of model predictions, inferring new signaling knowledge from data
focuses on whether the collection of branches in the signaling network (i.e., topology) is
sufficient to explain the observed data for any plausible set of parameter values. This implies
two things: this problem of statistical inference must consider (i) the specific data under
consideration and (ii) the uncertainty associated with the network predictions, given the
associated uncertainty in the parameter estimates and the proposed topology of the network
model. Here, we present the use of empirical Bayesian methods in conjunction with
quantitative cell signaling models as a solution to this statistical inference problem [23]. It is
within this context that we used an empirical Bayesian approach for model-based inference
to evaluate competing hypotheses regarding how effector TH1 cells interpret IL-12.

Results
Cell fate varies with time and culture conditions

To explore these signaling questions in the context of TH cell biology, we constructed a
quantitative cue-signal-response data set to infer the relative contributions of alternative
signaling pathways within our specific system: the mouse 2D6 cell line as a model system
for TH1 cells. In total, the quantitative cue-signal-response data set contained 924 data
points that included measures of cell fate and key proteins associated with the IL-12
signaling pathway. These measures were obtained at seven time points, under four
experimental conditions, and in technical triplicate. In short, cellular response to a
biochemical cue is influenced by preexisting biochemical signals within a cell, external
biochemical cues, and paracrine feedback mechanisms. A 2×2 factorial experimental design
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was constructed to parse the cellular response due to the direct effect of IL-12 stimulation
from the indirect influence of paracrine feedback mechanisms. The preexisting biochemical
signals within a cell is also influenced by dilution within an expanding cell population. We
used flow cytometry, as a form of high content assay, to parse the influence of an expanding
cell population from the signals elicited within individual cells by a biochemical cue.

First, we quantified dynamic changes in the number and viability of cells within our system
(Fig. 1). We used flow cytometry to assess the viability of cells (which are detected as
“events”), using cleavage of caspase 3 as a marker for apoptosis (Fig. 1, A and B). We then
used a mathematical cell fate model (Fig. 1C) to infer the time-dependent rate constant for
cell proliferation and time-dependent rate constant associated with cell death through
apoptosis. The total number of live cells and the percentage of the total number of cells that
was viable (that is, the ratio of events contained within red oval in Fig. 1A relative to events
contained within the dashed gate) were used to calibrate the cell fate model. We used an
empirical Bayesian approach to estimate distributions in the rate constants (Fig. 1D and figs.
S1 to S3) and associated model predictions (Fig. 1, E and F, and fig. S4) that are consistent
with the experimental observations of the total number of live cells per well and of cell
viability (Fig. 1, E and F, and fig. S4). Because these distributions were calculated on the
basis of the available data, they are referred to as posterior distributions. The posterior
distributions in the time-dependent rate constant for cell proliferation were independent of
both cell density and IL-12 (fig. S5A), whereas the time-dependent rate constant for cell
death varied with the culture conditions and IL-12 (fig. S5B). Initially, the rate constant for
cell death was negligible relative to cell proliferation but it increased over time. The rate
constant for cell death increased above the rate constant for cell proliferation after 30 hours
in culture and corresponded to the decline in the number of live cells. An increase in the
initial number of cells per well shifted the time at which the rate constant for cell death was
equal to the rate constant for cell proliferation from 30 hours at the low cell density
conditions to less than 25 hours at the high cell density. Although IL-12 suppressed cell
death up to 45 hours when applied to cultures of low cell density; the effect of IL-12 was
diminished at higher cell densities. These observed dynamics of cell fate within our system
led us to develop a quantitative description that integrated the cell population dynamics with
an intracellular cue-signal-response model for how IL-12 induces the production of
cytokines in a TH1 cell model.

