
Proc. Natl. Acad. Sci. USA
Vol. 96, pp. 10564–10567, September 1999

Perspective

Stochastic game theory: For playing games, not just for doing theory
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Recent theoretical advances have dramatically increased the relevance of game theory for predicting human behavior in interactive
situations. By relaxing the classical assumptions of perfect rationality and perfect foresight, we obtain much improved
explanations of initial decisions, dynamic patterns of learning and adjustment, and equilibrium steady-state distributions.

About 50 years ago, John Nash walked into the office of the
Chair of the Princeton Mathematics Department with an
existence proof for N-person games that was soon published in
these Proceedings (1). John von Neumann dismissively re-
marked ‘‘that’s trivial, you know, that’s just a fixed point
theorem’’ (ref. 2, p. 94). But word of Nash’s work spread
quickly, and with the Nash equilibrium as its centerpiece, game
theory has now gained the central role first envisioned by von
Neumann and Morgenstern (3). Game theory is rapidly be-
coming a general theory of social science, with extensive
applications in economics, psychology, political science, law,
and biology.

There is, however, widespread criticism of theories based on
the ‘‘rational choice’’ assumptions of perfect decision making
(no errors) and perfect foresight (no surprises). This skepti-
cism is reinforced by evidence from laboratory experiments
with financially motivated subjects. Nash participated in such
experiments as a subject and later designed similar experi-
ments of his own but lost whatever confidence he had in game
theory when he saw how poorly it predicted human behavior
(2). And Reinhard Selten, who shared the 1995 Economics
Nobel Prize with Nash and Harsanyi, remarked that ‘‘game
theory is for proving theorems, not for playing games’’ (per-
sonal communication). This paper describes new develop-
ments in game theory that relax the classical assumptions of
perfect rationality and foresight. These approaches to intro-
spection (before play), learning (from previous plays), and
equilibrium (after a large number of plays) provide comple-
mentary perspectives for explaining actual behavior in a wide
variety of games.

Coordination and Social Dilemma Games

The models summarized here have been influenced strongly by
data from experiments that show disturbing differences be-
tween game-theoretic predictions and behavior of human
subjects (4–7). Here, we consider a social dilemma game for
which Nash’s theory predicts a unique equilibrium that is
‘‘bad’’ for all concerned and a coordination game in which any
common effort level is an equilibrium. That is, the Nash
equilibrium makes no clear prediction.

The social dilemma is based on a story in which two travelers
lose luggage with identical contents. The airline promises to
pay any claim in an acceptable range as long as the claims are
equal. If not, the higher claimant is assumed to have lied and
both are reimbursed at the lower claim, with a penalty, R, being
taken from the high claimant and given to the low claimant. A
Nash equilibrium in this context is a pair of claims that survives
an ‘‘announcement test’’: if each person writes in their claim
and then announces it, neither should want to reconsider. Note
that, when R . 1, each traveler has an incentive to ‘‘undercut’’

any common claim. For example, suppose the range of ac-
ceptable claims is from 80 to 200; then, a common claim of 200
yields 200 for both, but a deviation by one person to 199 raises
that person’s payoff to 199 1 R. The paradoxical Nash
equilibrium outcome of this ‘‘traveler’s dilemma’’ is for both
travelers to claim 80, the lowest possible amount (8). Simple
intuition suggests that claims are likely to be much higher when
the penalty parameter, R, is low (8), but that claims may
approach the Nash prediction when R is high. Fig. 1 shows the
frequency of actual decisions in the final five rounds of an
experiment with randomly matched student subjects for R 5
10 (red bars), R 5 25 (yellow bars), and R 5 50 (blue bars) (9).
The task for theory is to explain these intuitive treatment
effects, which contradict the Nash prediction of 80, indepen-
dent of R.

