
Exorcising the Exocyst Complex

Margaret R. Heider and Mary Munson*

Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical
School, 364 Plantation Street, Worcester, MA 01605

Abstract
The exocyst complex is an evolutionarily conserved multisubunit protein complex implicated in
tethering secretory vesicles to the plasma membrane. Originally identified two decades ago in
budding yeast, investigations using several different eukaryotic systems have since made great
progress toward determination of the overall structure and organization of the eight exocyst
subunits. Studies point to a critical role for the complex as a spatiotemporal regulator through the
numerous protein and lipid interactions of its subunits, although a molecular understanding of
exocyst function has been challenging to elucidate. Recent progress demonstrates that the exocyst
is also important for additional trafficking steps and cellular processes beyond exocytosis, with
links to development and disease. In this review, we discuss current knowledge of exocyst
architecture, assembly, regulation and its roles in a variety of cellular trafficking pathways.

Exocytosis, or secretion, is the process by which cargo-filled vesicles fuse with the plasma
membrane to incorporate proteins and lipids into the plasma membrane and to release
molecules into the extracellular space. Exocytic events are often restricted to a distinct
region of the plasma membrane, resulting in polarized growth and secretion. The budding
yeast Saccharomyces cerevisiae has been a critical model system to study the mechanisms of
polarized exocytosis and these findings have guided and complemented experiments in
multicellular eukaryotes, due to the high conservation of trafficking mechanisms. These
studies resulted in the identification of a multitude of proteins and lipids critical for
establishing cell polarity and the trafficking of vesicles between cellular membranes.

Exocytic vesicles are generated at the Golgi apparatus and those that function in polarized
exocytosis are transported using cytoskeletal tracks and motor proteins to the plasma
membrane (1). Vesicle fusion at the target membrane is facilitated by SNARE proteins
present on the vesicle and target membranes. Yeast genetic studies identified a number of
proteins that are required for a step after vesicle delivery but preceding SNARE-mediated
vesicle fusion. Temperature-sensitive mutations in these genes result in an accumulation of
vesicles that fail to fuse with the plasma membrane, leading to growth and secretion defects
(2, 3). Many of these proteins were later identified as components of an evolutionarily
conserved complex and named the exocyst (4), which is the focus of this review. The
exocyst is a member of the Complex Associated with Tethering Containing Helical Rods
(CATCHR) family (5), of which two other family members are reviewed in this issue
(Ungar, COG review; Spang, Dsl review) and the other, GARP, was recently reviewed (6).
Several functions have been proposed for these complexes, including tethering vesicles to
their target membranes, as well as spatial and temporal regulation of SNARE complex
assembly (7–9) (Figure 1).
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For nearly two decades the exocyst has been a major focus of research in a variety of
eukaryotic model systems, including the identification of numerous protein-protein
interactions, and determination of crystal structures of several subunits (10–12). However,
our understanding of the molecular mechanisms of its function is still limited. Additionally,
the more we learn about the exocyst complex, the more it becomes clear that the complex is
important in multiple stages of membrane trafficking and likely plays more active roles in
exocytosis than simply tethering two lipid bilayers (Figure 1). Interactions with SNAREs,
SNARE regulators and many key cell signaling molecules, as well as the unique roles of
several of its subunits, suggest that the exocyst is a key integrator of many signals and is a
spatiotemporal regulator of multiple membrane trafficking processes.

Exocyst architecture
The composition of the exocyst is highly conserved in eukaryotic systems, with eight single-
copy subunits: Sec3, Sec5, Sec6, Sec8, Sec10, Sec15, Exo70, and Exo84 (4, 13, 14). Six of
the eight subunits were identified in the original S. cerevisiae screen for secretory mutants
and all but SEC3 are essential genes in yeast (2, 15). Since the identification of the complex,
budding yeast has proved to be a powerful tool for elucidating functional and structural
information about the exocyst complex. Moreover, homologues of all the subunits exist in
multicellular eukaryotes and the essential role for the complex in growth and development is
conserved as well. Null mutants in a number of exocyst subunits result in early lethality in
both mice and Drosophila indicating a critical role in development (16–18).

