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ABSTRACT A fundamental result of population genetics states that a new mutation, at an unlinked neutral locus in a randomly mating
diploid population, has a mean time of fixation of �4Ne generations, where Ne is the effective population size. This result is based on
an assumption of fixed population size, which does not universally hold in natural populations. Here, we analyze such neutral fixations
in populations of changing size within the framework of the diffusion approximation. General expressions are derived for the mean
and variance of the fixation time in changing populations. Some explicit results are given for two cases: (i) the effective population size
undergoes a sudden change, representing a sudden population expansion or a sudden bottleneck; (ii) the effective population changes
linearly for a limited period of time and then remains constant. Additionally, a lower bound for the mean time of fixation is obtained for
an effective population size that increases with time, and this is applied to exponentially growing populations. The results obtained in
this work show, among other things, that for populations that increase in size, the mean time of fixation can be enhanced, sometimes
substantially so, over 4Ne,0 generations, where Ne,0 is the effective population size at the time the mutation arises. Such an enhance-
ment is associated with (i) an increased probability of neutral polymorphism in a population and (ii) an enhanced persistence of high-
frequency neutral variation, which is the variation most likely to be observed.

HOW are properties of mutations at neutral loci, such as
the mean time of fixation, modified when population

size is not constant? The answer to this question directly
influences the persistence of neutral variation in a population
and the probability of neutral polymorphism. To put the
question in context, we note that the genomes of many
organisms contain loci and sites that can be described as
neutral, with most substitutions seeming to have a neutral
effect on the fitness of the host organism (see, e.g., Kimura
1983; Gillespie 1994, Chap. 6; Nei et al. 2010).

When mutation produces a new allele, its long-term
outcome (neglecting additional mutations) is either loss or
fixation. Henceforth, we restrict attention to mutations at
unlinked neutral loci in randomly mating diploid popula-
tions. Typically, a new allele at such a locus does not achieve
high relative frequencies and becomes lost in a short time

(Kimura and Ohta 1969; Crow and Kimura 1970). A rarer
outcome is fixation, which typically takes a relatively long
time to occur. With Ne the (variance) effective population
size, alleles that start at low relative frequencies take a mean
time to fix of �4Ne generations (Kimura and Ohta 1969),
under the implicit assumption that the effective population
size is constant. An allele that fixes generally achieves inter-
mediate and high relative frequencies on the way to fixation
and hence contributes to the neutral variation of the popula-
tion for a time of the order of the mean fixation time. Related
to this is neutral polymorphism, which arises from recurrent
neutral mutation and random genetic drift. The likelihood of
observing neutral polymorphism in a population is governed
by the size of the product of mean fixation time and neutral
genomic mutation rate (Kimura 1983). Thus there are direct
ways the mean fixation time affects a population.

The above ideas form a standard part of our understand-
ing of neutral mutations and connect with a larger body of
work describing the effects of random genetic drift at the
gene and molecular levels (Crow and Kimura 1970; Kimura
1983). Here we present an analysis of random genetic drift
in situations involving neutral fixation in populations of
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changing size. Such an analysis is required to establish how
fundamental results, such as the “4Ne” result for the mean
time to fixation, become modified when population size is
not constant and whether such results have an impact on
neutral effects in a population.

Background

Fixation is a process that takes a random time to occur. For
an unlinked neutral locus, the distribution of fixation times
is approximately known when population size is constant
(Kimura and Ohta 1969). It is recognized, however, that the
assumption of fixed population size does not universally
hold. Many natural populations have a size that significantly
changes over time. In a study of the effects of changing
population size on the fixation of nonneutral mutations,
Otto and Whitlock (1997) listed the following as possible
reasons for changing population numbers in the wild: (i)
varying physical conditions, (ii) resource availability, (iii)
habit availability, (iv) predator density, and (v) human dis-
turbance. Human beings constitute an example of a popula-
tion whose size is changing at a varying rate of growth.

To illustrate some of the issues associated with changing
population size, let us consider examples involving fixation
of a neutral allele.

Examples

Assume first that a single mutant allele arises in a population
of fixed size N and that the allele ultimately fixes. From the
first appearance of the allele to its fixation, which we as-
sume takes T generations, all 2N resident alleles of the pop-
ulation are lost (strictly, the number lost is 2N 2 1, given
one initial mutant allele) and are replaced by mutant alleles.
The disappearance of resident alleles thus occurs at an av-
erage rate of 2N/T alleles per generation. Using the estimate
T = 4Ne generations leads to an average rate of loss of res-
ident alleles of N/(2Ne) alleles per generation. This simple
picture becomes complicated if the mutant allele arises and
goes to fixation in a population of changing size. To see this,
consider a population whose size always remains close to its
carrying capacity, which, for reasons external to the popula-
tion, changes with time. We assume the carrying capacity
exhibits the simplest nontrivial behavior, namely a linear
change for a limited period of time. During this limited pe-
riod, the population size is given by N(t) = N0 + gt, where g
is the constant rate of change of population size. We con-
sider the implications of population sizes that either de-
crease (g , 0) or increase (g . 0).

Generally, the effective population size at any time t, writ-
ten Ne(t), will change over time. For the purposes of this
example, we assume the simplest relation between the actual
and effective population sizes and take Ne(t) = constant ·
N(t). Such an assumption is consistent with results from static
populations. For example, in a population with a biased sex
ratio, the quantity N/Ne depends solely on the sex ratio (see,
e.g., Gillespie 2004, p. 49).

Let us now consider a mutant allele that arises at time t=
0 and that ultimately fixes in a population of linearly chang-
ing size. Fixation of the mutant allele occurs when all resi-
dent alleles are lost. We thus focus on the overall rate of loss
of resident alleles, which arises from a sum of two terms: (i)
a contribution caused by population size changes and (ii)
a contribution arising from loss of the alleles due to random
genetic drift.

In the early stages of the fixation process, residents
comprise the vast majority of individuals in the population,
and a rate of change of population size of g (which may be
positive or negative) closely corresponds to resident alleles
changing at the rate of 2g alleles per generation and hence
of resident alleles being lost at the rate of 22g alleles per
generation. Thus we take 22g as the contribution of pop-
ulation size change to the overall rate of loss of resident
alleles; it may be positive or negative, depending on the sign
of g.

In a population of constant size, the rate of loss of
resident alleles, due to random genetic drift, was estimated
above to be N/(2Ne) alleles per generation. In a changing
population, the corresponding rate of loss of resident alleles
will generally differ from this result, but we use N/(2Ne) as
an estimate of this rate.

Under population decrease (g , 0) the contributions to
the overall rate of loss of resident alleles, from random
genetic drift and population size change, are N/(2Ne) and
22g [ 2|g|, respectively, and are both positive. As a conse-
quence the instantaneous rate of loss of resident alleles,
when the population size is N, will typically be faster than
that of a population of fixed size N.

Under population increase (g . 0), the overall rate of loss
of resident alleles has a negative contribution from popula-
tion size change (estimated above to be 22g) and a positive
contribution from random genetic drift [estimated above to
be N/(2Ne)]. Thus when the population size is N, the total
rate of loss of resident alleles is �N/(2Ne) 2 2g, i.e., slower
than that of a population of fixed size N. A particularly in-
teresting regime is where the rate of loss of resident alleles
due to random genetic drift can be overcome by the effect of
population size increase, which increases the number of res-
ident alleles. This will occur when g is sufficiently large
compared with N/Ne that the number of resident alleles
does not decrease but typically changes at a net positive
rate, i.e., increases. We should then expect that fixation
could take much longer to occur. Indeed if the population
growth persisted at such a rate indefinitely, the mean time to
fixation could, plausibly, become infinite.

From the above examples it is reasonable to infer that the
mean time to fixation is generally sensitive to a changing
population size.