The second game is similar, with payoffs again determined
by the minimum decision. Players choose ‘‘effort levels,’’ and
both have to perform a costly task to raise the joint production
level. A player’s payoff is the minimum of the two efforts minus
the cost of the player’s own effort: pi 5 min{x1, x2} 2 cxi, where
xi is player i’s effort level and c , 1 is a cost parameter.
Consider any common effort level: A unilateral increase is
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FIG. 1. Experiment based on the traveler’s dilemma game, using
randomly matched student subjects who made claim decisions inde-
pendently in a sequence of 10 periods. Earnings ranged from $24 to
$44 and were paid in private, immediately after the experiment. The
frequency of actual decisions for the final five periods is indicated by
the blue bars for R 5 50, by the yellow bars for R 5 25, and by the red
bars for R 5 10. With R 5 50, the average claim was quite close to the
Nash prediction of 80, but, with R 5 10, the average claim started high
(at '180) and moved away from the Nash prediction, ending up at 186
in the final five periods. The observed average claim varies with the
penaltyyreward parameter R in an intuitive manner (a higher R results
in lower claims), in sharp contrast with the Nash prediction of 80,
independent of R.
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costly but does not affect the minimum, and a unilateral
decrease will reduce the minimum by more than the cost
reduction because c , 1. Hence, any common effort survives
the Nash announcement test.

A high effort choice is riskier when the effort cost is high,
which suggests that actual behavior might be sensitive to the
effort cost. Fig. 2 shows the time-sequences of average effort
choices for three groups of 10 randomly matched subjects who
made effort choices in the range from 110 to 170 cents (J.K.G.
and C.A.H., unpublished work). There is an upward pattern for
the low-cost treatment (thin blue lines for c 5 0.25) and an
essentially symmetric downward adjustment for the high-cost
treatment (thin green lines for c 5 0.75). The thick color-coded
lines show average efforts for each treatment. The Nash
equilibrium or any standard variant of it does not predict the
strong treatment effect, which is consistent with simple intu-
ition about the effects of effort costs. Another interesting
result is that subjects may ‘‘get stuck’’ in a low-effort equilib-
rium (10, 11).

For both games, the most salient feature of observed
behavior is not predicted by classical game theory. To under-
stand these results, note that players are usually unsure about
what others will do and that there may be randomness in the
way individuals process and act on information. Even relatively
small payoff asymmetries and small amounts of noise can have
large ‘‘snowball’’ effects in an interactive, strategic game, and
this intuition is a key element of the models presented below.

Evolutionary Dynamics

A natural approach to explaining divergent adjustment pat-
terns like those in Fig. 2 is to develop models of evolution and
learning (12–18). The idea behind evolution in this context is
not based on the notion of reproductive fitness but, rather, that
people tend to adopt successful strategies. Evolutionary mod-
els typically add stochastic elements that are reminiscent of
biological mutation. Consider a population of players that are
characterized by their decision, x(t), at time t, which earns an
expected payoff of pe (x(t),t) where the expectation is taken
with respect to the current population distribution of decisions,
F (x,t). The evolutionary assumption is that players’ decisions
tend to move toward the direction of higher expected payoffs.

Hence, a player’s decision will increase if the expected payoff
function is increasing at x(t), and vice versa. So the decisions
evolve over time, with the rate of change proportional to the
slope of expected payoff, pe9, plus a stochastic Brownian motion
term: dx 5 pe9(x(t),t)dt 1 s dw(t), where s determines the
relative importance of the random shock dw(t). It can be shown
that this individual adjustment process translates into a dif-
ferential equation for the population distribution:

­F~x,t!
­t

5 2 pe9~x,t!f~x,t! 1 mf9~x,t!, [1]

where m 5 s2y2 is a noise or error parameter and f, f9
represents the population density and its slope. This is the
famous Fokker-Planck equation from statistical physics, which
has been derived in this interactive context (S. P. Anderson,
J.K.G., and C.A.H., unpublished work). The evolutionary
process in Eq. 1 is a nonlinear partial differential equation that
can be solved by using numerical techniques. The red lines in
Fig. 2 show the resulting trajectories of average efforts for the
two treatments of the coordination game experiment. This
model explains both the strong treatment effect and the
general qualitative features of the time path of the average
effort choice.

Learning Dynamics

Evolutionary models are sometimes criticized on the grounds
that they ignore the cognitive abilities of human subjects to
learn and adapt. The learning model that is closest to the
evolutionary approach is ‘‘reinforcement learning’’ based on
the psychological insight that successful strategies will be
reinforced and used more frequently. Whereas the previous
section describes the evolution of decisions in a ‘‘large’’
population, reinforcement learning pertains to changes in
decision probabilities of a single decision maker. Reinforce-
ment models are formalized by giving each decision an initial
weight and then adding the payoff actually obtained for a
decision chosen to the weight for that decision (7, 19). The
model is stochastic in the sense that the probability that a
decision is taken is the ratio of its own weight to the sum of all
weights. Simulations show that reinforcement learning models
can explain key features of data from many economics exper-
iments (19).