The exocyst belongs to the CATCHR family of multisubunit protein complexes, which have
low sequence identity but conserved helical bundle structures (see (5, 6, 19) for review). The
crystal structures of exocyst subunits display a common motif of tandem helical bundles that
form extended rod-like structures. Electron microscopy (EM) studies of the mammalian
brain exocyst (20) and biochemical studies (21) predict that the subunits pack together in a
side-by-side manner in the assembled holocomplex. The EM images show the
glutaraldehyde-fixed exocyst complex in a “Y-shaped” structure, suggesting that the two
arms may connect apposing members to mediate its putative tethering function (10, 20).
Supporting this idea, electron tomography studies of cell plate formation in Arabidopsis
thaliana showed “Y-shaped” structures linking vesicles (22).

Although the exocyst subunits share structural homology, their surfaces are characterized by
unique hydrophobic and electrostatic patterns (23). This diversity of surface properties
indicates unique binding interfaces and functions of the individual subunits, either within the
complex or individually. Structural studies have been important in characterizing these
unique binding sites and interactions (reviewed in (1, 10). In addition to the conserved
helical bundles, several exocyst subunits contain additional functional domains. The yeast
Sec3 N-terminal region contains a novel Pleckstrin Homology domain in a region
demonstrated to interact with PI(4,5)P2 and a number of small GTPases (11, 12). Moreover,
mammalian Sec5 and Exo84 were each crystallized in complex with the RalA GTPase,
structures that were invaluable in defining the specificity of binding to the GTP-bound form
of RalA (24, 25).

Exocyst localization and activation
As expected for a complex involved in polarized vesicle exocytosis, the exocyst is localized
to limited regions of the plasma membrane, where it mediates the delivery of lipids and
proteins necessary for polarized membrane growth. In yeast, these sites are the tip of the
growing bud and the mother-bud neck during cytokinesis (26). Similarly, the
Schizosaccharomyces pombe exocyst is localized at the division septum during membrane
scission (27). Studies in Drosophila and mammalian neurons indicate that the exocyst is
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found at the ends of neuronal growth cones during neurite branching, as well as at sites of
synaptogenesis (28–30). Cell-cell contact sites in polarized epithelial cells and the leading
edge of cell motility processes are also sites of exocyst concentration (31, 32). Data is
rapidly emerging about the role of the exocyst in plants, where the complex localizes to the
growing ends of pollen tubes, root hair tips and the cell plate for division (33, 34). How the
exocyst is recruited and maintained at polarized sites is a critical question, and one that has
been the focus of much effort since the complex was identified.

Early studies in budding yeast implicated Sec3 as a spatial landmark for exocytosis, as the
localization of Sec3-GFP appeared unaffected by disruptions of the secretory pathway, actin,
and cell cycle proteins (35). Immunofluorescence of endogenous Sec3 called this result into
question, however, and later reports demonstrated that Sec3 is not sufficient to target and/or
retain exocyst complexes at sites of secretion (36–38). Consistent with exocyst localization
being dependent on secretion and polarized actin, live imaging and fluorescence recovery
after photobleaching (FRAP) analyses suggested that six of the eight exocyst subunits arrive
at polarized sites on vesicles via transport on actin cables (39). Sec3 and Exo70 were the
exceptions in that Sec3-GFP seemed to localize independently of these mechanisms and
Exo70-GFP appeared to use both vesicle-independent and -dependent routes to polarized
sites. The model proposed that exocyst subunits arriving on vesicles assembled with Exo70
and Sec3 at the plasma membrane, although it is not clear whether the rest of the subunits
arrive individually or already assembled together. It remains to be determined if assembly
and disassembly of the complex are important for tethering and targeting vesicles; it seems
likely that disassembly of the complex must follow to initiate another round of vesicle
fusion, but there is no direct evidence yet to suggest whether this occurs in vivo.

