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Abstract

The most prominent pathophysiological effect of spotted fever group (SFG) rickettsial infection of microvascular endothelial
cells (ECs) is an enhanced vascular permeability, promoting vasogenic cerebral edema and non-cardiogenic pulmonary
edema, which are responsible for most of the morbidity and mortality in severe cases. To date, the cellular and molecular
mechanisms by which SFG Rickettsia increase EC permeability are largely unknown. In the present study we used atomic
force microscopy (AFM) to study the interactive forces between vascular endothelial (VE)-cadherin and human cerebral
microvascular EC infected with R. montanensis, which is genetically similar to R. rickettsii and R. conorii, and displays a similar
ability to invade cells, but is non-pathogenic and can be experimentally manipulated under Biosafety Level 2 (BSL2)
conditions. We found that infected ECs show a significant decrease in VE-cadherin-EC interactions. In addition, we applied
immunofluorescent staining, immunoprecipitation phosphorylation assay, and an in vitro endothelial permeability assay to
study the biochemical mechanisms that may participate in the enhanced vascular permeability as an underlying pathologic
alteration of SFG rickettsial infection. A major finding is that infection of R. montanensis significantly activated tyrosine
phosphorylation of VE-cadherin beginning at 48 hr and reaching a peak at 72 hr p.i. In vitro permeability assay showed an
enhanced microvascular permeability at 72 hr p.i. On the other hand, AFM experiments showed a dramatic reduction in VE-
cadherin-EC interactive forces at 48 hr p.i. We conclude that upon infection by SFG rickettsiae, phosphorylation of VE-
cadherin directly attenuates homophilic protein–protein interactions at the endothelial adherens junctions, and may lead to
endothelial paracellular barrier dysfunction causing microvascular hyperpermeability. These new approaches should prove
useful in characterizing the antigenically related SFG rickettsiae R. conorii and R. rickettsii in a BSL3 environment. Future
studies may lead to the development of new therapeutic strategies to inhibit the VE-cadherin-associated microvascular
hyperpermeability in SFG rickettsioses.

Citation: Gong B, Ma L, Liu Y, Gong Q, Shelite T, et al. (2012) Rickettsiae Induce Microvascular Hyperpermeability via Phosphorylation of VE-Cadherins: Evidence
from Atomic Force Microscopy and Biochemical Studies. PLoS Negl Trop Dis 6(6): e1699. doi:10.1371/journal.pntd.0001699

Editor: David H. Walker, University of Texas Medical Branch, United States of America

Received February 14, 2012; Accepted May 2, 2012; Published June 12, 2012

Copyright: � 2012 Gong et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the Center for Biodefense and Emerging Infectious Diseases (BG and AO), Carmage and Martha Walls Distinguished
University Chair in Tropical Diseases (BG), National Institutes of Health (NIH) grant R01DK073394 (AO), and the John Sealy Memorial Endowment Fund for
Biomedical Research (AO). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: bigong@utmb.edu

Introduction

Spotted fever group (SFG) rickettsioses are composed of over 25

species of rickettsiae that are causative agents of a wide spectrum

of diseases, ranging from the virulent Rocky Mountain spotted

fever (Rickettsia rickettsii) and severe systemic Mediterranean spotted

fever (R. conorii) to the recently identified R. parkeri rickettsiosis (R.

parkeri) and non-pathogenic R. montanensis [1,2]. The main target

cells of SFG rickettsiae are the endothelial cells that line the entire

vasculature [3–5]. The most prominent pathophysiological effects

of rickettsial infection are increased microvascular permeability,

promoting vasogenic cerebral edema and non-cardiogenic pulmo-

nary edema, which are responsible for most of the severity and

mortality in Rocky Mountain spotted fever and Mediterranean

spotted fever [6]. The cellular and molecular mechanisms by

which Rickettsia increase endothelial cell permeability are largely

unknown. Previous studies show that R. rickettsii and R. conorii cause

dose-dependent hyperpermeability, which was associated with

disruption of intercellular adherens junctions (AJs) after infection

[5,7,8]. The underlying molecular mechanism by which the

junctional complexes are disrupted, ultimately causing changes in

the endothelial paracellular milieu during rickettsial infection,

remains unclear [6,9].