Alternatively, learning can be modeled in terms of beliefs
about others’ decisions. For example, suppose beliefs are
characterized by a weight for each possible value of the other
player’s decision and that the subjective probability associated
with each decision is its weight divided by the sum of all
weights. Weights are updated over time by adding 1 to the
weight of the decision that is actually observed while the other
weights remain unaltered. The resulting subjective probabili-
ties determine expected payoffs, which in turn determine
choices. To allow for some randomness in responses to payoff
differences, psychologists have proposed probabilistic choice
rules that have the desirable property that decisions with
higher expected payoffs are more likely to be chosen, although
not necessarily with probability 1. In particular, the ‘‘logit’’
probabilistic choice rule specifies that the probability of se-
lecting a particular decision, i, is proportional to an exponential
function of its expected payoff, pe(i):

Pr~i! 5
exp~pe~i!ym!

O
j51

N

exp ~pe~j!ym!

, i 5 1, . . . , N. [2]

As m goes to infinity, all choice probabilities are equal,
regardless of payoff differences, but small payoff differences
will have large effects when m goes to 0. Fig. 3 shows simulated

FIG. 2. Experiment based on the coordination game, using ran-
domly matched student subjects who made effort decisions indepen-
dently in a sequence of 10 periods. Average effort choices are given by
the thin green lines for the low-cost sessions (with c 5 0.25) and by the
thin blue lines for the high-cost sessions (with c 5 0.75). The thick lines
show average efforts for both treatments. As simple economic intuition
would suggest, higher effort costs result in lower efforts, an effect that
is not predicted by the Nash equilibrium. Note that, in one of the
high-cost sessions, effort choices gravitate toward the lowest possible
effort choice of 110, the equilibrium that is worst for all concerned. The
thin red lines give the average effort choices predicted by an evolu-
tionary adjustment model in which players tend to move in the
direction of higher payoffs but may make mistakes in doing so.
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decisions with noisy learning, together with the observed
choices of human subjects, for the three treatments of the
traveler’s dilemma game. Simulations of this type also have
been used to explain adjustment patterns in other experiments
(20, 21).

Logit Equilibrium

In a steady state, the distribution function in Eq. 1 stops
evolving; that is, dFydt 5 0. Setting the right side of Eq. 1 to
0, dropping the time arguments, and rearranging yields a
differential equation in the equilibrium density: f9(x)yf(x) 5
pe9(x)ym. This equation can be integrated to yield f(x) 5 k
exp(pe9(x)ym), which is the continuous analogue of Eq. 2. Thus,
a gradient-based evolutionary model with Brownian motion
produces the logit model in a steady state. Likewise, when
simulated behavior in learning models with logit errors settles
down, the steady state distributions of decisions are consistent
with the logit rule in Eq. 2.

In equilibrium, Eq. 2 must be interpreted carefully because
the choice density determines the expected payoffs, which in
turn determine the choice density. In other words, the logit
equilibrium is a fixed point: The ‘‘belief’’ density that goes into
the expected payoff function on the right side of Eq. 2 must
match the ‘‘choice’’ density that comes out of the logit rule on
the left side. It has been proven that such an equilibrium exists
for all games with a finite number of decisions (22, 23). This
elegant proof is based on a fixed-point theorem, like Nash’s
half-page proof in these Proceedings (1).

The equilibrium conditions in Eq. 2 can be solved numer-
ically by using an estimated error parameter. Fig. 4 shows the
logit equilibrium densities for the three treatments of the
traveler’s dilemma experiment. The theoretical densities pick
up the general location of the data frequencies in Fig. 1, with
the colors used to match predictions and data for each
treatment. There are discrepancies, but the logit equilibrium
predictions are superior to the Nash prediction of 80 for all
treatments. The logit equilibrium has been successfully applied
to explain behavior in a variety of other economic environ-
ments (refs. 22–25; R. D. McKelvey and T. R. Palfrey, personal
communication).

A Model of Iterated Noisy Introspection

Many political contests, legal disputes, and special auctions are
played only once, in which case there is no opportunity to learn,

adjust strategies, and reach an equilibrium. One way to pro-
ceed in these situations is to use general intuition and intro-
spection about what the other player(s) might do, what they
think others might do, and so on. Edgar Allen Poe mentions
this type of iterated introspection in an account of a police
inspector trying to decide where to search for the ‘‘purloined
letter.’’ Economists have long thought about such iterated
expectations and have noted that the resulting ‘‘infinite re-
gression’’ often leads to a Nash equilibrium and hence does not
provide a new approach to behavior in one-shot games.