The cue-signal-response model incorporates cell population dynamics
In addition to the cell population dynamics, the quantitative cue-signal-response data set also
included key proteins associated with the IL-12 signaling pathway (expression of IL-12Rβ1
and IL-12Rβ2 and phosphorylation of STAT4), integrative measures of cytokine production
(IFN-γ, IL-10, TNF-α, IL-6, and MCP-1), and an independent measurement of stimulation
by IL-12p70. We used quantitative flow cytometry to observe the nature and dynamics of
the response of live 2D6 cells to IL-12. Specifically, we analyzed the IL-12R subunits
IL-12Rβ1 and IL-12Rβ2 and the extent of phosphorylation of STAT4 at Tyr693 (Y693) at a
series of time points (Fig. 2A). Because the 2D6 cell line is IL-12 dependent, we cultured
the 2D6 cells in complete RPMI (cRPMI) medium alone to reduce basal activation of the
cells. Upon prolonged culture in cRPMI alone, the mean fluorescence intensity (MFI) of
pSTAT4 decreased as a function of time in live IL-12β2-positive cells (Fig. 2B). As
expected, STAT4 became phosphorylated, in response to IL-12 in IL-12Rβ2-positive cells,
in a graded, dose-dependent manner (fig. S6). Furthermore, the probability distribution
functions (PDFs) for IL-12Rβ1, IL-12Rβ2, and pSTAT4 suggested that this cell line could
be considered as a single population; thus, median values could be used as appropriate
summary statistics (Fig. 2A). The MFI associated with IL-12Rβ1, IL-12Rβ2, and pSTAT4
were used to estimate the protein copy numbers with calibration beads (fig. S7). The median
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protein copy numbers for IL-12Rβ1 and IL-12Rβ2 were similar at 5500 and 5700 copies per
cell, respectively. The median protein copy number for pSTAT4 was 12,100 copies per cell.
Because the amount of IL-12 used to stimulate the 2D6 cells was at a saturating
concentration, we assumed that 100% of the total STAT4 was phosphorylated. The dynamic
response of IL-12Rβ2 was qualitatively similar among the treatment conditions (Fig. 2, C
and D, and fig. S8). The abundance of IL-12Rβ1 exhibited dynamics similar to that of
IL-12Rβ2 (fig. S9). Because the functional IL-12R consists of both IL-12Rβ1 and IL-12Rβ2
components, we assumed that the observed dynamics of IL-12Rβ2 corresponded to the
functional IL-12R.

The median abundances of IL-12Rβ1 and IL-12Rβ2 and activity of STAT4 for the
population of live 2D6 cells were also coupled with changes in biochemical cues enriched in
the cell culture media. We assayed IFN-γ, TNF-α, IL-10, IL-6, and MCP-1 at the same time
points with cytometric bead arrays. In addition, we assayed IL-12p70 to monitor the
biochemical cue that provided an input signal to the system over time. The amounts of IFN-
γ, TNF-α and IL-10 secreted by the cells depended on the time and the experimental
conditions (Fig. 2, C and D, and fig. S8). Even in the absence of IL-12, we observed a
transient increase in these cytokines in the conditioned media. IFN-γ was the most abundant
cytokine produced, which was followed by moderate production of IL-10 and a low
production of TNF-α, which has not been previously reported. This was not unexpected
because the assay used to measure TNF-α in previous studies may have been unable to
detect such a small amount of cytokine. Because we observed IL-6 and MCP-1 at the lower
end of the dynamic range of the assay and found that they did not vary with experimental
conditions, we excluded these data points from subsequent analysis (fig. S9).

To describe how the 2D6 cells orchestrated a cellular response to IL-12, we developed a
deterministic mathematical model to interpret this quantitative cue-signal-response data set.
Because this is a closed system, secreted proteins that have a paracrine effect on cellular
response may accumulate within the system, and intracellular signals may be diluted
because of a cell population that is expanding in numbers. The topology of the model was
shaped by our previous study of IL-12 signaling in naïve CD4+ T cells [21, 38], the
observed cue-signal-response data set, and putative regulatory pathways that have been
reported in the literature (Fig. 3A). In addition to expressing IL-12R, 2D6 cells also have
IFN-γ receptor 1 (CD119) and TNF receptor (TNFR) type II (CD120b) (fig. S10). Because
the model predictions should be thought of as probabilistic distributions rather than single
point estimates [39], we again used an empirical Bayesian approach to estimate the
uncertainty in the model predictions, given the available cue-signal-response data (figs. S11
to S13). The posterior distribution in the cue-signal-response model predictions were largely
consistent with the quantitative data set (Fig. 2, C and D, and fig. S8). Under prolonged
culture without IL-12, the mathematical model predicted an exponential decline in the
amount of pSTAT4 and a corresponding reduction in the production of IFN-γ and IL-10.
The predicted responses of IFN-γ and IL-10 were consistent with the experimental data. The
experimentally determined amounts of pSTAT4 did not approach zero, but decrease to an
extent that corresponded to background fluorescence. In our simulation of the response to
IL-12, our predictions of the concentrations of pSTAT4, IFN-γ, and IL-10 were consistent
with the experimental observations at the low cell density. At the higher cell density, the
experimental values for both pSTAT4 and IL-10 were slightly below those predicted by the
model at 36 and 42 hours, which was suggestive of a potential paracrine feedback pathway
that inhibited cytokine production. In summary, the cue-signal-response model accurately
captured the underlying quantitative data set. Systematic differences could be explained by
technical limitations of the assays used or were suggestive of paracrine feedback
mechanisms that may have influenced the cellular response at a higher cell density. In the

Klinke et al. Page 5

Sci Signal. Author manuscript; available in PMC 2012 October 17.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



following sections, we examine in more detail our interpretation of the data set with the cue-
signal-response model.