The available evidence suggests that inflammatory stimuli such

as histamine, tumor necrosis factor (TNF), and vascular endothe-

lial growth factor (VEGF) can trigger tyrosine phosphorylation of

various components of AJs, mainly the vascular endothelial–

cadherin (VE-cadherin), b-catenin, and p120-catenin complex,
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consequently dissociating catenins from the complex [10–12]. This

causes gaps at AJs, partially due to phosphorylation-induced

destabilization of VE-cadherins at the plasma membrane and

increased endocytosis [10,13,14], greatly increasing paracellular

leaks in cultured endothelial cells [15].

Here, we hypothesize that infection by SFG rickettsiae induces

endothelial cells to develop altered junctional protein VE-cadherin

in association with phosphorylation of tyrosine residues, so that the

Ca2+-dependent, homophilic cis and trans interactions with their

extracellular regions [16,17] are affected or even eliminated,

resulting in aberrant properties of junctional complexes. In order

to test this hypothesis, detailed information about the biomechan-

ical properties of protein–protein interactions as well as protein–

cell interactions at the molecular level is required. Atomic force

microscopy (AFM) is ideally suited for these studies because it has

a unique capability to measure the interactive forces between

receptors and ligands with piconewton resolution [18–22]. Within

the last decade, this technique has been developed to exert and

measure inter- or intra-molecular forces, revealing detailed insights

into the functional mechanics of biomolecules [23–27]. AFM has

been employed to study different cadherin interactions in vitro, in

order to mimic different aqueous physiological conditions in vivo

[27–30].

In the present study, we used single-molecule AFM techniques

to study the nanomechanical properties of the interactive forces

between VE-cadherin and living human cerebral microvascular

endothelial cells upon infection with R. montanensis, which is

genetically similar to R. rickettsii and R. conorii and displays a similar

ability to invade cells in vitro and can be experimentally

manipulated in the Biosafety Level 2 (BSL2) environment

[1,2,31]. In addition to AFM techniques, we applied routine

immunofluorescent (IF) staining, immunoprecipitation (IP) phos-

phorylation assay, and in vitro endothelial permeability assay to

study the biochemical mechanisms that may participate in the

enhanced vascular permeability as an underlying pathologic

alteration of SFG rickettsial infection. Our experiments help

elucidate the molecular mechanism by which SFG rickettsial

infection may trigger tyrosine phosphorylation of VE-cadherins,

thus destabilizing homophilic molecular interactions at AJs and

altering endothelial biophysical features to enhance paracellular

leaks.

Materials and Methods

Reagents
Recombinant human VE-cadherin Fc chimera was purchased

from R&D Systems (Minneapolis, MN). Cell culture medium

Prigrow I and fetal bovine serum were obtained from Applied

Biological Materials (Richmond, BC, Canada). Unless otherwise

indicated, all reagents were purchased from Thermal Fisher

Scientific (Waltham, MA).

Rickettsia purification
To allow us to employ BSL2 procedures, we utilized a BSL2