Exo70 and Sec3 are effectors for Rho GTPases, which are master cell polarity regulators
that are localized to the plasma membrane and are critical in polarizing the actin
cytoskeleton for vesicle delivery. For a more thorough review of the role of small GTPases
in exocytosis, see Wu et al., 2008 (40). The yeast Sec3 N-terminal domain interacts with
Rho1, Cdc42 and PI(4,5)P2, while Exo70 binds Rho3, Cdc42 and PI(4,5)P2 (41–46). The
GTPase interactions of Exo70 are conserved, as mammalian Exo70 interacts with the Rho
protein TC10 (47).

To understand the functional significance of these interactions, specific temperature-
sensitive mutants in yeast were studied. cdc42-6 and rho3-V51 alleles display severe growth
and secretion defects without disrupting exocyst localization or actin polarization (42, 43).
The latter Rho3 effector domain mutation abrogates binding to both Exo70 and the myosin
motor Myo2, and recently identified loss-of-function exo70 mutants mimic the phenotypes
of these specifically exocytosis-deficient Rho mutants (43, 48). However, deletion of the N-
terminal domain of Sec3 resulted in the mislocalization of only Sec3 with no growth or
secretion defects (44). It was possible that this lack of phenotype resulted from a redundant
or parallel pathway involving Exo70 and synthetic genetic interactions have been tested
extensively. Interestingly, the double mutant, rho3-V51 sec3ΔN, shows no synthetic effects
on growth, polarity, or localization of any exocytic machinery (36). However, sec3ΔN was
synthetically lethal in combination with cdc42-6 arguing that there may be functional
overlap between Exo70 and Sec3 through Cdc42, but because exo70 loss-of-function
mutants alone demonstrate similar phenotypes to cdc42-6 it seems plausible that Exo70 is
the primary effector for this GTPase (36, 48).

Interestingly, these mutants can be rescued by GTP-hydrolysis deficient versions of the Rho
GTPases, suggesting that the GTPase cycle is not required for their exocytosis-specific
functions (36). Small GTPases, such as Cdc42, function both through GTP hydrolysis and
hydrolysis-independent mechanisms. Commonly, molecular recognition and timing events
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that require binding and release of effectors require hydrolysis of GTP; for example, the
Sec4 interaction with the exocyst requires this function (see below). Hydrolysis-independent
mechanisms are proposed to be allosteric regulatory events, where binding of the GTPase
activates the binding partner through a conformational change (40). Since exocyst
interactions with Rho appear to fit this allosteric model, it is possible that these interactions
function primarily to activate the exocyst at polarized sites, potentially to accelerate SNARE
complex assembly for vesicle fusion.

Because Rho GTPase interactions are not critical for polarized exocyst localization,
phospholipid interactions may provide this function. sec3ΔN mutants crossed to exo70
mutants defective in binding to PI(4,5)P2 are severely growth defective or synthetically
lethal in yeast, indicating possible redundant functions for these subunits in stabilizing
exocyst localization through lipid binding (49, 50). Furthermore, mutations in yeast MSS4
the kinase that produces PI(4,5)P2, cause diffuse exocyst localization (51). Mammalian
Exo70 is also dependent on PI(4,5)P2 binding for its localization and the residues involved
in this interaction constitute the most conserved domain on the protein (52). The lipid
binding residues in the N-terminal region of Sec3 are also highly conserved among Sec3
homologues (11). Finally, in addition to phospholipid interactions, it is likely that additional
factors critical for exocyst localization remain to be identified. The yeast sec6 mutant alleles,
sec6-49 and sec6-54 result in mislocalization of all eight exocyst subunits, which remain
fully assembled (38). The mutations are in regions suggestive of protein-protein, rather than
protein-lipid, interactions. Therefore, these mutants are proposed to be defective in binding
to a protein factor that anchors the assembled complex at the plasma membrane.