The production of TNF-α by 2D6 cells is regulated via an autocrine positive feedback loop
TNF-α is a pleiotropic cytokine whose synthesis by TH1 cells is regulated by STAT4 and an
autocrine mechanism that involves members of the nuclear factor κB (NF-κB) family of
transcription factors. To gain greater insight into the relative contributions of these parallel
pathways in regulating TNF-α production, we obtained a posterior distribution in the
simulated pathway flux of the NFκB branch (Fig. 3A, RP1) versus the pSTAT4 branch (Fig.
3A, RP2) in regulating TNF-α synthesis (Fig. 3B). Given the posterior distribution our
model predictions, the conditional probability that RP1 was greater than RP2 was 97.7%
with kernel density estimation, and the conditional probability that RP1 was a factor of 10
greater than RP2 was greater than 88.3%. To validate this prediction, we used a TNFR
antagonist to break the predicted autocrine positive feedback loop without interfering with
detection of TNF-α. In combination with the TNFR antagonist (αTNFR), we also
stimulated the cells with IL-12 to turn on the competing pathway through the pSTAT4
branch. 2D6 cells exposed to a combination of αTNFR and IL-12 exhibited a cell fate
trajectory similar to that of control cells (Fig 4, A and B). In contrast to the control cells, the
combined stimulation increased the extent of STAT4 phosphorylation (Fig. 4C), which
resulted in increased IL-10 (Fig. 4D) and IFN-γ (Fig. 4E) production. The addition of
αTNFR at the 12 hour time point blocked subsequent TNF-α production (Fig. 4F). In
summary, the observed cessation of TNF-α secretion and simultaneous doubling of the cell
numbers suggested an autocrine positive feedback loop for the production of TNF-α and
argued against a role for STAT4 in regulating TNF-α production.

The dynamics of STAT4 deactivation creates a hysteresis in the cellular response to IL-12
Conventionally, the activity of a STAT protein reflects the kinetic balance between
activating events, for example, through the actions of kinases, and deactivating events, for
example, through the actions of phosphatases. However, the effective dilution of a post-
translationally modified protein within an expanding cell population might also be
interpreted as a deactivation event and is a confounding factor. With model-based inference,
we wanted to distinguish the effects of population dilution from biochemical events that
activate and deactivate STAT4. Experimentally, we observed that the amount of pSTAT4
declined with time upon culture in cRPMI alone (that is, a chase experiment) and was
rapidly increased in response to IL-12 (that is, a pulse experiment) (Fig. 2B). Functionally,
the extent of production of IFN-γ and IL-10 by 2D6 cells in cRPMI alone correspondingly
decreased with time but was restored upon exposure to IL-12 (Fig. 2, C and D). Because the
exponential decline in the amount of pSTAT4 in cRPMI alone corresponded to a period of
exponential growth of the cells, we used the cue-signal-response model to infer the relative
contributions of potential phosphatase action and dilution within the expanding population.
From the posterior distributions (fig. S14), we determined that the decline in the amount of
pSTAT4 as a result of dilution within the cellular population accounted for 30% to the net
rate of decline. To validate this prediction, we pretreated cells with mitomycin C, a potent
DNA cross-linker that inhibits cell division. Untreated cells doubled in number by 24 hours,
whereas pretreatment with mitomycin C stopped cell proliferation (Fig. 5). When cells were
cultured without IL-12 (the chase experiment) and allowed to proliferate, the amount of
pSTAT4 decreased as a function of time. In contrast, when the cells were cultured without
IL-12 and treated with mitomycin C, the amount of pSTAT4 remained constant. Both IL-12-
treated conditions exhibited an increase in the abundance of pSTAT4 at the 6 hour time
point. If the cells were allowed to subsequently divide, the amount of pSTAT4 in IL-12
stimulated cells returned to the basal amounts; however, if cell division was inhibited, the
cell appeared to have twice the amount of pSTAT4. Collectively, these data suggested that
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the observed reduction in the amount of pSTAT4 was as a result of cell proliferation-
induced dilution of the protein in an expanding cell population rather than as a result of
phosphatase activity.