rickettsial species, R. montanensis (strain M/5–6), was used for the

present study, obtained from the laboratory of David H. Walker. A

10% yolk sac suspension of R. montanensis from infected eggs

diluted in sucrose-phosphate-glutamate (SPG) buffer (0.218 M

sucrose, 3.8 mM KH2PO4, 7.2 mM K2HPO4, 4.9 mM mono-

sodium L-glutamic acid, pH 7.0) was propagated through two

passages in Vero cells [32,33]. R. montanensis cells were harvested

from 180-cm2 tissue culture flasks containing confluent monolay-

ers of infected Vero cells. The infected Vero cells were harvested

from each flask surface with scraper, diluted in 10 ml of

supplemented medium, and centrifuged at approximately

13,0006g for 5 min at room temperature. The pellet from each

flask was suspended in 15 ml of supplemented media, and was

transferred to a precooled 50-ml tube containing 5 g of 3-mm glass

beads, and vortexed vigorously for 30 s in order to disrupt the

Vero cells. Vortexing was repeated two times with 60-s intervals of

incubation on ice between each 30-s vortexing. The lysates were

centrifuged at approximately 8006 g for 10 min to remove

unbroken Vero cells and cellular debris. The supernatant,

containing released R. montanensis cells, was transferred to a tube,

and the rickettsiae were pelleted by centrifugation at 15,0006g for

25 min at 4uC. Purified rickettsiae were frozen in SPG buffer at

280uC. Rickettial content of the frozen stocks was determined by

plaque assay and TCID50 assays on Vero cells, and yielded

approximately 16109 bacterial cells per ml. Uninfected Vero cells

were processed by the same procedure as normal control material.

Cell culture
Immortalized human cerebral microvascular endothelial cells

(h-CMEC; Applied Biological Materials, Richmond, BC, Canada)

were grown in Prigrow I medium supplemented with 10% heat-

inactivated fetal bovine serum in 5% CO2 at 37uC. All

experiments were performed between passages 15 and 18, and

cells were fed with Prigrow I medium with 1% fetal bovine serum.

h-CMEC were cultured on round glass coverslips (12 mm

diameter, Ted Pella, Redding, CA) for AFM studies and IF assay

until confluent at 90%. The cells were then infected with R.

montanensis at a multiplicity of infection (MOI) of 10. After 24, 48,

and 72 h, the cells on the coverslips were washed three times in

phosphate-buffered saline (PBS) before the downstream studies

were performed.

Author Summary

Rickettsial diseases are serious human infections. Some
spotted fever group (SFG) rickettsial pathogens are
bioterror agents. A major clinical hallmark of SFG rickettsial
disease is the infection of endothelial cells leading to
enhanced vascular permeability. Previous studies show
that SFG rickettsiae cause dose-dependent hyperperme-
ability, which was associated with disruption of intercel-
lular adherens junctions (AJs). The underlying molecular
mechanism by which the junctional complexes are
disrupted, ultimately causing changes in the endothelial
paracellular milieu during rickettsial infection, remains
largely unclear. The available evidence suggests that
inflammatory stimuli can trigger tyrosine phosphorylation
of various components of AJs, mainly the vascular
endothelial–cadherin (VE-cadherin). This causes gaps at
AJs, partially due to phosphorylation-induced destabiliza-
tion of VE-cadherins at the plasma membrane and
increased endocytosis, greatly increasing paracellular leaks.
Here, we hypothesize that infection by SFG rickettsiae
induces endothelial cells to develop altered VE-cadherin in
association with phosphorylation of tyrosine residues.
Utilizing nano-mechanical studies with atomic force
microscopy and biochemical analysis of the major AJ
protein VE-cadherin, we have implicated that phosphory-
lation of VE-cadherin directly attenuates homophilic
interactions between VE-cadherins. The experimental
approach advances a new way of studying rickettsial
infection. This strategy should prove useful in uncovering
novel therapeutic strategies for virulent arthropod-borne
rickettsioses.

VE-Cadherin-EC Interactions in SFGR Infection
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Atomic force microscopy
The mechanical properties between VE-cadherin functionalized

AFM tips and cell monolayers were studied using AFM that

consisted of a detector head (Digital Instruments, Tonawanda,

NY) mounted on top of a single axis piezoelectric positioner with a

strain gauge sensor (P841.10, Physik Instrumente, Auburn, MA).

This system has a z-axis resolution of a few nm and can measure

forces in the range of 5–10,000 pN [34]. The monitoring of the

force reported by the cantilever and the control of the movement

of the piezoelectric positioners are achieved by means of two data

acquisition boards (PCI 6052E, PCI 6703, National Instruments)

and controlled by custom-written software (Wavemetrics, Port-

land, OR). In order to measure the interactive forces, we used

cantilevers with a 10 mm latex bead glued to the tip (Novascan

Technologies, Ames, IA). We incubated the cantilevers with 50 ml

of recombinant human VE-cadherin/Fc (R&D Systems, Minne-

apolis, MN) at 100 mg/mL in 0.1 M NaHCO3 (pH 8.6) overnight

at 4uC. Unbound proteins were removed by rinsing with PBS.