Methods

To address the issue of neutral fixation in a changing
population, we separate the problem into two components:
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i. The first component is a statistic, associated with fixation,
which has the properties that its distribution is independent
of the pattern of population-size changes over time. The
statistic introduced has a distribution that depends on a sin-
gle parameter (the initial frequency of the mutant allele).

ii. The second component is a function that encapsulates the
way that population size changes over time. This function
is independent of the fixation time.

In this way we cleanly separate a common feature of
fixation (the distribution of the statistic introduced here)
from the pattern of size changes of the particular population
under consideration.

Model

Consider an unlinked neutral locus within the genome of
a randomly mating diploid population with discrete gen-
erations. We assume the population-size changes over time,
such that in generation t there are N(t) adults. The processes
that lead from the adults of one generation to the adults of
the next generation are taken to be (i) reproduction, shortly
followed by the death of all adults; (ii) viability selection;
and (iii) nonselective ecological thinning (which is required,
on the assumption that more individuals survive selection
than can be supported by the environment). The thinning
process reduces the number of individuals in the population
to the N(t + 1) adults of the next generation. It is step iii
where random genetic drift can be identified as occurring.
Alternative assumptions about step iii may alter the way
random genetic drift affects the population.

Associated with random genetic drift is the variance effec-
tive population size (Ewens 2004), which we assume also
changes with time. The variance effective population size
in generation t is denoted by Ne(t). This is determined from
an averaging over processes that occur in a single genera-
tion. Throughout this work we use Ne(t) to refer only to such
a local quantity, that is, one associated with generation t. In
particular, we do not make use of averages of the effective
population size (such as the harmonic mean) that summa-
rize properties of the effective population size over multiple
generations and hence reflect population-size information
that is nonlocal in time. For generality, we leave the relation
between the actual population size, N(t), and the effective
population size, Ne(t), arbitrary. It is very natural, however,
to regard the effective population size as a proxy for the
actual population size and hence assume that changes in
N(t) are accompanied by closely related changes in Ne(t).

The question we address concerns features of the fixation
process when the actual and effective population sizes have
known historical variation over time. Thus we view N(t) and
Ne(t) as being completely determined and not having any sto-
chasticity. Accordingly, it would be inappropriate to carry out
any averaging over these functions. Addressing questions of a
different nature may require population-size averaging (see,
e.g., Parsons and Quince 2007; Engen et al. 2009; Parsons
et al. 2010; Uecker and Hermisson 2011; Waxman 2011c).

Let the locus in question have two alleles, denoted A and
a, with a the wild-type allele and A a mutant allele that is
the focus of interest.

In the adults of generation t, the proportion of all genes at
the locus that are allele A, written X(t), is the relative fre-
quency of the A allele (henceforth termed the frequency). The
frequency X(t) generally exhibits random variation over time,
due to the uncertainties of individuals contributing their
genes to the following generation. The statistical properties
of X(t) can be obtained by considering many different repli-
cates of a population with identical population-size behaviors.
Initially, all replicates start with the same frequency of the A
allele, but after the initial time different replicates may, due to
stochasticity of the dynamics, have different values of the
frequency. An extension of the Wright–Fisher model (Fisher
1930; Wright 1931), which takes into account changes in
population size over time, can be used to calculate statistical
results for X(t), but this is mathematically complicated and
normally leads only to numerical results. To make theoretical
progress we perform an analysis on the basis of the diffusion
approximation, where time t and frequency X(t) are both
treated as continuous quantities. The frequency X(t) becomes
a continuous random variable and is described by a probabil-
ity density whose value at frequency x and time t is f(x, t).
The diffusion approximation derives its name from the diffu-
sion equation governing f(x, t). For an unlinked neutral locus
in a randomly mating diploid population this reads2@f(x, t)/
@t = 2[4Ne(t)]21 @2[x(12 x)f(x,t)]/@x2 (Crow and Kimura
1970), where, as stated above, Ne(t) is the effective popula-
tion size that is appropriate for generation t.

Let the A allele have a frequency of y at the time of its initial
appearance, which we take throughout this work to be t = 0.
Thus if n copies of the A allele are present in a population at the
initial time, then the initial frequency is given by y= n/(2N(0)).
At large times the A allele will have either fixed, with probabil-
ity y, or been lost, with probability 1 2 y. These probabilities
hold irrespective of the way that the effective population size
changes after appearance of the mutation (see Appendix A).

Statistic

More complex information about the evolutionary process is
contained in the description of the random time it takes for
fixation or loss of the A allele to occur. If fixation ultimately
occurs, the random time to fixation, denoted Tfix, has a proba-
bility distribution that depends on the behavior of the effective
population size over time. We have found it advantageous to
work with a statistic that is associated with the fixation time,
but whose distribution is independent of the behavior of Ne(t),
and hence has an invariant form. The statistic, denoted R, is
defined by

R ¼
Z Tfix

0

dv
4NeðvÞ (1)

and explicitly involves Tfix. In Appendix B we establish that
under the diffusion approximation, the statistic R has the
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property that its distribution depends upon just one param-
eter, namely the frequency of the A allele at its time of
appearance (t = 0). Let us briefly note the implications of
this property for two populations where the A allele starts
with the same initial frequency and ultimately fixes, but the
two populations have different effective sizes over time. De-
spite differences in Ne(t), all statistical properties of the two
populations that do not explicitly depend on Ne(t) and involve
only R (for example, the mean or variance of R) will be iden-
tical for both populations. The independence of the distribu-
tion of R on the behavior of Ne(t) contrasts sharply with
statistical properties of fixation times, which will generally
be different for the two populations. Before we illustrate the
different statistical properties of the fixation time in popula-
tions with different Ne(t), it is necessary to fully characterize R.

Generally, all statistical properties of R are summarized
by its cumulative distribution function, Fy(r), which depends
on the initial frequency (y) as a parameter. The cumulative
distribution function is defined as the probability

FyðrÞ ¼ ProbðR #  rjXð0Þ ¼ yÞ (2)

with 0 # r , N. In Appendix B we establish that the diffu-
sion approximation yields

FyðrÞ  ≃  12 2
XN
n¼0

ð12 yÞð2nþ 3Þ
ðnþ 1Þðnþ 2Þ ð21ÞnCð3=2Þ

n ð12 2yÞe2ðnþ1Þðnþ2Þr;

(3)

where Cð3=2Þ
n ðyÞ is a particular polynomial of y [a Gegenba-

uer polynomial of order 3/2 and degree n (Abramowitz and
Stegun 1964)]. In the practically important case of low ini-
tial frequencies (y / 0) we write the cumulative distribu-
tion as F0(r) and this has the simple approximation

F0ðrÞ  ≃ 
(�p

r

�3=2
er=42p2=4r;  0 #  r #  2

12 3  e22  r; r. 2
(4)

(see Appendix B). The expressions in Equations 3 and 4
follow from existing results in the literature (Kimura 1955;
Waxman 2011b).

For an initial frequency of y, the mean and variance of R are
written as Ey[R] and Vary(R). These have simple forms under
the diffusion approximation (see Appendix C for details):

Ey½R� ¼
Z N

0

�
12 FyðrÞ

�
dr  ≃2

ð12 yÞlnð12 yÞ
y

(5)

and

VaryðRÞ  ≃  2ð12 yÞlnð12 yÞ
y

2

�ð12yÞlnð12yÞ
y

�2

þ p
2

3
2 2  dilogð12 yÞ;

(6)

where dilogðxÞ ¼ R x1 ðlnðuÞ=ð12uÞÞ  du denotes the dilogar-
ithm function (Abramowitz and Stegun 1964).

The results of Equations 5 and 6 reduce, in the limit of
small y (y / 0), to E0[R] = 1 and Var0(R) ≃ (p2/3 2 3).