In the cue-signal-response model, the functional response to pSTAT4 includes the regulation
of the expression of il10 (Fig. 3A, RP3) and ifng (RP4 in Fig. 3A, RP4). We used model-
based inference of the pulse-chase experiment to estimate a quantitative relationship
between STAT4 activation and the expression of these genes (Fig. 3C). Regulation of il10
expression was sensitive to changes in the activation of STAT4 that were observable with
flow cytometry. In contrast, regulation of ifng expression became less sensitive to changes
in STAT4 activation because the cellular response was saturated. This suggested that the
range of STAT4 phosphorylation in which STAT4 activation linearly correlated with gene
expression was at the lower limit of detection of our flow cytometry assay. That is, increases
in the abundance of pSTAT4 as observed by flow cytometry correlated with STAT4-
dependent gene expression, but loss of pSTAT4 did not imply a lack of STAT4-dependent
gene expression. In summary, the decay in intracellular signal and a nonlinear dependence
of gene expression on STAT4 activity created a hysteresis in the cellular response to IL-12
for the production of cytokines such that the response depended on the current level of
stimulation and on past exposure to IL-12. This hysteresis in the cellular response to IL-12
enabled the cells to sustain STAT4-dependent gene expression in the absence of IL-12 and
encoded a transient “memory” of past encounters with biochemical cues. Moreover, the
duration of this memory was reduced by an increase in the rate of cell proliferation.

IL-12 activates both STAT1 and STAT4
Sustained signaling through the IL-12 pathway is important for driving the polarization of
naïve CD4+ T cells toward a TH1 phenotype and for sustained production of TH1-type
cytokines. We hypothesized that the cue-signal-response model could be used to infer the
relative contribution of different pathways that regulate the abundance of IL-12Rβ2 from the
quantitative data set. Two alternative pathways were encoded within the cue-signal-response
model. The first pathway encoded the observation that IL-12 exhibited a direct positive
feedback mechanism in which pSTAT4 promoted the induction of IL-12Rβ2 (Fig. 3A, RP5)
[30]. The second pathway encoded the observation that IFN-γ regulated the abundance of
IL-12Rβ2 through an autocrine mechanism that includes the phosphorylation of STAT1
(Fig. 3A, RP6) [33]. To discriminate between these alternative pathways, we used the
posterior distribution in the cue-signal-response model predictions to infer the pathway flux
associated with the pSTAT4 branch (RP5) from that associated with the pSTAT1 branch
(RP6) in regulating the amount of cell surface IL-12Rβ2 (Fig. 3D). The posterior
distributions exhibited a non-normal distribution that was centered around an equal
contribution from both pathways, and the tail of the distribution was above the diagonal,
which implied that the contribution of RP5 is greater than RP6 and that the model
predictions are more sensitive to parameters that influenced RP5 than parameters that
influenced RP6. In summary, the data set was not sufficient to clearly distinguish between
these competing pathways because most of the posterior distribution in fluxes associated
with regulating IL-12R abundance was contained on the diagonal.

In formulating the cue-signal-response model, we assumed that IFN-γ, which is secreted in
response to IL-12, activates STAT1 to form an autocrine or paracrine positive feedback
pathway. While naïve CD4+ T cells exhibit phosphorylation of STAT1 in response to IFN-
γ, effector TH cells are typically considered to be unresponsive to IFN-γ. It is unclear where
the 2D6 cell line falls along this polarization spectrum. Moreover, STAT1 activation is
typically reported within minutes after the addition of a stimulus. The perceived
nonresponsiveness of TH1 cells to IFN-γ could be a result of differences in the particular
time points used to measure pSTAT1 or a result of the constitutive activation of pSTAT1
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through an autocrine or paracrine feedback mechanism. To test for the presence of an
autocrine feedback loop, we used blocking antibodies against IFN-γ (fig. S15). To test for
the presence of a paracrine feedback loop, we hypothesized that the paracrine IFN-γ
feedback pathway could be confirmed by analyzing cells at a low density and observing
STAT1 phosphorylation within minutes of adding IFN-γ back. We thought that stimulation
of the cells with IL-12 would provide an additional negative control for STAT1 activation.
Instead, we observed that stimulation with IL-12 activated both STAT4 and STAT1 within
10 min and that IFN-γ did not activate STAT1 (Fig. 6, A and B, and fig. S15). In primary
cells, IL-12 also phosphorylated STAT1 (fig. S16). STAT1 and STAT4 activation also
exhibited different dynamics, such that STAT4 remained phosphorylated during the duration
of the experiment, whereas STAT1 was maximally activated at the first time point, which
subsequently declined. Phosphorylation of STAT1 in response to IL-12 persisted for at least
24 hours, whereas the addition of a neutralizing antibody against IFN-γ had no effect on the
activation of STAT1 (fig. S15). Given the rapid dynamics of STAT1 activation after
stimulation with IL-12, the simplest interpretation of this observation was that IL-12
activated the IL-12R-JAK complex that subsequently phosphorylated both STAT1 and
STAT4. IL-12-induced activation of STAT1 created a direct positive feedback loop to
regulate the expression of IL-12Rβ2 at the cell surface. Phosphorylation of STAT1 is also
controlled by a selective negative feedback loop, a common motif for regulating target gene
expression. Collectively these findings suggest a revised cue-signal-response model with
altered topology related to TNF-α production, enhanced viability in response to stimulation
with IL-12, and regulation of IL-12Rβ2 surface expression in 2D6 cells (Fig. 6C). The
mechanistic details associated with the dynamic regulation of STAT1 and enhanced cell
viability upon stimulation with IL-12 remain to be resolved.