Bovine serum albumin (BSA, Sigma, St. Louis, MO) at 500 mg/ml

in PBS was used to block the exposed surface of the latex bead.

The spring constant of each individual cantilever was calculated

using the equipartition theorem [21]. The cantilever spring

constant varied between 20–50 pN/nm. Interactive forces were

measured by pressing the cantilever onto the cell monolayer for

,500 ms and then stretching for several hundred nm. We used a

serum-free Hank’s Balanced Salt Solution (HBSS) supplemented

with 10 mM HEPES, 2 mM CaCl2 and 1 mM glucose. In the

experiments using blocking antibodies, cells were pretreated with

different antibodies (25 mg/ml) for 15 min before the AFM

measurements. Unless noted, the pulling speed of the different

force-extension curves was about 1.0 mm/s.

Endothelial cell permeability assay
The permeability of h-CMECs upon infection with R.

montanensis at a MOI of 10 was determined using an in vitro

vascular permeability assay (Millipore, Billerica, MA) as previous

described [12,14,35,36]. Briefly, h-CMECs were seeded onto

type I rat-tail collagen-coated polycarbonate Transwell filters

(6.5-mm diameter and 3-mm pore size; Millipore, Billerica, MA)

and confluent monolayers were inoculated with R. montanensis or

mock-infected control material cells. At different time points

post-infection (p.i.), hCMEC permeability was assessed by

adding 0.5 mg/ml of fluorescein isothiocyanate (FITC)-dextran

(40 kDa; Sigma, St. Louis, MO) to the top chamber above the

filter. After 3 hours, FITC-dextran present in the bottom

compartment was assayed by using a BioTek Synergy 2 multi-

mode microplate reader (485 nm excitation, 530 nm emission).

The fold-change in fluorescence intensity over the basal

permeability of monolayers was used as an indicator of

paracellular permeability of assessed monolayers. Experiments

were performed in sets of four.

Immunofluorescence (IF)
Cells were fixed with cold methanol at 24, 48, or 72 h after

infection. Each experiment was repeated three times. The primary

antibodies, a mouse monoclonal IgG against VE-cadherin (1/500)

(Clone TEA1/31, Meridian Life Science, Saco, ME) and a rabbit

polyclonal IgG antibody against SFG rickettsiae (1:5000), were

added and incubated for 2 h. VE-cadherins and rickettsiae were

detected with secondary goat anti-mouse Alexa 488 and goat anti-

rabbit Alexa 594 conjugated antibodies (Invitrogen, Carlsbad,

CA), respectively. IF images were taken and analyzed with an

Olympus BX51 imaging system.

Western immunoblots
In experiments following IF studies, in vitro cellular expression of

VE-cadherin was analyzed by Western immunoblotting according

to established methods [37,38]. After infection with R. montanensis

for 24, 48, or 72 hr in T75 flasks, whole-cell extracts of infected

and mock control cells were prepared by lysis in RIPA buffer

(Santa Cruz Biotechnology, Santa Cruz, CA) containing 16PBS,

1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% sodium

dodecyl sulfate (SDS), aprotinin, and phenylmethylsulfonyl fluo-

ride (PMSF). The concentration of total protein was determined

before equal amounts of soluble protein (50 ug/lane) were

subjected to SDS–polyacrylamide gel electrophoresis (SDS-PAGE)

(10% acrylamide) (Invitrogen, Carlsbad, CA). Proteins were

transferred onto a polyvinylidene difluoride (PVDF) membrane

and then incubated with mouse monoclonal anti-VE-cadherin

antibody (dilution 1:1000; Meridian Life Science, Saco, ME),

followed by incubation with a secondary antibody at 1:2000 for

30 min. Blots were visualized by using a chemiluminescence kit

(Pierce, Rockford, IL). Data were analyzed densitometrically using

1D scan EX software (BD Biosciences, Rockville, MD). A Western

blot for a-tubulin served as loading control to verify equal loading

and transfer.