In Appendix D we use simulations and the results of Equa-
tions 5 and 6 to illustrate the prediction of the diffusion
approximation, that statistical properties of R depend only
on the initial frequency of the A allele and not on the be-
havior of the effective population size.

Results

Statistical properties of the time to fixation

Equation 1 relates the statistic R to another random quan-
tity—the fixation time, Tfix. Equation 1 can always be solved
(by either analytical or numerical methods) to yield Tfix as
a function of R and we write this relation as

Tfix ¼ h  ðRÞ: (7)

Expectations involving the fixation time follow from knowl-
edge of h(r) and Fy(r). For example, with a an arbitrary
positive number, the mean of (Tfix)a, namely Ey[(Tfix)a],
can be written as Ey½ðTfixÞa�≃

RN
0 ½hðrÞ�a½@FyðrÞ=@r�dr. This

result can be used to derive expressions for statistical prop-
erties of Tfix such as its mean and variance (see Appendix E
for details). In particular, the mean and the variance of the
time to fixation are given by

Ey
�
Tfix
�
  ≃
Z N

0
hðrÞ @Fy   ðrÞ

@r
  dr ¼

Z N

0
4NeðhðrÞÞ

�
12 FyðrÞ

�
dr

(8)

Vary
�
Tfix
	 ¼ 2

Z N

0
hðrÞ dhðrÞ

dr
 
�
12 FyðrÞ

�
dr

2

�Z N

0

dhðrÞ
dr

 
�
12FyðrÞ

�
dr
�2

:

(9)

Equation 8 is the generalization of the constant popula-
tion result to effective population sizes that are time
dependent.

When the effective population size is constant, Equation
8 leads to Ey[Tfix] ≃ 24Ne · (12 y)ln(12 y)/y and for a
small initial frequency (y/ 0) this result reduces to the
standard result E0[Tfix] ≃ 4Ne (Kimura and Ohta 1969).
Furthermore, for a constant population size and y/ 0,
the variance reduces to the known result Var0(Tfix) ≃
(p2/3 2 3) · (4Ne)2 (Kimura 1970).

The form of the function h(r), which appears in Equations
7–9 and relates Tfix to R, depends specifically on the history
of Ne(t), from the time the mutant allele appears (at t = 0)
onward. We next provide details of two examples, following
from known forms of Ne(t), to illustrate the behavior of the
mean and variance of Tfix. We also present two different
inequalities for Ey[Tfix] that do not require knowledge of
the full history of Ne(t). One inequality applies when Ne(t)
is known to lie within a finite range of values for all times,
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and the other inequality provides a lower bound on Ey[Tfix]
when the population size increases over time.

Examples
Example 1: For the first example, consider the situation
where Ne(t) has a discontinuous jump in size at time t (see
curve b in Figure D1, Appendix D):

NeðtÞ ¼


Ne;0; t #  t;
Ne;1; t .  t:

(10)

In Appendix F it is shown that Equations 1, 7, and 8 lead
to a mean fixation time of

Ey
�
Tfix
�
  ≃  4Ne;0

Z r

0

�
12 FyðrÞ

�
drþ 4Ne;1

Z N

r

�
12 FyðrÞ

�
  dr;

(11)

where r is a measure of the time of population-size jump:

r ¼ t

4Ne;0
: (12)

Note that because Ne,0 and Ne,1 are arbitrary, Equation 11
can apply to a population experiencing a sudden expansion
(Ne,1 . Ne,0) or a sudden bottleneck (Ne,1 , Ne,0).

In Appendix F we also derive an expression for the vari-
ance of Tfix, which has a more complex form than that of
Equation 11. To gain intuition about Equation 11, let us
consider some informative extreme limits.

If Ne,0 / N with Ne,1 held constant, Equation 11 reduces
to Ey[Tfix] = t + 4Ne,1Ey[R] and corresponds to fixation oc-
curring only after time t and, then, only from a frequency of y.
This has the explanation that an effectively infinite effective
population size up to time t prevents any change of the allele
frequency from its initial value; hence fixation occurs only
after the population size has become finite. Alternatively, if
Ne,1 / N with Ne,0 held constant, then the mean time to
fixation diverges. This arises because there is a finite proba-
bility that a mutant allele does not fix before time t; the allele
then finds itself in an effectively infinite population and will
not fix in any finite time. In the methods presented in this
work, this result arises because 4Ne,1, in Equation 11, is mul-
tiplied by the finite probability that R will be larger than r.

In the limit of low initial frequencies (y / 0), the mean
and variance of Tfix become E0[Tfix] and Var0(Tfix), respec-
tively, and we can obtain approximations for these quanti-
ties. For small, intermediate, and relatively large values of
r we find that

E0
�
Tfix
�
≃

8>>>><
>>>>:

r  ·   4Ne;0 þ ð12 rÞ· 4Ne;1;             r � 1;

0:50  ·   4Ne;0 þ 0:50 ·4Ne;1;           r  ≃  0:51;

0:80  ·   4Ne;0 þ 0:20 ·4Ne;1;        r ¼ 1;�
12

3e22r

2

�
  ·   4Ne;0 þ 3e22r

2
·4  Ne;1;       r $  2

(13)

(see Appendix F for details.) An inspection of Equation 13
indicates that when the scaled time of population-size jump,
r, is small (r � 1, corresponding to t � Ne,0), the mean
fixation time approximately equals 4Ne,1 and hence is largely
determined by the population size achieved at later times.
This is naturally attributed to most replicate populations not
having fixed the A allele by the time of the population-size
jump. The intermediate value of r used in Equation 13,
namely r ≃ 0.51, was chosen so that 4Ne,0 and 4Ne,1 make
equal contributions to E0[Tfix]. The result obtained is very
similar to the result obtained by using this value of r in the
small r result in the preceding line. For relatively large values
of r (r $ 2, corresponding to t $ 8Ne,0) the mean fixation
time approximately equals 4Ne,0 and hence is largely deter-
mined by the population size achieved at early times; this is
naturally attributed to most replicate populations having
fixed the A allele by the time of the population-size jump.

The variance of Tfix can also be approximated for low initial
frequencies (y / 0). We find (see Appendix F for details)

Var0
�
Tfix
	

≃

8>>>>>><
>>>>>>:

�
p2

3
2 3
�
·
�
4Ne;1

	2
;   r � 1;

0:27·
�
4Ne;1

	2þ 0:01·
�
4Ne;0

	�
4Ne;1

	
;         r ≃ 0:51;

0:05·
�
4Ne;0

	2þ 0:08·
�
4Ne;0

	�
4Ne;1

	þ 0:16·
�
4Ne;1

	2
;   r ¼ 1;�

p2

3
2 3þ 3

2
ð12 2rÞe22r

�
·
�
4Ne;0

	2þ 3
2
e22r ·

�
4Ne;1

	2
;   r $ 2:

(14)

The variance obtained for r ≃ 0.51 is close to the result
obtained using this value in the small r result (since p2/3 2
3 ≃ 0.29 is close to 0.27). It is somewhat surprising that the
variance, when r = 1, has the largest weighting given to the
later population size (Ne,1), given that the mean of Tfix for this
value of r (see Equation 13) has the largest weighting given to
the contribution of the earlier population size (Ne,0).

Example 2: For the second example, consider the situation
outlined at the start of this article, where the effective
population size was assumed to change linearly, for a finite
period of time, and then maintain a constant value. We
present only the details of an analysis for an increasing pop-
ulation. A formal solution is justified in this case since the
issues involved are potentially complex (see Background).

We write

NeðtÞ ¼


Ne;0 þ get; t# t;
Ne;0 þ get; t. t;

(15)

where the rate of change, ge, is taken to be positive. We find
(see Appendix G for details)

Ey
�
Tfix
�
 ≃ 4Ne;0

  ·
�Z r0

0
e4ger

�
12 FyðrÞ

�
  drþ e4ger0

Z N

0

�
12 FyðrÞ

�
dr
�
;

(16)
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where r0 = (4ge)21log(1 + get/Ne,0). Appendix G contains
an expression for the variance of Tfix, which again has a more
complex form than that of the mean.