Discussion
IL-12 is an important cytokine that is produced by innate immune cells and influences
adaptive immunity by polarizing naïve and activating a discrete subset of effector CD4+ TH
cells. Active TH cells, in turn, orchestrate the adaptive immune response through the
production of cytokines. The specific profile of cytokines produced reflects the combined
effects of genetic and epigenetic influences on how a specific TH cell interprets the dose and
dynamics of biochemical cues. Mathematical models can aid in interpreting observed data
by providing a quantitative context for encoding previous knowledge of the cellular system,
a process called model-based inference. How well a particular mathematical model
describes the cellular decision process, given the particular data at hand and the previous
knowledge of the cellular system, corresponds to reasoning within a Bayesian framework.
Here, we obtained a quantitative cue-signal-response data set, developed a mathematical
model that encoded alternative pathways associated with how TH1 cells orchestrate a
cellular response to IL-12, and used an empirical Bayesian approach to reason about the
relative contributions of these alternative pathways. The results clarify the biochemical basis
for two emerging concepts regarding cellular decision making: feedback control and
transient memory.

Cell-mediated immunity is a tightly controlled process with severe consequences for the
host when dysregulated and is initiated after a productive interaction between an antigen-
presenting cell (APC) and a TH cell. Because cell-cell contact can be considered as a random
process, the probability of a productive interaction between an APC and a TH cell within a
given time interval is directly related to the number of interacting cells per unit volume (that
is, the precursor frequency). Thus, cell-mediated immunity also includes strong stochastic
influences because the frequency of naïve CD4+ T cells specific for a particular antigen
varies from 20 to 200 cells per mouse, depending on the antigen [40]. Noisy processes, such
as the stochastic steps associated with cell-mediated immunity, can be made more
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predictable with a paracrine feedback control mechanism [41]. In the case of TH1 cell
differentiation, reported differences in IL-12 dependence may be dependent on quantitative
differences in the dose of antigen. Paracrine action of IFN-γ can be thought to function as a
feedback control mechanism to mitigate stochastic variation in antigen recognition. Strong
antigen stimulation promotes the development of TH1 cells that produce IFN-γ through an
IL-12 independent mechanism [42, 43]. Because individual T cells recognize multiple
presented antigens [44, 45], the paracrine action of IFN-γ signaling on other naive CD4+
subsets may amplify cell-mediated immunity to include a broader repertoire of TH cells.
Within the broader repertoire, the paracrine action of IFN-γ enables the sustained IL-12
signaling required for TH1 polarization [46, 27]. Our data suggests that the shift in IFN-γ- to
IL-12-dependent activation of STAT1 corresponds to a shift in dependence from an external
control mechanism to a cell-autonomous control mechanism for maintaining responsiveness
to IL-12. Moreover, the different dynamics associated with STAT1 and STAT4 activation
after stimulation with IL-12 suggest an additional intracellular feedback mechanism, such as
spatial differences in signaling as a result of receptor trafficking [47] or the increased
abundance of inhibitors of STATs (for example, SOCS or PIAS), that differentially regulate
STAT activation.

Upon receiving stimulation by antigen, effector TH cells differentiate into TH subsets that
are defined on the basis of the transcription factor that they express [4] and the cytokines
that they produce. TH cell fate was viewed traditionally as a series of irreversible transitions
from one stable discrete state to another. However, another picture is emerging: TH cell fate
is plastic and is determined by the combination of biochemical cues and genetic influences
on how a cell interprets this information [4]. Implied in these two perspectives is a time
dependency associated with the assay of TH cell phenotype. Using a synergistic combination
of quantitative experiments and model-based inference methods, we found one mechanism
that may contribute to the observed degree of plasticity in the cellular response to IL-12, a
hysteresis in the dose-response curve to IL-12. Hysteresis is indicated by the finding that the
initial stimulation with IL-12 dose-dependently activated STAT4 and subsequently
increased ifng and il10 expression, and that the expression of ifng and il10 remained despite
the withdrawal of IL-12. In this TH1 cell model, STAT4 was present in sufficiently large
amounts to saturate the threshold for STAT4-dependent gene induction, particularly in the
case of ifng. Cessation of STAT4-dependent gene expression did not occur until the
concentration of active STAT4 fell below the threshold, which occurred mainly because of
dilution through cell division. Thus, the cellular response to IL-12 depends on both the
current extend of IL-12 stimulation and the previous exposure to IL-12. Ras activation in T
cells has also been suggested to exhibit hysteresis as a mechanism to inhibit spurious T cell
activation in response to weak stimulation and to integrate interrupted serial encounters
within the lymph node with APCs bearing the cognate antigen [48]. Here, a hysteresis in the
dose-response to IL-12 may provide a dynamic robustness to inhibitory signals in the
peripheral tissues.