Figure 1. Immunofluorescence studies show rickettsiae (red)
located in human cerebral microvascular endothelial cells at
24, 48 and 72 hr after infection. Dual immunofluorescence staining
of SFG rickettsiae (red) and VE-cadherin (green) using dual wave lengths
filter system reveals that, compared to normal controls, R. montanensis
infection (10 MOI) resulted in degradation of the density of VE-cadherin,
suggesting disruption in the continuity of VE-cadherin at neighbouring
areas at 72 hr post-infection.
doi:10.1371/journal.pntd.0001699.g001

VE-Cadherin-EC Interactions in SFGR Infection
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Immunoprecipitation (IP) phosphorylation assay [39]
To study VE-cadherin phosphorylation, cell lysates were

prepared with an ice-cold RIPA lysis buffer (the same as for

Western immunoblot assays). After centrifugation at 12,0006g for

20 min, the protein supernatant was collected. Equal amounts of

protein with optimal Dynabead Protein G (Invitrogen, Carlsbad,

CA) conjugated with anti-VE-cadherin antibody were incubated

for 2 h at room temperature. The Dynabead-antibody-antigen

complex pellets were precipitated and separated using DynaMag-2

(Invitrogen, Carlsbad, CA). The pellet was washed three times

with PBS, and resuspended in 20 mL of SDS sample buffer

(Invitrogen, Carlsbad, CA) and heated for 10 min at 70uC.

Samples were then separated by gel electrophoresis followed by

immunoblotting. A mouse monoclonal anti-phosphotyrosine

antibody, 4G10 (Millipore, Billerica, MA) was used at dilution of

1:500 for detection of proteins containing phosphotyrosine. All

experiments were performed in sets of three.

Statistical analysis
Values are reported as mean 6 SD. The data were analyzed

using Student’s paired t-test (Sigmaplot, Sigma Stat, Jandel

Scientific Software, San Rafael, CA). Statistical significance was

determined at P,0.05.

Results

SFG rickettsial infection affects endothelial AJ integrity
and enhances paracellular permeability

The abnormal VE-cadherin expression induced upon infection

of rickettisae was visualized under fluorescence microscopy. At

earlier time points, no detectable difference was noted in IF studies

of VE-cadherin compared to normal controls, although rickettsiae

were detected at 24 hr and 48 hr post-infection (Figure 1). As the

infection progressed, VE-cadherin’s distribution appeared disrupt-

ed after 72 hr at endothelial cell contacts in confluent cell layers

when compared to controls (Figure 1).

To determine if disorganized or reduced VE-cadherin at

endothelial AJs are relevant to endothelial paracellular barrier

dysfunction, we assessed cell permeability by an in vitro vascular

endothelial cell permeability assay. As seen in Figure 2, in h-

CMEC monolayers, infection of R. montanensis induced a 1.58-fold

increase in para-endothelial cell permeability at 72 hr post-

infection compared to control. There was no significant change

in hCMEC monolayers at 24 hr and 48 hr post-infection

compared to normal controls.

SFG rickettsial infection causes tyrosine phosphorylation
of VE-cadherin, leading to increased instability of
VE-cadherin at inter-endothelial interactions

To determine the possible biochemical basis of increased

endothelial permeability, we examined VE-cadherin using

Western immunoblotting. Initial studies failed to reveal any

alterations in expression of general VE-cadherin between

control and infected experimental monolayers at 24, 48, and

72 h post-infection (Figure 3A). Therefore, we used an IP-

phosphorylation assay to focus on tyrosine phosphorylation of

VE-cadherin because phosphorylation is thought to be an

important event leading to destabilization of the AJ complex

[10,11,14]. Infection with R. montanensis at a MOI of 10

stimulated increased tyrosine phosphorylation of VE-cadherin

at 48 hr, with even greater phospholyration at 72 hr post-

infection (Figure 3B and 3C). This time corresponds to the

increased endothelial permeability, suggesting that modulating

VE-cadherin activity through phophorylation is one of the

mechanisms regulating VE-cadherin-related endothelial mono-

layer paracellular permeability.