Restricting considerations to low initial frequencies, where
the mean and variance of Tfix become E0[Tfix] and Var0(Tfix),
respectively, the results for these can, using Equation 4, be
numerically evaluated. The dependence of E0[Tfix] on the
duration of linear change, t, is affected by the rate of change
of the effective population size, ge, as illustrated in Figure
1A. The dependence of the variance on t is also affected by
ge, and to facilitate direct comparison with E0[Tfix], the
square root of the variance is plotted as a function of t in
Figure 1B.

Approximate results can also be obtained for the de-
pendence of E0[Tfix] and Var0(Tfix) on t. When ge has a fixed
value and t is sufficiently large that it satisfies both
get=ð4Ne;0Þ. e8ge21 and get/(4Ne,0) � 1, we find the fol-
lowing approximate t dependences:

E0
�
Tfix
�
 ≃ k1 þ k2

�
get

Ne;0

�p

(17)

Var0
�
Tfix
	
 ≃ k3 þ k4

�
get

Ne;0

�p

þ k5

�
get

Ne;0

�2p
þ k6

�
get

Ne;0

�1þp

;

(18)

where k1, k2, . . . , k6 are independent of t and p is the
parameter

p ¼ ge 2 1=2
ge

(19)

(see Appendix G for details). The three powers of t appearing
in Equations 17 and 18, namely p, 2p, and 1 + p, are all
negative for ge , 1/4, but for 1/4 , ge , 1/2, p and 2p
are negative while 1 + p is positive, and for ge . 1/2 all three
powers are positive. This leads to E0[Tfix] and Var0(Tfix) having
dependences on t (when t is large), which is sensitive to the
value of ge. When ge , 1/4, both E0[Tfix] and Var0(Tfix) vary
as t to a negative power, indicating a weak dependence on t.
However, when 1/4 , ge , 1/2, it follows that E0[Tfix] varies
as t to a negative power while Var0[Tfix] has a term varying as
t to a positive power. Thus the variance has a potentially strong
dependence on t in this regime. Finally, when ge . 1/2, both
E0[Tfix] and Var0(Tfix) vary as positive powers of t, indicating
that both have potentially a strong dependence on t.

Bounds on the mean

The above results are based on explicit forms for Ne(t). To
make use of Equation 8, for the mean time to fixation,
requires full knowledge of Ne(t), so that the function h(r)
can be determined. We can circumvent the requirement of
full knowledge of Ne(t) at the cost of obtaining bounds, not
precise values. The bounds obtained are based on the diffu-
sion approximation and hence are not rigorous inequalities
for Ey[Tfix]:

1. For the first bound, note that Equation 8 can be written in
the alternative form Ey   ½Tfix�≃ 4Ne · Ey   ½R�; where Ey[R]
is given in Equation 5, and Ne represents a particular
sort of average of Ne(t), namely Ne ¼

RN
0 NeðhðrÞÞ

½12FyðrÞ�dr=
RN
0 ½12FyðrÞ�dr. If Ne(t) is known to always

lie within the range Ne,min to Ne,max it immediately fol-
lows that Ne, by virtue of being an average, must lie in
the range Ne;min,Ne,Ne;max. It follows that the mean
time of fixation satisfies

4Ne;min   ·   Ey½R� ,  Ey
�
Tfix
�
 ,  4Ne;max   ·   Ey½R�:

2. A different bound can be obtained for an increasing pop-
ulation. A mutation that appears at time t= 0 has a mean
time of fixation that satisfies

Ey
�
Tfix
�
 . 

�
1
L

Z L

0
4NeðvÞdv

�
·   Ey½R�; (20)

where L = 4Ne(0) · Ey[R] (see Appendix H for details).
Since Ey[R] # 1, the maximum value of L is 4Ne(0). In

Figure 1 The case where the effective population size has a period of
linear growth of duration t before remaining constant (Equation 15). (A)
Illustration of the behavior of the mean time to fixation, as a function of t,
for mutant alleles with low initial frequency. It follows from Equation 16
that if both get/Ne,0 and t/Ne,0 are small (� 1), then E0[Tfix] ≃ 4Ne(t) [
4(Ne,0 + get); i.e., E0[Tfix] increases linearly with t. For larger t it is appar-
ent from A that E0[Tfix] increases with t, but more slowly than linearly. (B)
Illustration of the behavior of the square root of the variance,
s0 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var0ðTfixÞ
p

, as a function of t, for mutant alleles with low initial
frequency.
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the case of small initial frequencies we have Ey[R] ≃
E0[R] = 1 and hence L ≃ 4Ne(0).

The inequality in Equation 20 involves the average
L21

R L
0 4NeðvÞdv, which requires knowledge of Ne(t) only

over times t = 0 to t = L. If, for example, the effective
population size exhibits exponential growth over this time
interval, with Ne(t) = Ne(0)eat, then Equation 20 leads to
Ey½Tfix�=4Neð0Þ.ðeaL21Þ  Ey½R�=aL. If a · L is appreciable,
then neutral mutations should have a mean time to fixation
that is large relative to 4Ne(0).

Discussion

In this work we have considered statistical properties of the
time it takes mutations at unlinked neutral loci to fix in pop-
ulations of changing effective size. Such alleles contribute to
the neutral variation of a population during the random time
they are segregating. Even in populations of constant size,
neutral alleles constitute a special case since they take longer
(on average) to fix than beneficial or equally deleterious al-
leles under genic selection (Maruyama 1977, pp. 80 and 81).
In the present work we show that the mean and variance of
the time to fixation of neutral alleles are sensitive to the be-
havior of the effective population size. In particular, the mean
time to fixation can be significantly increased beyond the con-
stant population result when the effective size increases over
time. In a population that increases over time, alleles that start
with a low initial frequency have a mean time to fixation that
is predicted to be .4Ne(0), where Ne(0) is the effective pop-
ulation size at the time the mutation arises. We use two of the
results obtained in this work to illustrate this:

i. Equation 17 indicates how long-term linear growth of the
effective population size affects the mean time of fixation.
If linear population growth continues for a very long time
(t/N), then Equation 17 shows that ge = 1/2 is a critical
value of the growth rate, which separates small and po-
tentially large values of E0[Tfix]. When actual and effective
population sizes coincide, the critical value of the growth
rate (i.e., ge = 1/2) corresponds to an increase by one new
individual every two generations. This is a modest rate of
growth. The variability of the fixation time also depends
on the value of ge. When population growth continues for
a very long time (t/N), the variance, Var0[Tfix], exhibits
different behavior from the mean. The variance changes
character at ge=1/4 from small to potentially large values
[due to the term (get/Ne,0)1+p in Equation 18]. This last
feature, which corresponds to an increase of the popula-
tion by one new individual every four generations, when
actual and effective population sizes coincide, also illus-
trates that the mean and variance of Tfix can depend on
parameters in quite different ways.

ii. Equation 20 shows that a large mean time of fixation results
if the population grows an appreciable amount in the first
4Ne(0) generations. For example, with exponential growth
at rate a we obtained Ey½Tfix�=4Neð0Þ.ðeaL21ÞEy½R�= aL,

where L = 4Ne(0)Ey[R]. Thus if the growth rate has the
value a = 0.05 per generation, then an initial effective size
as small as Ne(0) = 20 leads, for small initial frequencies, to
E0[Tfix]. 103 generations, which is.4Ne(0) by more than
a factor of 10.