Finally, our analysis also suggests that manipulation of protein copy number and the degree
of reversibility in post-translational modification of STAT proteins provides an additional
layer to the epigenetic landscape associated with TH cell polarization. Cell division, as a
mechanism to facilitate epigenetic imprinting, is also required to enable cytokine production
by effector TH cells [49, 50]. STAT family members may play a role in this epigenetic
imprinting because they associate with transcriptional coactivators that regulate chromatin
structure [51, 52, 53]. Moreover, our integrated in vitro and in silico approach may help to
answer fundamental questions regarding the fate and plasticity of primary TH cells as well as
provide a framework for integrating our emerging understanding of the epigenetic regulation
of T cell differentiation [54] with the dynamics of signal transduction within an expanding
cell population.
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Materials and Methods
Antibodies and reagents

Cytokines, drugs, and pharmacological inhibitors were from commercial sources and used
according to suppliers’ recommendations or as indicated. V450-conjugated rabbit anti-active
Caspase-3 (C92-605), phycoerythrin-conjugated mouse anti-mouse CD212 (IL-12Rβ1),
purified hamster anti-mouse IL-12 receptor β2, fluorescein isothiocyanate (FITC)-
conjugated mouse anti-hamster immunoglobulin G1 (IgG1, G94-56), Alexa Fluor 647-
conjugated mouse anti-STAT4 (pY693) and BD Cytometric Bead Array (CBA) Mouse
Inflammation Kit were purchased from BD Biosciences (San Diego, CA, U.S.A.). Alexa
488-conjugated mouse anti-mouse IL-12 receptor β2 (clone 305719) was purchased from
RnD Systems (Minneapolis, MN). ChromPure mouse IgG (whole molecule) and ChromPure
rat IgG (whole molecule) were purchased from Jackson Immuno Research (West Grove,
PA, U.S.A.). Armenian hamster anti-mouse CD120a (55R-170 - TNFR1p55) was purchased
from eBioscience (San Diego, CA, U.S.A.). All cell cultures were maintained at 37°C in 5%
CO2 in RPMI 1640 plus supplements (referred to as complete RPMI or cRPMI) as described
in [21]. AccuCount Fluorescent Particles (8.0 – 12.9 μm) were purchased from Spherotech
(Lake Forest, IL). Quantum Simply Cellular uniform microspheres conjugated to anti-mouse
IgG were purchased from Bangs Laboratories (Fishers, IN).

Cell culture and stimulation
The TH1 cell line, 2D6 [29], was provided by M. Grusby (Harvard University, Cambridge,
MA) and grown in 25 cm2 tissue culture flasks with 15ml cRPMI and supplemented with 90
pM rmIL-12p70. Tissue culture media was replaced every 24 hours. To assess the cellular
response to IL-12, 2×2 factorial experimental design was used with cell density and IL-12
stimulation as the two factors. We selected a saturation concentration of 150 pM IL-12 for
the stimulation conditions. This concentration of IL-12 was greater than the effective
concentration necessary to elicit a 50% of maximal response in STAT4 at 2 hours (EC50 =
0.2 pM - see fig. S6). 2D6 cells were washed and plated at two cell densities, 6×104 (Lo)
and 1.2×105 (Hi) cells per well, in 96-well U-bottom plates for 12 hours with cRPMI. The
volume in each well was 120 μl. After 12 hours, rmIL-12p70 (150 pM) was added to the
IL-12 treatment groups and DPBS was added into negative controls. Cells were cultured at
37°C in 5% CO2 for appropriate time period. To validate the model predictions, we plated
1.2×105 cells per well in 96-well U-bottom plates for 12 hours with cRPMI. After 12 hours,
cells were stimulated using combinations of DPBS (negative control), rmIL-12p70 (150
pM), or an inhibitor and cultured for the indicated times. The inhibitors included Mitomycin
C (50 μg/ml) and neutralizing antibody against TNFR1p55 (50 μg/ml). To characterize the
putative IFN-γ autocrine or paracrine feedback loops, 6×104 cells per well were plated in
96-well U-bottom plates for 12 hours with cRPMI. After 12 hours, cells were exposed to one
of two experimental designs. In the first experimental design, a 2×2 factorial experimental
design was used with the two factors being rmIL-12p70 (150 pM) and two neutralizing
antibodies against IFN-γ (15 ng/ml) and IL-18 (53g/ml). In the second experimental design,
2D6 cells were exposed to three treatment conditions - DPBS, rmIL-12p70 (150 pM), or
rmIFN-γ (10 ng/ml) - and cultured for the indicated times. At each time point, the plate was
centrifuged 1250 RPM for 5 minutes at 4°C. The supernatant from each well was collected
and stored at −20°C for subsequent analysis with cytometric beads. At least two biological
replicates were performed for each experiment, and two technical replicates were obtained
for each biological replicate.