Figure 2. R. montanensis infection enhanced human cerebral microvascular endothelial cell permeability. Endothelial cells were seeded
on type I rat-tail collagen-coated polycarbonate transwell filters and infected with R. montanensis at an MOI of 10 in triplicate, or mock infected. After
24, 48, and 72 hr, FITC-dextran was added to the upper chamber medium, and the presence of FITC dextran in the lower chamber was quantified
after 3 hr. The results are expressed as the fold-increase in monolayer permeability over basal permeability levels (* p,0.05).
doi:10.1371/journal.pntd.0001699.g002

VE-Cadherin-EC Interactions in SFGR Infection
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AFM measurements of the adhesion forces between
VE-cadherin and endothelial cells

For AFM experiments, human VE-cadherins were immobilized

on beads attached to cantilever tips. Subsequently, this functio-

nalized cantilever was gently brought into contact with the surface

of a confluent monolayer of human cerebral microvascular ECs.

The maximum compression force was set to approximately

200 pN. The contact time was critical in this study, and was

constantly kept about 0.5 s before the cantilever was retracted at a

constant pulling speed of 0.5 um/s. AFM mimicked the binding of

intramembrane VE-cadherins between the ECs under physiolog-

ical conditions. By monitoring the cantilever deflection and

retraction cycle, the binding, stretching, and rupture of VE-

cadherin-VE-cadherin complexes can be monitored in terms of

forces and distance as a function of time.

Typical force-extension patterns of the interactions between VE-

cadherin and ECs are shown in Figure 4A. The force curves re-

present the force changes on the cantilever as a function of its travel

distance. By integrating the areas underneath the force curve and

above the baseline (dashed lines to present zero force, Figure 4A), we

calculated the work that is required to break any interactive bonds

between the cantilever and the ECs. Normal ECs always show a

strong binding to the VE-cadherin functionalized cantilever. To our

surprise, rickettsial-infected ECs showed a dramatic decrease in

binding affinity to VE-cadherin as early as 48 hrs post-infection. The

average work from infected cells decreased to ,20% of that of

uninfected cells (Figure 4B). The level of work in infected cells

remained low after 72 hrs.

To confirm the specificity of this VE-cadherin-EC interaction,

several control experiments were performed. For example, an

excess of antibodies to VE-cadherin was added, or BSA was added

to block the interactions between the VE-cadherin and ECs. As

shown in Figure 4, the presence of a blocking monoclonal antibody

against VE-cadherin (25 mg/ml) resulted in a significant decrease in

the adhesion interaction between normal cells and the probing

cantilever. The detected force was small, only about 30 pN, which is

close to the detection limit of our instrument (,20 pN). Another

control experiment was to probe the normal cells with a cantilever

covered by BSA at 100 mg/ml in PBS. No force was detected in this

experiment since the exposed surface of the cantilever was

completely blocked by BSA (data not shown).

Discussion

SFG rickettsial diseases are serious human infections. Some

SFG rickettsial pathogens are bioterror agents [40]. A major

clinical hallmark of SFG rickettsial disease is the infection of EC

leading to enhanced vascular permeability [6]. The cellular and

molecular mechanisms by which SFG rickettsiae increase endo-

thelial permeability are largely unknown [4]. The endothelial cells

that line all blood vessels function to regulate the influx and efflux

of solutes and fluids between the vessel lumen and the surrounding

interstitium. The movement of vessel contents is mediated by two

broad mechanisms, the paracellular and transcellular routes.