Naturally, our approach is to introduce noise into the
introspective process, with the intuition that players’ own
decisions involve less noise than their perceptions of others’
decisions, which in turn involves less noise than other players’
perceptions of others’ decisions, and so on. Our model is based
on the probabilistic choice mapping in Eq. 2, which we will
express compactly as p 5 fm(q), where q represents the vector
of belief probabilities that determine expected payoffs, and p
is the vector of probabilities that is determined by the prob-
abilistic choice rule fm. We assume that the error parameter
associated with each higher level of iterated introspection is
t . 1 times the error parameter associated with the lower level.
For instance, p 5 fm (ftm(q)) represents a player’s noisy (m)
response to the other player’s noisy (tm) response to beliefs q.
The ‘‘telescope’’ parameter t determines how fast the error
rate blows up with further iterations. We are interested in the
choice probabilities as the number of iterations goes to infinity:

p 5 lim
n3`

fm~ftm~ z z z ft nm~q!!!. [3]

This limit is well defined for t . 1, and because f` maps the
whole probability simplex to a single point, the limit is inde-
pendent of the initial belief vector q. It has been shown (J.K.G.
and C.A.H., unpublished work) that Eq. 3 provides a good
explanation of (nonequilibrium) play in many types of one-shot
games; see ref. 26 for alternative approaches (C. M. Capra,
personal communication).

The logit equilibrium arises as a limit case of this two-
parameter introspective model. Recall that a logit equilibrium
is a fixed point of fm: that is, a vector p* that satisfies p* 5
fm(p*). For t 5 1, a fixed point of fm is also a fixed point of
Eq. 3. So, if the introspective model converges for t 5 1, the
result is a logit equilibrium. If t . 1, Eq. 3 determines beliefs

FIG. 3. Patterns of adjustment for the traveler’s dilemma game.
The thick lines show the average claims of human subjects in sessions
with a penaltyyreward parameter of R 5 50 (blue line), R 5 25 (yellow
line), and R 5 10 (red line). The color-coded thin lines represent
simulated average claims for the different treatments. These simula-
tions are based on a Bayesian learning model, in which players use
observations of their opponents’ past play to update their beliefs about
what will happen next. Adding logit errors to such a naive learning
model results in predictions that conform nicely with the actual
adjustment patterns observed in the laboratory.

FIG. 4. Logit equilibrium densities for the traveler’s dilemma game
with a penaltyyreward parameter of R 5 50 (blue line), R 5 25 (yellow
line), and R 5 10 (red line). The logit equilibrium is capable of
reproducing the most salient feature of the human data: that is, the
intuitive effect of the penaltyyreward parameter on average claims.
Note that the logit equilibrium predictions are roughly consistent with
the actual human data shown in Fig. 1 and are far superior to the Nash
prediction of 80 (green bar), which is independent of R.
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p that will generally not match the iterated layers of intro-
spective beliefs on the right side. In this sense, the introspective
model generalizes the logit equilibrium by relaxing the as-
sumption of perfect consistency between actions and beliefs,
just as the logit equilibrium generalizes Nash by relaxing the
assumption of perfectly rational decision making.

Conclusion

This paper describes three complementary modifications of
classical game theory. The models of introspection, learningy
evolution, and equilibrium contain the common stochastic
elements that represent errors or unobserved preference
shocks. Like the ‘‘three friends’’ of classical Chinese gardening
(pine, prunus, and bamboo), these approaches fit together
nicely, each with a different purpose. Models of iterated noisy
introspection are used to explain beliefs and choices in games
played only once, where surprises are to be expected, and
beliefs are not likely to be consistent with choices. With
repetition, beliefs and decisions can be revised through learn-
ing or evolution. Choice distributions will tend to stabilize
when there are no more surprises in the aggregate, and the
resulting steady state constitutes a noisy equilibrium.

These theoretical perspectives have allowed us to predict
initial play, adjustment patterns, and final tendencies in lab-
oratory experiments. There are discrepancies, but the overall
pattern of results is surprisingly coherent, especially consider-
ing that we are using human subjects in interactive situations.
The resulting models have the empirical content that makes
them relevant for playing games, not just for doing theory.
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