Flow cytometry and Cytometric Bead Array
Fluorescence-activated cell sorting (FACS) was performed as described previously [21].
Three sets of Quantum Simply Cellular calibration beads that contain five Quantum Simply
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Cellular microsphere populations with different mouse IgG antibody binding capacities were
also simultaneously stained with fluorophore-conjugated monoclonal antibodies specific for
IL12Rβ1, IL12Rβ2, pSTAT1, or pSTAT4. AccuCount calibration beads (1.7×104 beads in a
volume of 50 μL) were added to each of the tubes containing stained 2D6 cells that were
subsequently analyzed using a FACSAria flow cytometer and FACSDiva version 6.1.1
software (Becton Dickinson). Cellular events were identified by forward and side scatter
characteristics and Spherotech AccuCount beads were used to calibrate the cellular density
among replicates and time points. On average, 2×104 events were analyzed at each time
point. Cytometric bead array (BD Bioscience) was performed according to the
manufacturers instructions and analyzed on a FACSCaliber with CellQuest Pro software. To
determine the concentration of cytokines in each sample, BD CBA software was used.

Data Analysis
Flow cytometry data was exported as FCS3.0 files and analyzed using R/Bioconductor [55].
The fluorescence intensity for each parameter was reported as a pulse area using 18-bit
resolution. The statistical difference between two treatment conditions was assessed using a
two sample t-Test that assumes equal variance, where a p-value of less than 0.05 was
considered statistically significant.