Exocyst assembly
A key aspect to understanding exocyst function is to determine the mechanism(s) of its
assembly and disassembly. Many questions remain unanswered, such as when, where and
how many of the subunits assemble together, and if they always stay assembled. Whether
the exocyst requires disassembly is unknown, although considering the ~750 kDa size of the
complex, disassembly may remove the exocyst as an obstacle for vesicle fusion and/or
facilitate recycling of the complex. Hints of functional subcomplexes and monomeric pools
of subunits have been observed, but biochemical isolation and characterization of these
pools remains elusive, as does the fully assembled complex.

Early biochemical experiments discovered that the eight unique polypeptides of the exocyst
form a high molecular weight complex (4, 14). Differential centrifugation, cell fractionation,
and immunofluorescence experiments in both yeast and higher eukaryotes indicated that the
exocyst subunits are found primarily as a single complex, with both cytosolic and plasma
membrane pools (4, 33, 53–57). This is consistent with the localization of all of the exocyst
subunits to sites of polarized secretion at the bud tip and mother-bud neck in yeast, and
polarized sites of membrane expansion in plant and animal cells. Moreover, in unpolarized
epithelial cells, the exocyst subunits Sec6 and Sec8 are primarily cytosolic, but the majority
shifts to polarized sites on the plasma membrane upon cell-cell contact (55).

Individual temperature-sensitive mutations in each of the budding yeast exocyst subunits
result in the loss of specific combinations of subunits from the complex (54), suggesting that
many individual interactions are necessary for maintaining the architecture of the exocyst.
Additional work using yeast two-hybrid analyses and in vitro binding studies identified
weak pairwise binding interactions among the subunits of the exocyst (reviewed in (10, 32)).
Structural and biochemical studies of the holocomplex remain an outstanding challenge for
the field, to achieve an understanding of how the subunits are pieced together, and details of
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assembly and disassembly of the complex. Moreover, it will be interesting to see if these
mechanisms are conserved across all eukaryotes.

Exocyst subcomplexes
The existence of subcomplexes or monomeric free pools would lead to a greater array of
functional possibilities and mechanisms for exocyst regulation. Assembly of the subunits
into the full octameric complex at the proper place and time would ensure the
spatiotemporal specificity of a vesicle tethering event. Indeed, it has been proposed that a
subset of subunits arrives on vesicles and assembles with the remaining subunits waiting at
the plasma membrane, thus mediating a connection between membranes (39). Although the
exocyst subunits predominantly co-migrate when examined by centrifugation and gel
filtration studies, the broad distributions and trailing peaks for some exocyst subunits
suggest that some of the subunits may exist in free pools outside of the complex (53, 57).
Additionally, localization studies in Drosophila melanogaster indicate that specific exocyst
subunits exhibit unique localization patterns during oogenesis, development and adulthood,
suggesting that the subunits might not always function as a single entity (18).

Cell fractionation studies in mammalian cells also provide strong evidence for
subcomplexes. Ral GTPases function in trafficking, but are unique to metazoan systems.
Activated RalA and RalB are associated with secretory vesicles (58) and each binds to two
exocyst subunits: Sec5 and Exo84, which are predicted to be in separate subcomplexes by
cell fractionation (59, 60). Recent studies also showed that Ral GTPases interact with Exo84
and Sec5 in distinct subcellular locations, with Sec5 at the plasma membrane and Exo84
associated with vesicles (61, 62). It seems likely that there would be a greater need for
functional subcomplexes in mammalian systems, where different combinations of subunits
could respond to a complex array of signals.

Despite a number of studies suggesting that subcomplexes of exocyst subunits exist, the
isolation or reconstitution of these has proven challenging, likely due to the weak pairwise
interactions between the subunits (21, 23). Weak interactions are likely to be functionally
important for cooperative assembly and disassembly of the complex. More sensitive
quantitative techniques for detection of these subcomplexes, as well as robust activity
assays, will be important for determining their physiological relevance. Furthermore,
identification of specific mutants that disrupt intra-exocyst interactions is crucial to tease
apart the functions of individual subunits, the complex as a whole, and to understand which
subunits are critical for stabilization of exocyst structure.