Relatively little is known about the role of the second route in

microvascular hyperpermeability during inflammation [14]. The

paracellular pathway, which is generally accepted to be dominant

in inflammatory pathological states, is controlled by the dynamic

opening and closing of endothelial junctions, mainly mediated by

transmembrane proteins VE-cadherin at AJs and claudin at tight

junctions (TJs) [10,41,42]. VE-cadherin initiates cell-cell adhesion

and promotes its maintenance through its transmembrane

domains [17]. VE-cadherin may also form a signaling complex

through its cytoplasmic tail, interacting with b-catenin and p120-

catenin [43]. However, it is hard to clearly separate these two

aspects. VE-cadherins are linked to a large variety of intracellular

partners that mediate intracellular signaling and modulate the

organization of the actin cytoskeleton to provide the dynamic

forces necessary for appropriate tissue morphogenesis [10]. VE-

cadherin-deficient mice die at mid-gestation due to defective

vascular remodeling [44]. The primitive vascular plexus initially

forms, but beyond embryonic day 9 these vessels regress and

disintegrate. VE-cadherin-blocking antibodies disrupt cell-cell

adhesion, increase permeability, and enhance transmigration of

leukocytes [45,46]. However, VE-cadherin’s role in the mecha-

nism responsible for enhanced microvascular permeability during

SFG rickettsioses needs to be elucidated.

In an earlier study, a remarkable observation was made regarding

discontinuities in the endothelial localization of AJ proteins after a

prolonged period of R. conorii infection [9]. Similar findings were

made by our group using IF studies in mouse models of intravenous

infection by R. conorii. Endothelial cells lining cerebral and pulmonary

microcirculation display significantly diminished AJ and TJ proteins

at day 5 after infection with a lethal dose of rickettsiae (unpublished

observations). Furthermore, in an in vitro functional study, enhanced

microvascular endothelial permeability has been described, which is

correlated with dissociation of AJs (b-catenin and p120) during 24,

48, and 72 hr post-infection by R. rickettsii [7]. In the present study

using a human cerebral mirovascular endothelial model, we observed

aberrant structures of inter-ECs VE-cadeherin at 72 hr post-infection

by R. montanensis, in which enhanced microvascular permeability was

documented using an in vitro endothelial cell permeability assay.

Figure 3. R. montanensis enhanced VE-cadherin tyrosine
phosphorylation. Human cerebral microvascular endothelial cells
were mock-infected (control) or infected with R. montanensis at a MOI
of 10. At 24, 48, or 72 hr post-infection, cells were harvested for Western
immunoblot or immunoprecipitated with anti-VE-cadherin antibody
using a magnetic bead system. 3A). The Western immunoblot for a-
tubulin served as a control to verify equal loading and transfer. There
was no significant difference in VE-cadherin expression detected by
Western immunoblot. 3B and 3C). Loading of VE-cadherin was
detected by anti-VE-cadherin antibody. The normalized relative
densities from IP phosphorylation assay showed a 2.16- and 4.48-fold
increase in phosphorylation of VE-cadherin (P-VE-cadherin) at 48 hr and
72 hr post-infection, respectively, compared to control cells (* p,0.05).
These data are representative of three independent experiments.
doi:10.1371/journal.pntd.0001699.g003

VE-Cadherin-EC Interactions in SFGR Infection
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VE-cadherins engage in Ca2+-dependent homophilic interac-

tions in which a VE-cadherin molecule on one cell binds to an

identical VE-cadherin molecule on an adjacent cell [43]. After

binding, cadherins aggregate laterally in trans and cis at cell–cell

junctions and form a zipper-like structure along the cell border

that promotes tight adhesion between endothelial cells [16,17]. In

the present study, we used AFM to directly examine alterations in

protein-protein adhesion forces that underlie this paracellular

dysfunction following SFG rickettsial infection. AFM experiements

revealed a dramatic reduction in the interactive forces between

VE-cadherin and EC after 48 hr of infection. This decreased

protein-EC interaction took place prior to the enhanced micro-

vascular permeability detected by in vitro endothelial permeability

assay at 72 hr p.i. This fact indirectly supports the idea that Ca2+-

dependent homophilic interactions between VE-cadherin mole-

cules on adjacent cells are the target during SFG rickettsial

infection-induced endothelial hyperpermeability.