The time a mutation takes to fix in a population is
closely related to the persistence of variation in that
population. A measure of variation in a population (which
in the present work arises from the segregation of neutral
alleles) is given by the mean heterozygosity, E[H(t)], where
H(t) = 2X(t)(1 2 X(t)). To illustrate the relation between
fixation and the persistence of variation consider a popula-
tion with a period of linear growth as in Equation 15, with
ge positive. Simulations of the heterozygosity are plotted as
a function of time in Figure 2, for the case where a single A
allele is initially present in the population.

For a fixed duration of linear change, t, different values
of the linear growth rate, ge, were used in Figure 2. The

Figure 2 Illustration of the behavior of the mean heterozygosity E[H(t)]
[where H(t) = 2X(t)(12X(t))] as a function of the time, t, when the effec-
tive population size has a period of linear growth, as in Equation 15. The
results presented were derived from simulations of 2 · 104 replicate
populations, which were run until either fixation or loss occurred. Bino-
mial sampling was used, and hence actual and effective population sizes
coincided. A single copy of a mutant allele was assumed present at time
t = 0. The heterozygosities plotted are conditional on the mutant alleles
either fixing (A) or being lost (B). The solid lines correspond to an initial
effective population size of Ne,0 = 20 and a duration of linear growth of
t = 16 · Ne,0 = 320 generations. For comparison, the dashed line corre-
sponds to a population of constant effective size, whose value is the
largest size achieved by a population with ge = 1 and Ne,0 = 20; namely,
Ne,0 = 20 + 320 = 340.
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mean heterozygosity is very different for mutant alleles that
fix compared with those that are lost. Mutant alleles that fix
lead to a relatively high level of mean heterozygosity
(�0.4), which has a persistence that increases with ge. Mu-
tant alleles that are lost lead to a mean heterozygosity that is
relatively small and that persists for substantially less time
than that of alleles that fix. For comparison, Figure 2 also
contains a curve showing the heterozygosity of a population
of constant effective size, whose value is the largest size
achieved by the population with ge=1 and Ne,0=20,
namely Ne,0 = 340 (dashed curve). The comparison is par-
tially confounded because the initial frequency used in this
constant population corresponds to a single copy of a mutant
allele and hence has the value 1/(2 · 340), while the initial
frequency in all of the populations that changed size (solid
curves) was 1/(2 · 20). Figure 2A suggests that the maxi-
mum value that the mean heterozygosity achieves, for a
mutant allele that ultimately fixes, is insensitive to the pop-
ulation size; however, the time the heterozygosity persists,
and the actual pattern realized, is sensitive to the behavior
of the effective population size. The evidence from Figure 2A
is that an increasing population enhances the persistence of
the neutral variation associated with the most observable
mutant alleles, that is to say those that achieve intermediate
and high frequencies and proceed to fix. No such phenom-
enon is strongly apparent in the variation associated with
alleles that typically remain at low frequencies and are ulti-
mately lost (Figure 2B).

To establish the connection between the persistence of
variation frommutant alleles that proceed to fix and themean
fixation time, consider the mean heterozygosity, given that
fixation ultimately occurs. We write this as E[H(t)|Fix]. The
only mutant alleles contributing to E[H(t)|Fix] are those
that fix after time t (i.e., that have Tfix . t). Accordingly,
we have E[H(t)|Fix] = E[H(t)|Fix, Tfix . t] · Prob(Tfix .
t), and from the simulations for Figure 2A, we find that Prob
(Tfix . t) is the factor in this expression that is largely re-
sponsible for the observed decrease of E[H(t)|Fix] with t.
That is, for the range of t where E[H(t)|Fix] decreases, we
find that E[H(t)|Fix] ≃ constant · Prob(Tfix . t). It follows
that the persistence of E[H(t) | Fix] is largely determined by
the behavior of Prob(Tfix . t). Additionally, E[Tfix] is fully
determined from knowledge of Prob(Tfix . t). Thus a chang-
ing population size can be viewed as most fundamentally
affecting Prob(Tfix . t), which then affects other quantities
such as E[H(t)|Fix] and E[Tfix]. From the simulations, an
increasing population size is found to shift the decay of Prob
(Tfix . t) to larger values of t, and this explains why an
increased mean time of fixation is accompanied by an en-
hanced persistence of variation.

This work has concerned itself with neutral mutations.
The degree to which alleles affect the fitness of their carriers
is determined by the environment. Selective neutrality
may be a transient property, because under environmental
changes, originally neutral loci may become selected. The
associated variation then becomes converted to nonneutral

variation that becomes a target for selection, as has been
discussed in the literature for, e.g., alleles associated with
6PG allozymes (Dykehuizen and Hartl 1980). Such nonneu-
tral variation will generally be significant for the continued
survival of a population. It could allow rapid adaptation to
a changed environment or, perhaps, result in a very high
load that leads to extinction. Either way, the potential to
evolve and the direction of evolution are closely associated
with the presence of neutral alleles in a population and
hence on the time they take to achieve fixation.
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Appendix A: Preliminaries and Probability of Fixation

To obtain analytical results for the Wright–Fisher model of an unlinked neutral locus, as described in the main text, we use
the diffusion approximation. Under this approximation time and allele frequencies are approximated as continuous quan-
tities. The probability density of the frequency of the A allele at time t and frequency x, written f(x, t), obeys the diffusion
equation

2
@

@t
 fðx; tÞ ¼ 2

1
4NeðtÞ

@2

@x2
½xð12 xÞf ðx; tÞ� (A1)

(Crow and Kimura 1970), where Ne(t) is the variance effective population size at time t. We solve Equation A1 subject to the
condition that at time t = 0 all replicate populations start with the A allele at a frequency of y. This corresponds to the initial
probability density

f  ðx; 0Þ ¼ d  ðx2 yÞ; (A2)

where d(x) denotes a Dirac delta function of argument x.
To make the solution f(x, t) of Equation A1 mathematically well defined, it is necessary to impose conditions at the

boundaries x = 0 and x = 1. We require that probability is conserved for all times ðR 10 f ðx; tÞ  dx ¼ 1Þ and this leads us to
impose the condition that the probability current, defined by jðx; tÞ ¼ 2ð1=  4NeðtÞÞð@=  @xÞ½xð12xÞfðx; tÞ�, vanishes at the
boundaries (McKane and Waxman 2007):

jð0; tÞ ¼ 0; jð1; tÞ ¼ 0: (A3)

A consequence of Equation A3 is that fixation and loss are included in the solution of Equation A1 in the form of Dirac
delta functions located at x = 0 and x = 1 (McKane and Waxman 2007; Waxman 2011a). The total integrated probability
density, which includes contributions of the delta functions at the boundaries, then has the value of unity for all times. This
property of the solution of the diffusion equation is in accordance with the probability distribution of the Wright–Fisher
model, which has a sum over all frequency states of unity.

Proof

We now prove that the probability of the ultimate fixation or loss of a neutral allele is independent of the way that the
effective population size, Ne(t), changes over time, subject to a mild restriction on Ne(t).

Proceeding, we write xn   ðtÞ for the expected value Ey½XnðtÞ� [def E½XnðtÞjXð0Þ ¼ y� and have Ey½XnðtÞ� ¼ R 10 xnfðx; tÞdx.
Multiplying Equation A1 by x or x2, integrating over all x, and using Equation A3 yields

dxðtÞ
dt

¼ 0 (A4)

and

Population Growth and Mean Fixation Time 569



dx2ðtÞ
dt

¼ xðtÞ2 x2ðtÞ
2NeðtÞ : (A5)

The initial frequency, X(0), has the precise value of y since f(x, t) satisfies Equation A2. Defining

QðtÞ ¼
Z t

0

1
2NeðvÞ dv; (A6)

the solutions of Equations A4 and A5 are xðtÞ ¼ y and x2ðtÞ ¼ y2yð12yÞe2QðtÞ. If

lim
t/N

QðtÞ ¼N; (A7)

then limt/Nx2ðtÞ ¼ y. That is, at large t, x2ðtÞ converges to xðtÞ ¼ y. The only way this dispersionless convergence can come
about is if limt/Nf(x, t) = (1 2 y)d(x) + yd(1 2 x). The coefficient of d(1 2 x) in this expression is the long time fixation
probability (McKane and Waxman 2007) and equals the initial frequency, y, of the A allele. Similarly, the long time
probability of loss is 1 2 y. These long time results for the probabilities of fixation and loss are independent of Ne(t) and
hence apply for static or time-dependent Ne, providing only that the condition of Equation A7 holds. This condition is fairly
mild: for example, any Ne(t) that is bounded from above [Ne(t) , N for all t] will lead to Equation A7 holding. Populations
that grow too rapidly at large t, such as exponentially growing populations, will violate Equation A7, but this should not be
problematic since such indefinite growth is not biologically feasible.