Vesicle recognition and regulation of assembly by GTPases
Rab GTPases are the largest group of the Ras superfamily of small GTPases, with 11 Rab
proteins in yeast and over 60 in humans. They are important regulators at all stages of
trafficking, particularly through interactions with vesicle motility machinery (see below),
tethering factors, and other regulatory molecules (63). The yeast exocyst subunit Sec15
interacts with the GTP-bound Rab protein Sec4 on vesicles, presumably for specific
secretory vesicle recognition; furthermore, functional Sec4 is required for proper exocyst
localization and stable assembly (53, 54, 64). It is not yet known whether the Sec4-GTP-
Sec15 interaction only facilitates exocyst subunit delivery on vesicles, or if it plays a more
active role in assembly/disassembly of the complex.

Exocyst interactions with Rab GTPases are conserved in higher eukaryotes as well. In both
mammals and Drosophila Sec15 interacts with the Rab GTPase Rab10; this interaction
appears to be important for endocytic recycling (65–67). Additionally, interactions with
Rab8 and Rab11 function in trafficking from the Golgi and recycling endosome to the
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plasma membrane, as well as to the base of the primary cilium during ciliogenesis (68). It
will be interesting to determine if these Rab GTPases function similarly to Sec4 in
regulation of the exocyst complex.

The interaction of RalA with two different exocyst subcomplexes in metazoans may also be
functionally important for exocyst assembly. The reduction of RalA expression results in
decreased association of Sec10 with Sec6, each being a component of separate Exo84 and
Sec5 subcomplexes (59). Additionally, release of the Ral-exocyst interactions may be
triggered by phosphorylation events (69), possibly leading to dissociation of the exocyst
from vesicles or disassembly of the complex.

Exocyst Functions
Tethering

Tethering is defined as the initial, long-distance connection between the vesicle and the
target membrane (7, 70).The act of tethering would capture and stabilize vesicles before
fusion, thus indirectly facilitating SNARE-docking and fusion (Figure 1). Tethering factors
take the form of either long coiled-coil proteins or multisubunit protein complexes, which
interact with proteins and/or lipids on both the vesicle and target membranes (9).

Despite their classification as tethers, many of these proteins and complexes, such as the
exocyst, have not been experimentally shown to perform this function, with the exception of
the long coiled coil tethers, TRAPP (71), and (72). One landmark experiment demonstrated
that Uso1, a coiled coil tether implicated in ER to Golgi trafficking of COPII vesicles, and
the GTPase Ypt1, were sufficient to anchor vesicles at the Golgi and this function was
physically separable from SNARE-mediated fusion (70). Tethering has also been shown for
other coiled coils and a few of the multisubunit tethers, but most are challenging to test
experimentally (5). Demonstration of tethering by the exocyst complex awaits in vitro
reconstitution experiments; the large sizes and low solubilities of the eight subunits are a
significant challenge for purification of the holocomplex, or for reconstituting an assembled
and functional complex in vitro. Not only would an in vitro assay be valuable for
demonstrating tethering, but would also be able to distinguish between tethering and a direct
effect on SNARE complex assembly and fusion. Other possible approaches include the use
of super high resolution imaging for observing tethering of vesicles in vivo and powerful
electron microscopy techniques such as that previously used to observe homotypic vesicle
fusion during cytokinesis in Arabidopsis (22).