Models and modeling
A description of the mathematical models and model-based inference can be found in the
Supplementary Materials.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Calibration of the cell fate model for a Th1 clone cell line. (A) Forward and side scatter
gating strategy for 2D6 cells shown for two time points - 0 hours (left panel) and 24 hours in
cRPMI alone (right panel). Calibration bead events (gray oval) were separated from cellular
events (dashed pentagon). Live cells (i.e., cleaved caspase 3− cells) were identified using a
data-driven gate (red oval). The remaining events contained within the dashed pentagon
were considered dead or dying cells, as indicated by back-gating on cleavage of caspase 3
(yellow shading). (B) Data-driven threshold for positive association with cleavage of
caspase 3 (red dotted line) was obtained by comparing 2D6 cells cultured for 36 hours in
cRPMI alone (left panel) and 2D6 cells cultured in cRPMI alone for 12 hours followed by
24 hours supplemented with IL-12 (right panel). (C) A schematic diagram of the cell fate
model that has time-dependent rate constants for proliferation (kp(t)) and cell death (kd(t)).
(D) The posterior distribution in the cell fate rate constants (kp(t) black, kd(t) blue, solid line
indicates median, dotted lines enclose 95% of the posterior distribution). Posterior
distributions in the cell fate model predictions (lines) compared against the observed
(squares) change in the cell density (E) and the percentage of flow cytometry events
interpreted as live cells (F). In panel B, the solid vertical red line indicates the data-driven
threshold for background pSTAT4 (i.e., 95% of unstained cells exhibited a MFI below the
threshold) while the dotted horizontal red line indicates the data-driven threshold for
background fluorescence associated with cleaved caspase 3 staining (i.e., 95% of the 2D6
cells cultured without IL-12 for 12 hours followed by 24 hours with IL-12 exhibited a MFI
below the threshold). Results representative of three technical replicates obtained for each of
two biological replicates.
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Fig. 2.
Observed 2D6 response to IL-12 as a context for defining and calibrating the cue-signal-
response model. (A) Changes in IL-12Rβ1 (left sub-panel), IL-12Rβ2 (center sub-panel),
and phosphorylated STAT4 (right sub-panel) were used to quantify intracellular changes in
response to IL-12 stimulation in 2D6 cells. The results from three 2D6 cell populations are
shown: unstained cells (gray shaded), cells cultured without IL-12 for 14 hours (black solid
line), and cells cultured without IL-12 for 12 hours followed by 2 hours with IL-12 (red
dashed line). The straight lines indicate the data-driven threshold for the upper limit of
protein expression or activity for 95% of the unstained (IL-12Rβ1 and IL-12Rβ2) or
unstimulated (pSTAT4) 2D6 cells. (B) Scatter plots for phosphorylated STAT4 (y-axis)
versus IL-12Rβ2 (x-axis). Each sub-panel corresponds to a different time following IL-12
stimulation. (C + D) 2D6 cells exhibited dynamic changes in response to culture conditions
and IL-12 stimulation (Panel C - high density + IL-12; Panel D - high density without
IL-12). The changes in cellular IL-12Rβ2 and pSTAT4 and IL-12p70, TNFα, IFNγ, and
IL-10 in 2D6-conditioned media were represented by median values (squares) and compared
against posterior predictions for the calibrated cue-signal-response model (lines). Error bars
for IL-12Rβ2 and pSTAT4 enclose 67% of the population. Red arrows indicate the addition
of IL-12p70. Results representative of three technical replicates obtained for each of two
biological replicates.
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Fig. 3.
The cue-signal-response model developed to describe the cellular response to IL-12 in 2D6
cells. (A) A schematic diagram of the model includes IFN-γ, IL-12p70, and TNF-α as
biochemical cues; intracellular signaling events associated with the canonical IL-12, IFN-γ,
and TNF-α signaling pathways; regulation of the IL-12 receptor, and the synthesis of IFN-
γ, IL-10, and TNF-α as the cellular response to IL-12. Elements of the model that were
calibrated to experimental measurements are highlighted in red. Specific branches within the
signaling network that regulate gene expression are annotated with the labels RP1 through
RP6. Posterior distributions in the simulated pathway flux associated with NF-κB (RP1)
versus STAT4 (RP2) regulation of TNFα mRNA expression (panel B), simulated IL-10
(RP3 - blue lines) and IFN-γ (RP4 - black lines) mRNA expression as a function of STAT4
activation (panel C), and the simulated pathway flux associated with STAT4 (RP5) versus
STAT1 (RP6) regulation of IL12Rβ2 mRNA (panel B). Systems Biology Graphical
Notation was used to represent the biochemical events encoded within the cue-signal-
response model.
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Fig. 4.
An autocrine feedback loop regulates TNFα expression in 2D6 cells that is independent of
STAT4 activation. Following a 12 hour pre-conditioning with cRPMI, 2D6 cells were
stimulated with IL-12 in combination with a TNF receptor antagonist (circles). Untreated
cells were used as a negative control (diamonds). Changes in live cell density (A), viable
cellular events (B), and STAT4 activation (C) were quantified as a function of time by flow
cytometry. Enrichment of IL-10 (D), IFNγ (E), and TNFα (F) in the 2D6-conditioned media
were quantified as a function of time using cytometric bead array. The dotted vertical line
indicates the switch from pre-conditioning to stimulation conditions. Mean response (±
standard deviation) at each time point and condition were used to create trend lines (solid
and dotted lines). A Student’s t test was used to assess statistical significance, where *
indicates p<0.05.
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Fig. 5.
Dilution due to cell proliferation influences the decline in STAT4 phosphorylation. Dynamic
changes in cell density (Panel A) and phosphorylated STAT4 (Panel B) in 2D6 cells (solid
lines) were compared against 2D6 cells cultured with Mitomycin C (dotted lines). IL-12-
stimulated cells (red) were also compared against cells cultured in cRPMI alone (black).
Representative flow cytometry assays of pSTAT4 versus IL12Rβ2 expression at the 24 hr
time point are shown in Panel C. Results reported as mean response (± standard deviation)
and are representative of at least three technical replicates and two biological replicates. A
finding of statistical significance (p<0.05) is indicated by *.
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Fig. 6.
STAT1 and STAT4 are rapidly phosphorylated in 2D6 cells in response to IL-12
stimulation. 2D6 cells were stimulated with either IL-12, IFN-γ or left untreated. (A) Scatter
plots for phosphorylated STAT4 (y-axis) versus phosphorylated STAT1 (x-axis). Each sub-
panel corresponds to a different time following IL-12 stimulation. The dotted horizontal line
indicates the upper limit of pSTAT4 MFI for 95% of the 2D6 cells following culture without
IL-12 for 14 hours. The solid vertical line indicates the upper limit of pSTAT1 MFI for 95%
of the 2D6 cells following culture without IL-12 for 14 hours. (B) STAT4 (top subpanel)
and STAT1 (bottom subpanel) activation exhibited different dynamics following IL-12
stimulation (red circle) compared to IFNγ stimulated (blue x) and unstimulated (black
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squares) cells. Flow cytometry results are summarized by the median values of the
distribution. (C) A revised schematic diagram of the cue-signal-response model that
incorporates topological changes associated with the response of 2D6 cells to IL-12. Details
associated with enhanced viability and the differential regulation of STAT1 versus STAT4
in response to IL-12 remain to be elucidated.
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