Appendix B: Establishing Properties of the R Statistic

In this Appendix we establish that under the diffusion approximation, the statistic

R ¼
Z Tfix

0

dv
4NeðvÞ (B1)

has a probability distribution that depends upon only a single parameter, namely the frequency of the A allele at time t = 0.
In particular, the probability density of R is independent of the form of Ne(t).

To establish the claimed property of R, let A(t j y, u) denote the probability that X(t) = 1, given that X(u) = y. The
probability A(t j y, u) appears within part of the solution of the forward diffusion equation and therefore also obeys the
backward diffusion equation

@

@u
Aðt j y; uÞ ¼ 2

yð12 yÞ
4NeðuÞ

@2

@y2
 Aðt j y; uÞ (B2)

and is subject to the initial and boundary conditions A(t j y, t) = 0 for 0 , y , 1, A(t j 0, u) = 0 for u # t, and A(t j 1, u) = 1
for u # t.

By changing the time variable in the backward diffusion equation, Equation B2, from u to the quantity
R t
uðdv= 4NeðvÞÞ, it

may be verified that the initial and boundary conditions depend only on y and
R t
uðdv= 4NeðvÞÞ and do not depend on t.

Accordingly, A(t j y, u) depends only on y and
R t
uðdv=4NeðvÞÞ and we can therefore write

Aðtj y; uÞ ¼ Gy

�Z t

u

dv
4NeðvÞ

�
(B3)

for some function Gy(r). Properties of Gy(r) follow from properties of A(t j y, u). From Equations B2 and B3 it follows that
Gy(r) obeys

2
@

@r
GyðrÞ ¼ 2 yð12 yÞ @2

@y2
GyðrÞ: (B4)

Furthermore, Gy(r) is subject to the initial condition

Gyð0Þ ¼ 0 for 0, y,1 (B5)
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and the boundary conditions

G0ðrÞ ¼ 0 for r$ 0
G1ðrÞ ¼ 1 for r$ 0:

(B6)

Additionally, Gy(r) also satisfies

Gy  ðNÞ ¼ y (B7)

since Gy(N) [ A(Nj y, u) = y is the probability of ultimate fixation of a neutral allele (see Appendix A).
We can determine Gy(r) by solving Equation B4 subject to Equations B5 and B6. However, this is not necessary since we

can infer the form of Gy(r) from an existing result in the literature. We note that the probability A(t j y, u), when u= 0 and for
a population of fixed size, has been found by Kimura (1955) and depends only on t and Ne in the combination t/(4Ne).
Because of Equation B3, we can take Kimura’s solution and replace t/(4Ne) by r to obtain the form for Gy(r). It is often
convenient to work with the quantity Gy(r)/y. Accordingly, we define

Fy  ðrÞ ¼ Gy  ðrÞ
y

(B8)

and then find from Kimura’s form for A(t j y u) that

FyðrÞ ¼ 12
XN
n¼0

2ð12 yÞð2nþ 3Þ
ln

ð21ÞnCð3=2Þ
n ð12 2yÞexpð2 lnrÞ; (B9)

where ln = (n+ 1)(n+ 2) and Cð3=2Þ
n ðyÞ denotes a Gegenbauer polynomial in y of order 3/2 and degree n (Abramowitz and

Stegun 1964). In the limit of small y we write Fy(r) as F0(r). In this regime a simple approximate form for A(t j y, u) is known
(Waxman 2011b) and hence we have the simple approximation for F0(r):

F0ðrÞ≃
(�p

r

�3=2
er=42p2=ð4  rÞ; 0 #  r #  2;

12 3e22  r;       r .  2:
(B10)

Since the process of fixation among replicate populations is irreversible (once a replicate population has fixed, it remains
fixed), the quantity A(t j y, u) is the probability that fixation has actually occurred within the time interval u to t. That is, A(t j
y, u) is the probability that fixation has occurred by time t. It follows that for populations where fixation ultimately occurs, the
random time at which fixation occurs, written Tfix, obeys

Prob
�
Tfix  #  t

�� XðuÞ ¼ y
	 ¼ Aðt j y; uÞ

AðNj y; uÞ: (B11)

Strictly, the probability on the left-hand side should indicate that it is conditional on fixation ultimately occurring. Given,
however, that Tfix is not defined unless fixation will ultimately occur, we adopt the simpler notation where this conditioning is
left implicit.

Equation B11 can be written for any u # t as ProbðTfix#t jX   ðuÞ ¼ yÞ ¼ Gy ð
R t
uðdv=4NeðvÞÞÞ=y ¼ Fy ð

R t
uðdv=4NeðvÞÞÞ and

completely equivalently, we have

Prob
�Z Tfix

u

dv
4NeðvÞ #

Z t

u

dv
4NeðvÞ

����XðuÞ ¼ y
�

¼ Fy

�Z t

u

dv
4NeðvÞ

�
: (B12)

Restricting ourselves to the special case of u = 0, so Tfix is the amount of time that elapses before the mutant allele fixes (if
u 6¼ 0, the amount of time that elapses before fixation is Tfix 2 u), we can write Equation B12 as

ProbðR #  r jXð0Þ ¼ yÞ ¼ FyðrÞ; (B13)

where R is the random variable given in Equation B1.
We thus have established that the function of r given by Fy(r) is, by virtue of Equation B13, the cumulative distribution

function of the random variable R, and this depends on only one parameter, namely y, the initial frequency of the A allele.
Differentiating Fy(r) with respect to r yields the probability density of r, and this also depends on the single parameter y.
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Appendix C: Deriving Expressions for the Mean and Variance of R

In this Appendix we determine expressions for the mean and variance of the statistic R defined in Equation 1 of the main text.
Moments of R are expectations of the form E[Rn j X(0) = y] with n = 1, 2, . . . , which we write in the shorter form Ey[Rn].

The probability density of R is the derivative, with respect to r, of the cumulative distribution function of R. Here, following
Appendix B, we write the cumulative distribution function of R as G(r, y)/y. Accordingly,

Ey½Rn� ¼
Z N

0
rn

@

@r

�
GyðrÞ
y

�
¼
Z N

0
rn

@

@r

�
GyðrÞ
y

2 1
�
dr

¼ n
y

Z N

0
rn21�y2GyðrÞ

�
dr:

(C1)

We write

Ey½Rn� ¼ n
y
Jn21ðyÞ; (C2)

where

JnðyÞ [def
Z N

0
rn
�
y2GyðrÞ

�
dr: (C3)

Because of Equation B6, we take

Jn   ð0Þ ¼ 0;  Jn   ð1Þ ¼ 0: (C4)

From Equation B4 we can establish equations that the Jn(y) obey. We write Equation B4 as 2yð12yÞ
ð@2  =  @y2Þ½y2GyðrÞ� ¼ 2ð@=  @rÞ½y2GyðrÞ�. Multiplying this equation by rn and integrating from r=0 to r=N yields
2yð12yÞðd2  =  dy2ÞJnðyÞ ¼ 2