SNARE regulation
In addition (or alternatively) to tethering, the recognition of exocytic vesicles by the exocyst
may directly ensure the fidelity of secretion by activating specific SNARE complex
assembly. For example, the yeast exocyst subunit Sec6 binds to the exocytic plasma
membrane SNARE Sec9 both in vitro and in vivo and this interaction inhibits the in vitro
assembly of the plasma membrane SNARE complex (57, 73). Sec9 binding to Sec6 is
incompatible with Sec6-exocyst interactions, suggesting that assembly of the exocyst would
lead to release of Sec9 for SNARE complex assembly (57). Additionally, an interaction
between Sec6 and the SNARE regulatory protein Sec1 (74) was recently identified, and was
suggested to recruit and/or stabilize Sec1 at sites of secretion (57); together, the exocyst and
Sec1 may function to spatially and temporally control SNARE assembly. In vitro
reconstitution of SNAREs with purified exocyst complexes, and other regulators, such as
Rab and Rho GTPases, Sec1 and Sro7/77 (75), will be necessary to determine the effect of
the exocyst on SNARE assembly and membrane fusion.
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SNARE regulation may be a general feature of many tethering complexes. HOPS, the
vacuolar tethering complex, binds to SNARE complexes and proofreads vacuolar SNARE
pairing (76, 77). Similarly, COG binds to SNAREs and increases the stability of intra-Golgi
SNARE complexes, possibly preventing disassembly and promoting fusion. It is unclear
whether COG may have an effect on the rate of SNARE complex assembly; Dsl1has a slight
stimulatory effect on Golgi to endoplasmic reticulum SNARE complex assembly in vitro
and GARP promotes the assembly of trans-Golgi network SNARE complexes (6, 78, 79).
As the mechanistic details for these functions are explored further, it will be interesting to
discover whether all the tethering complexes function similarly in SNARE complex
regulation, or if there are interesting organelle-specific (or species-specific) differences.

Diverse cellular functions
In contrast to the traditional view of the exocyst as a simple tether of secretory vesicles to
the plasma membrane, the complex has been implicated in a great variety of cellular
processes (Figure 1). The common theme seems to involve exocyst-mediated localization of
membrane-bound vesicles or compartments to specific target sites at the appropriate time.
For example, at least three yeast exocyst subunits (Sec3, Sec5, and Sec8) have been
implicated in ER inheritance, potentially by anchoring the cortical ER at the bud tip where
the exocyst is localized (80). A later study also identified an interaction between yeast Sec6
and Rtn1, a protein important for ER reticulation, with Rtn1 potentially serving as an
exocyst receptor on the ER (81). Several studies implicate the exocyst in prospore
membrane formation during meiosis in budding yeast (82, 83).

In higher eukaryotes, the exocyst subunits are expressed in all tissue types analyzed thus far
(14). Similar to the phenotype in yeast, exocyst mutants or knock-downs in more complex
organisms are associated with cell growth and developmental defects, as has been shown in
mouse, plant, and Drosophila model systems (16–18, 84). The function of the exocyst in
growth and secretion in many cell types reflects its critical role in tethering and SNARE-
mediated fusion of exocytic vesicles. Furthermore, as suggested by its bud neck localization
in budding yeast, the exocyst also appears to direct vesicles to the midbody during
cytokinesis in mammalian cells (85). In addition, the exocyst has been shown to be
important for endocytic recycling in animal cells (26, 86). Highly specialized secretory
pathways, such as the insulin-stimulated delivery of the glucose transporter Glut4 in
adipocytes, also require functional exocyst complexes (47, 87).

The exocyst is required for many other types of membrane expansion, including
ciliogenesis, tubulogenesis and cell migration in mammalian systems (31, 32, 68) (Figure 1).
Due to its promotion of cell growth, cell migration, and its interactions with Ral GTPases,
the exocyst has been linked with cancer progression and metastasis (31, 88). In one example,
the secretion of matrix metalloproteinases (MMPs) in tumor cell invadopodia requires
exocyst-mediated exocytosis (89, 90). Furthermore, the exocyst-mediated exocytic pathway
has also been shown to play a role in bacterial pathogenesis; the exocyst is co-opted by the
bacteria Salmonella to promote its invasion of intestinal epithelial cells (91). The exocyst
also has roles in host survival responses—several studies have linked exocyst function to
various aspects of the innate immune response (92, 93).