There are many mechanisms that regulate VE-cadherin, including

modulating VE-cadherin activity through phosphorylation and

controlling VE-cadherin availability at the endothelial surface

[10,47]. Stimuli such as histamine, thrombin, tumor necrosis factor

(TNF), and vascular growth factor (VEGF) induce tyrosine

phosphorylation of VE-cadherin, in which Src and Rac play a role

as key pathway mediators to promote kinase-regulated phosphoryla-

tion of VE-cadherin on different residues attenuating stability at

endothelial AJs [10,48]. Evidence has been established that mediators

of inflammation signal through Src and Rac to trigger the tyrosine

phosphorylation of VE-cadherin, leading to the endocytosis of VE-

cadherin in a b-arrestin-dependent fashion [49]. Thus, kinase-

mediated phosphorylation coordinates with the destablizing barrier

function of VE-cadherin at endothelial AJs. By competing with pho-

sphorylate kinase, binding of p120-catenin may prevent VE-cadherin

endocytosis from the plasma membrane, stabilizing it at the

endothelial AJ [50]. Previous studies have demonstrated that the

catenin class of proteins, b-catenin and p120-catenin, dissociate from

the interendothelial cell junctions in response to SFG rickettsial

infections [7,9]. Furthermore, a study using in vitro human endothelial-

targeted R. rickettsii and human cerebral microvascular endothelial

cells showed that the addition of pro-inflammatory stimuli essential to

rickettsial immunity enhances rickettsia-induced microvascular per-

meability in a dose-dependent manner [7]. Taken together, this

evidence suggests that SFG rickettsial infection may cause endothelial

paracellular barrier dysfunction in association with phosphorylation of

VE-cadherin, thus destabilizing endothelial AJs. A major finding of

the present study is that upon infection by SFG rickettsiae, tyrosine

phosphorylation of VE-cadherin was activated in human cerebral

microvascular endothelial cells, which started at 48 hr and increased

at 72 hr post-infection, although no difference was detected for

general VE-cadherin expression at the same time. Given that the in

vitro endothelial permeability assay showed enhanced microvas-

cular permeability at 72 hr post-infection and the AFM studies

showed a dramatic reduction in the adhesive force between VE-

cadherin and endothelial cells at 48 hr, we suggest that upon

infection by SFG rickettsiae, phosphorylation of VE-cadherin

directly attenuates homophilic protein-protein interactions at the

endothelial AJs, leading to endothelial paracellular barrier

dysfunction and microvascular hyperpermeability.

In the present study, we present data to support the association

between phosphorylation of endothelial AJ proteins and enhanced

microvascular permeability during SFG rickettsial infection.

However, it is not established whether activated phosphorylation

is a direct consequence of rickettsial infection of the endothelial

microvasculature, or whether it is a consequence of less specific

physiological responses such as inflammation. We will utilize

atomic force microscopy in future studies involving pathogenic

SFG R. conorii and R. rickettsii to help to address the potential role of

rickettsiae as a trigger mechanism to alter major AJ components

that affect vascular permeability.

Figure 4. AFM measurements of the de-adhesion forces between VE-cadherin and endothelial cells. 4A). Typical force-extension curves
obtained between cells and VE-cadherin coated AFM tips. The dashed lines indicate zero force. The experiments were carried out in uninfected and
infected cells at different time points post-R. montanensis infection (48 hr and 72 hr). 4B). Work of de-adhesion between VE-cadherin beads and
endothelial cells at different time points post-infection. R. montanensis-infected cells required a significantly lower level of average work to break the
interaction compared with uninfected cells. The addition of a monoclonal antibody against VE-cadherin significantly blocked the VE-cadherin-
endothelial cell interaction. Ab: anti-VE-cadherin antibody.
doi:10.1371/journal.pntd.0001699.g004
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In summary, our results indicate that phosphorylation of VE-

cadherin directly attenuates homophilic interactions between VE-

cadherins. Our nano-mechanical and biochemical studies of the

major endothelial AJ protein VE-cadherin have implicated

attenuated VE-cadherin-endothelial cell interaction as an under-

lying cause of enhanced microvascular permeability that occurs at

one prolonged stage upon infection by R. montanensis. Our

experimental approach advances a new way of studying rickettsial

infection and will allow similar studies of the closely related SFG

rickettsiae R. conorii and R. rickettsii. This strategy should prove

useful in uncovering novel therapeutic strategies for virulent

arthropod-borne rickettsioses.
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