RN
0 rnð@=@rÞ½y2GyðrÞ�dr. An integration by parts yields

2 yð12 yÞ d2

dy2
JnðyÞ ¼

�
2 rn

�
y2GyðrÞ

��r ¼ N
r ¼  0 þnJn21ðyÞ: (C5)

When n = 0, there is a contribution from the boundary term on the right-hand side at r = 0, while for n . 0 there is no such
contribution. It follows that

2 yð12 yÞ d2

dy2
J0ðyÞ ¼ y (C6)

and

2 yð12 yÞ d2

dy2
JnðyÞ ¼ nJn21ðyÞ; n ¼ 1;  2;  3; ::: : (C7)

The solution to Equation C6, subject to Equation C4, is J0(y)=2(12 y)ln(12 y). The corresponding solution to Equation
C7 for n = 1 is J1ðyÞ ¼ ð12yÞlnð12yÞ þ y½p2   =  62dilogð12yÞ�, where dilog(x) denotes the dilogarithm function:
dilogðxÞ ¼ R x1 ðlnðtÞ=ð12tÞÞ  dt (Abramowitz and Stegun 1964). We have not found a particularly simple expression for
J2(y); however, a small y expansion can be determined if required.

We can now determine Ey[R], which equals J0(y)/y:

Ey½R� ¼
Z N

0

�
12 FyðrÞ

�
dr ¼ 2

ð12 yÞlnð12 yÞ
y

: (C8)

Also, we have Ey[R2] = 2J1(y)/y, i.e.,
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Ey
�
R2
� ¼ 2

ð12 yÞlnð12 yÞ
y

þ p2

3
2 2dilogð12 yÞ; (C9)

where dilogðxÞ ¼ R x1 ðlnðuÞ=ð12uÞÞdu denotes the dilogarithm function (Abramowitz and Stegun 1964). The result for the
variance in the main text follows directly by combining the results of Equations C8 and C9:

VaryðRÞ ¼ Ey
�
R2
�
2
�
Ey½R�

	2
≃
2ð12 yÞlnð12 yÞ

y
2

�ð12yÞlnð12yÞ
y

�2

þ p2

3
2 2dilogð12 yÞ:

(C10)

Appendix D: Illustrating the Independence of the Distribution of R on Population Behavior

In this Appendix we present a set of results for the statistic R of Equation 1 to illustrate the independence of its distribution on
the way population size changes over time, as predicted by the diffusion approximation. To obtain data we carried out
individually based simulations of a neutral population that evolves in discrete time. These simulations used binomial
sampling of individuals in discrete time, which results in the effective and actual population sizes coinciding: Ne(t) = N(t).
In Figure D1, five quite different forms of N(t) have been adopted, ranging from logistic growth to logistic decay.

For each case of N(t) shown in Figure D1, the fate of the mutants was followed in 106 replicate populations. As expected,
a fraction very close to y of these replicate populations underwent fixation. For a given population behavior, the times of
fixation were recorded in the different replicate populations where fixation occurred. If fixation occurred in a replicate
population at time tfix, then the statistic corresponding to R of Equation 1 was taken to be the discrete analogue of the
integral, namely

Ptfix21
t¼0 ð1=  4NeðtÞÞ. With a single copy of a mutant allele initially present, the mean times to fixation for

the population behaviors a–e in Figure D1 differed among themselves by considerable amounts, .200% (see Table D1). The
mean values of the R statistic for the different population behaviors were all within 2% of the value predicted by Equation 5.
We also used Equation 6 to predict the variance of R for Figure 1. The variances of R determined from cases a–e in Figure D1
were all within 7% of the predicted value—see Table D1.

To test the quality of the diffusion results for the mean time for fixation, we calculated the percentage error in this
quantity, relative to the simulation results, for two cases. For the standard case of a constant population (curve d in Figure
D1) we used the diffusion result E[Tfix] = 4NeEy[R]. For a discontinuous jump in the population size (curve b in Figure D1)
we used the diffusion result Equation E5, employing Equation 4 of the main text, thereby approximating the initial frequency
by zero. For both cases, the errors in the calculated mean times of fixation were found to be ,1%.

Appendix E: Deriving Expressions for the Mean and Variance of the Time to Fixation

In this Appendix we establish expressions for the mean and the variance of the time to fixation.
Equation 7 of the main text reads Tfix = h(R) and we first determine Ey[(Tfix)a] with a an arbitrary positive number. With

Fy(r) the cumulative probability distribution of R at value r (see Equation 2), we have

Figure D1 Five quite different examples of population size behavior, N(t), are illustrated. In all cases the initial population size was 100. Case
a corresponds to logistic growth, with an intrinsic growth rate of 1/200 and the population size eventually doubling to 200. In case b the population
discontinuously jumps to 150 individuals at generation 250, while case c has a variable population size that was derived from the sum of a constant and
several different sine functions. In case d the population size remains constant, while in case e the population undergoes logistic decay, with an intrinsic
decay rate of 1/200 and the population size eventually halving to 50.
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��
Tfix
	a� ≃  Ey½haðRÞ� ¼

Z N

0
haðrÞ @FyðrÞ

@r
dr ¼ 2

Z N

0
haðrÞ @

@r
 
�
12 FyðrÞ

�
dr

¼ a
Z N

0
ha21ðrÞ dhðrÞ

dr
 
�
12 FyðrÞ

�
dr:

(E1)

Taking a = 1 in Equation E1 leads to the following expression for the mean time to fixation:

Ey
�
Tfix
�
  ≃
Z N

0
hðrÞ @FyðrÞ

@r
dr ¼

Z N

0

dhðrÞ
dr

�
12 FyðrÞ

�
dr: (E2)

There is an alternative way of writing the second form of this expression. We note that the function h(r) is formally defined
by

r ¼
Z h ðrÞ

0

dv
4NeðvÞ: (E3)

Differentiating Equation E3 with respect to r leads to

dhðrÞ
dr

¼ 4NeðhðrÞÞ (E4)

and using this result in Equation E2 yields an alternative expression for the mean:

Ey
�
Tfix
�
  ≃
Z N

0
4NeðhðrÞÞ

�
12 FyðrÞ

�
dr: (E5)

To determine an expression for the variance we use Vary(Tfix) = Ey[(Tfix)2]2(Ey[Tfix])2 and set a = 1 and a = 2 in
Equation E1 to obtain Equation 9 of the main text.

Appendix F: Derivation of the Results for a Population-Size Jump Given in Equations 13 and 14 of the
Main Text

In this Appendixwe determine exact and approximate results for the mean time of fixation and its variance when the effective
population size discontinuously jumps at time t from Ne,0 to Ne,1, as given in Equation 10 of the main text.

To begin, we note that the function h(r), which relates Tfix to R, is formally defined by Equation E3. It may be verified that
with Ne(t) given by Equation 10, h(r) is given by

hðrÞ ¼


4Ne;0r; r# r;
4Ne;0r þ 4Ne;1ðr2 rÞ; r. r;

(F1)

where r = t/(4Ne,0) is a scaled measure of the time of the population-size jump.