The newest facet to exocyst function was discovered through the study of the involvement
of the GTPase RalB in autophagosome biogenesis (62). RalB triggers its exocyst binding
partner Exo84 to serve as a platform for the assembly of the autophagy induction complex
and vesicle formation machinery. It will be interesting to see whether the exocyst’s role in
autophagy is yet another aspect of its tethering/membrane fusion activities, or a novel
function for the complex or its subunits.
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In contrast to these various roles for the exocyst, several secretory processes appear not to be
dependent on wild-type levels of exocyst function. In Schizosaccharomyces pombe for
example, severely reduced levels of Sec8 protein blocked septum cleavage with only a
modest effect on cargo secretion and no significant effect on polarized growth (27). It is
possible that exocyst function is rate-limiting during cytokinesis and not growth, but recent
results suggested the presence of parallel actin-dependent and exocyst-dependent secretory
pathways in S. pombe (94). Additionally, Drosophila Sec5 mutants suggested a requirement
for the exocyst during neuronal development, but not for synaptic vesicle fusion (17). This
specialized system may have evolved additional mechanisms to mediate the fine-tuned
release of synaptic vesicles. However, Sec8 was found on purified mammalian synaptic
vesicles, so it is possible that the exocyst could be required for synaptic transmission in
other animals (95).

Cytoskeleton interactions: role in vesicle transport?
Yeast post-Golgi vesicles are transported from the trans-Golgi network to the plasma
membrane along actin filaments using the type V myosin motor Myo2. The Rab GTPases
Ypt31/32 and Sec4 both associate with post-Golgi vesicles and bind to Myo2, but not
simultaneously, as they exchange during the progression of vesicle transport (96). Due to
this GTPase shuffling, it seems unlikely that Rabs would be the sole interactors maintaining
the cytoskeletal connection of the vesicle. Indeed, it was recently shown that the cargo-
binding domain of Myo2 is structurally homologous to the exocyst subunits (97) and this
domain of Myo2 directly binds to Sec15; abrogation of the Myo2-Sec15 interaction leads to
growth and secretion defects in yeast (96). Immunoprecipitation of Myo2 pulls down all of
the exocyst subunits, suggesting association with the full complex, although it is unclear
whether this occurs during vesicle transport or upon arrival at sites of secretion (96). The
function of this interaction is unclear, however, as disruption of exocyst assembly and
function by a variety of mutants does not lead to defects in vesicle delivery to polarized sites
(2). More specific mutant alleles of Sec15 and Myo2 may be required to tease apart this
molecular mechanism.

In mammalian systems, vesicles are transported from the Golgi by microtubules and their
associated kinesin motors to cortical actin networks at the plasma membrane. Numerous
approaches have demonstrated an interaction between the exocyst complex and
microtubules; furthermore, Exo70 was shown to inhibit the polymerization of tubulin in
vitro (98). The exocyst or one or more of its subunits may play a role as adaptors in the
connection of vesicles to microtubules, analogous to its proposed role in actin-based
transport in yeast. Moreover, it was proposed that the exocyst may be needed to release
vesicles from microtubules to the actin networks (98). There is no mechanistic
understanding yet for the role of the exocyst in these processes but the interactions provide
important clues that the exocyst is involved in multiple stages of trafficking including
vesicle transport up through SNARE complex assembly.

Conclusions
The recent years have shown an explosion in studies of exocyst function, in yeast and in
many Drosophila plant, and mammalian cell types. These advances argue that the exocyst is
more than just a tethering complex, and that it has many roles in multiple stages of vesicle
trafficking. A common theme arising from all model systems is the role of the exocyst at
many sites in the cell as a spatiotemporal regulator of membrane trafficking. It is well-suited
to these functions, having eight subunits characterized by unique sets of interacting partners,
with multiple layers of regulation available (Table 1).
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Recent work links the exocyst with disease and bacterial pathogenesis in mammalian
systems. The key to understanding the role of the exocyst in these processes will be deeper
mechanistic examination of exocyst function using structural and quantitative biochemical
studies of the octameric complex, putative subcomplexes and their binding partners. Further
insight is provided by mutational analyses, especially in yeast, to isolate the functions
specific to particular subunits within and outside of the complex. These studies will
complement localization and in vivo functional assays in multicellular organisms, where
genetic techniques are more challenging. Finally, although classified as a tethering complex,
no direct evidence for tethering has been experimentally demonstrated; development of
tethering and other in vitro activity assays presents the greatest challenge to advance our
understanding of the molecular details of exocyst complex function.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Exocyst functions in a variety of processes in single- and multicellular eukaryotes
A) The exocyst is proposed to form an initial connection between vesicle and target
membrane through interactions with proteins and lipids on both surfaces. The interactions
may bring the vesicle close enough to promote SNARE complex formation and vesicle
fusion and/or the exocyst may play an active role in regulating SNARE assembly. B) The
exocyst localizes to the site of cytokinesis to direct and tether vesicles at these sites, leading
to formation of a new membrane and facilitating abscission. C) During polarized secretion,
the exocyst tethers both exocytic vesicles generated at the Golgi apparatus and vesicles that
are being recycled to the plasma membrane from the recycling endosome (RE=Recycling
Endosome; EE=Early Endosome). D) An invading pathogen mediates its entry into the cell
by hijacking host cell processes including the exocyst complex, to polarize the cytoskeleton
and vesicle delivery for membrane ruffling and macropinocytosis. E) The exocyst
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colocalizes with IQGAP1 (orange) in invadopodia, directing the growth of invasive
processes and the delivery of matrix metalloproteinases (MMPs) that degrade the
extracellular matrix (ECM). F) Exo84 and a possible subcomplex of exocyst subunits
interact with autophagosome induction machinery (blue), promoting the formation of the
autophagosome. The exocyst may function to tether vesicles or tubules to each other leading
to the production of this compartment. G) The exocyst interacts with lipids and proteins to
localize to the leading edge of migrating cells, promoting the outgrowth of the leading edge
and delivering focal adhesion (blue) components recycled from the rear. H) The exocyst
directs membrane and protein delivery to the ciliary base to promote ciliogenesis and the
BBsome complex shuttles proteins into the cilium beyond the diffusion barrier. For
references, see the text and Table 1.

Heider and Munson Page 16

Traffic. Author manuscript; available in PMC 2013 July 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Heider and Munson Page 17

Table 1

Exocyst protein interactions reveal roles for the complex in a variety of basic and complex eukaryotic cellular
processes.

Cellular Process Interactor Exocyst
Partner

Kingdom References

Bud site selection Iqg1 Sec3 Fungi (99)

Endoplasmic reticulum structure Rtn1 Sec6 Fungi (81)

SNARE complex regulation Sec9 and Sec1 Sec6 Fungi (57, 73)

Post-Golgi vesicle transport Myo2 Sec15 Fungi (96)

Cell polarity Sro7/Sro77 Exo84 Fungi (75)

Cell polarity ICR1 Sec3 Plant (100)

Exocyst disengagement from Ral GTPase Protein Kinase C Sec5 Animal (69)

Cytokinesis Centriolin Sec15 Animal (85)

GLUT4 trafficking TC10 Exo70 Animal (47)

Ciliogenesis Rab8 and Rab11 Sec15 Animal (68)

Invadopodia function, MMP secretion IQGAP1 Sec3 and Sec8 Animal (89)

Cancer, cell migration RalA/RalB Sec5 and Exo84 Animal (31, 59, 60)

Cell migration aPKCs unknown Animal (101)

Actin polymerization and cell migration ARPC1 of Arp2/3 complex Exo70 Animal (102)

Directional cell migration PIPKIγi2 Exo70 and Sec6 Animal (103)

Neuronal and epithelial cell polarity RalA/RalB Sec5 and Exo84 Animal (30, 55)

Tight junction establishment and function RalA/RalB Sec5 and Exo84 Animal (61)

Innate immunity signaling TBK1 Sec5 Animal (92, 93)

Salmonella invasion SipC Exo70 Animal (91)

Autophagy induction Beclin/ULK1/VPS34 Exo84 Animal (62)
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