Table D1 Results from individually based simulations for the fixation of a neutral mutant allele are given for the
population behaviors illustrated in Figure D1

Ey[R] (% error) Vary[R] (% error) Ey[T]

a: Logistic growth 1.001 (20.338) 0.294 (21.268) 625.6
b: Discontinuous jump 0.995 (0.248) 0.291 (20.294) 479.2
c: Variable 0.978 (2.027) 0.272 (6.658) 361.1
d: Constant 0.993 (0.453) 0.280 (3.348) 397.2
e: Logistic decay 0.990 (0.770) 0.292 (20.593) 268.8

The initial population size was 100 in all cases, and other parameters are given in the Figure D1 legend. The initial frequency of the mutant allele
was y = 1/200 and 106 replicate populations were simulated for each of the five behaviors illustrated in Figure D1. The expectations and variances
given are estimates from the simulations. For the mean and variance of R, the percentage errors, given in parentheses, are the errors of the diffusion
results (given in Equations C8 and C10), relative to the simulation results.
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The mean of Tfix can be obtained from Equations E2 and F1 and takes the form

Ey
�
Tfix
� ¼ A0 · 4Ne;0 þ A1 · 4Ne;1; (F2)

where

A0 ¼
Z r

0

�
12 FyðrÞ

�
dr; A1 ¼

Z N

r

�
12 FyðrÞ

�
dr[ 12A0: (F3)

The variance of Tfix follows from Equations 9 and F1 and takes the form

Vary
�
Tfix
	 ¼ �B00 2A2

0

	
·
�
4Ne;0

	2þðB01 2 2A0A1Þ ·
�
4Ne;0

	�
4Ne;1

	
þ �B112A2

1

	
·
�
4Ne;1

	2
;

(F4)

where

B00 ¼ 2
Z r

0
r
�
12 FyðrÞ

�
dr; B01 ¼ 2r

Z N

r

�
12 FyðrÞ

�
dr[ 2rA1;

B11 ¼ 2
Z N

r
ðr2 rÞ�12 FyðrÞ

�
dr:

(F5)

We derive results for the case of vanishingly small initial frequencies (y / 0) and make extensive use of the following
y / 0 forms of Equations C8 and C9:

Z N

0
½12 F0  ðrÞ�dr ¼ 1;

Z N

0
r  ½12 F0   ðrÞ�  dr [ 

1
2
E0
�
R2
� ¼ 1

2

�
p2

3
2 2
�
: (F6)

Derivation of results for y / 0 and r � 1

We used Equation 4 of the main text and obtained the following approximate results, which all have corrections of
Oðe2p2=ð4rÞÞ: A0≃r, A1≃12r, B00 ≃ r2, B01 ≃ 2r(12 r). For B11 we write B11 ¼ 2ðRN0 r½12F0ðrÞ�dr2

R r
0 r½12F0ðrÞ�dr  Þ22rA1,

which leads to B11 ¼ p2  =  32222r þ r2 þ Oðe2p2=ð4rÞÞ. Combining these results leads to E0[Tfix] ≃ r · 4Ne,0 + (12 r) · 4Ne,1

and Var0ðTfixÞ≃ðp2  =  323Þ · ð4Ne;1Þ2.

Derivation of results for y / 0 and r ≃ 0.51 or r = 1

Results for these cases were obtained using Equation 4 of the main text and numerically determining the coefficients in
Equations F3 and F5.

Derivation of results for y / 0 and r $ 2

We used Equation 4 of the main text and obtained the following results: A0 ¼ RN0 ½12F0ðrÞ�  dr2RN
r ½12F0   ðrÞ�  dr≃ 12ð3=2Þ  e22r, A1 ¼ 12A0 ≃ ð3=2Þe22r, B00 ¼ 2

RN
0 r½12F0ðrÞ�  dr22 

RN
r r½12F0ðrÞ�dr≃p2  =  3222ð3=2Þ

ð1þ 2rÞe22r, B01≃3re22r, and B11 ≃ ð3=2Þe22r. Combining these results gives E0½Tfix� ¼ ð12ð3=2Þe22rÞ ·
4Ne;0 þ ð3=2Þe22r · 4Ne;1 and on neglecting terms of O(e24r) gives Var0ðTfixÞ≃ðp2  =  323þ ð3=2Þð122rÞe22rÞ ·
ð4Ne;0Þ2 þ ð3=2Þe22r · ð4Ne;1Þ2.

Appendix G: Mean and Variance of the Time to Fixation When Ne Has a Period of Linear Growth

In this Appendix we consider a situation outlined in the main text, where population size increases linearly, for a finite period
of time, and then remains constant, as given in Equation 15 of the main text. We give results only for the case of vanishingly
small initial frequencies (y / 0).

In terms of the quantity r0 defined by

r0 ¼ 1
4ge

  log
�
1þ get

Ne;0

�
(G1)
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the function h(r) defined by Equation E3 can be verified to be given by

h ðrÞ ¼

8>><
>>:

Ne;0

ge

�
e4ger 2 1

	
;    r #  r0;

Ne;0

ge

�
e4ger0 2 1

	þ 4Ne;0e4ger0ðr2 r0Þ; r .  r0:
(G2)

To determine the mean time to fixation, we use Equations G2 and E2 to obtain

E0
�
Tfix
� ¼ 4Ne;0 · ðA0 þ A1Þ; (G3)

where

A0 ¼
Z r0

0
e4ger½12 F0ðrÞ�dr; A1 ¼ e4ger0

Z N

r0
½12 F0   ðrÞ�dr: (G4)

The variance follows from Equations G2 and 9 and takes the form

Var0
�
Tfix
	 ¼ �4Ne;0

	2 · hB0 þ B1 2 ðA0 þ A1Þ2
i
; (G5)

where

B0 ¼ 2
Z r0

0
e4gere

4ger 21
4ge

½12 F0ðrÞ�dr

B1 ¼ 2e4ger0
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4ge
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�
½12 F0ðrÞ�dr:

(G6)

We derive results for just the t dependence of E0[Tfix] and Var0(Tfix). The results obtained are restricted to large t, such that
r0 (given in Equation G1) . 2.

We make extensive use of Equation 4 of the main text.
With c1 and c2 constants with respect to t we can write

A0 ¼
Z 2

0
e4ger½12 F0ðrÞ�drþ

Z r0

2
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These lead to

E0
�
Tfix
�

4Ne;0
  ≃  c1 þ 3geeð4ge22Þr0

2ge 21
(G7)
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Assuming that t is sufficiently large that get � Ne,0, Equation G1 allows us to write e4ger0≃get   =  Ne;0. Using this result, and
the parameter p defined by p ¼ ð2ge21Þ=2ge [ ðge21=2Þ=ge, we find that the t dependence in Equations G7 and G8 takes
the form given in Equations 17 and 18 of the main text.

Appendix H: Derivation of an Inequality for Ey[Tfix]

In this Appendix we establish an inequality for Ey[Tfix] that applies when Ne(t) increases with t.
We write the condition that Ne(t) increases with t as

dNeðtÞ=dt .  0: (H1)

We note that because of Equations E4 and H1, the function h(r) is convex (d2h(r)/dr2 . 0). We can thus employ Jensen’s
inequality, which for f(r) convex reads E[f(R)] . f(E[R]) (Gradsteyn and Ryzhik 1980), and hence obtain Ey[h(R)]. h(Ey[R]).
Since Ey[Tfix] = Ey[h(R)] (using Equation 7 of the main text), we have

Ey
�
Tfix
�
.h
�
Ey½R�

	
: (H2)

We write this inequality in a different way that allows additional development. From Equation E4 we obtain
hðrÞ ¼ R r0 4NeðhðvÞÞdv and hence Equation H2 is equivalent to

Ey
�
Tfix
�
.

Z Ey ½R�

0
4NeðhðvÞÞdv: (H3)

Because of Equation H1, we have Ne(v).Ne(0) for v. 0 and using Equation E3 gives
r ¼ R hðrÞ0 ðdv=4NeðvÞÞ , 

R hðrÞ
0 ðdv=4Neð0ÞÞ; i.e., h(r). 4Ne(0)r. Using Equation H1 again then yields 4Ne(h(v)).

4Ne(4Ne(0)v), which can be used in Equation H3 to yield Ey½Tfix�.
R Ey ½R�
0 4Neð4Neð0ÞvÞdv. The change of variable

4Ne(0)v / v gives Ey½Tfix� .  ð1=4Neð0ÞÞ
R 4Neð0ÞEy ½R�
0 4NeðvÞdv, which is equivalent Equation 20 of the main text.
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