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ABSTRACT Migrations have played an important role in shaping the genetic diversity of human populations. Understanding genomic
data thus requires careful modeling of historical gene flow. Here we consider the effect of relatively recent population structure and
gene flow and interpret genomes of individuals that have ancestry from multiple source populations as mosaics of segments
originating from each population. This article describes general and tractable models for local ancestry patterns with a focus on the
length distribution of continuous ancestry tracts and the variance in total ancestry proportions among individuals. The models offer
improved agreement with Wright–Fisher simulation data when compared to the state-of-the art and can be used to infer time-
dependent migration rates from multiple populations. Considering HapMap African-American (ASW) data, we find that a model with
two distinct phases of “European” gene flow significantly improves the modeling of both tract lengths and ancestry variances.

DNA sequencing is an invaluable tool for understanding
demographic relationships between populations. Even

with a limited number of genetic markers, measured across
individuals and populations, it is often possible to estimate
relatedness between populations, ancestry proportions in
admixed populations, or sex-biased gene flow. The availabil-
ity of dense genotyping platforms and high-throughput se-
quencing technology has enabled refined analyses of genetic
diversity.

Because of recombination, different loci along an in-
dividual genome can reveal different aspects of its ancestry.
Consider a sample and its ancestral population at some time
T in the past, and suppose that we give ancestral individuals
subpopulation labels, defining source populations. These
labels are typically chosen to represent subgroups that have
increased genetic homogeneity due to cultural or geographic
reasons. Then a simple summary of the demographic trajec-
tory of a sampled allele is the source population from which
it originated. We say that an individual is “admixed” if
it draws ancestry from multiple source populations—thus
admixture is not an intrinsic property of individuals, but
depends on our choice of labels and time T. An example
of subpopulation labels often used to study human popula-
tions in the Americas are the European, Native American,

and West African populations prior to the advent of massive
intercontinental travel. Many routines have been proposed
to infer the source population along the genome of admixed
individuals (Ungerer et al. 1998; Tang et al. 2006; Falush
et al. 2003; Hoggart et al. 2004; Patterson et al. 2004;
Sankararaman et al. 2008; Bercovici and Geiger 2009; Price
et al. 2009). These typically proceed by locally matching an
admixed genome to panel populations chosen as proxies for
the source populations, revealing a mosaic of tracts of con-
tinuous ancestry (Figure 1). In this work we use PCAdmix
(Brisbin 2010), a heuristic approach for local ancestry in-
ference. PCAdmix first divides the genome in windows of
typical width of 10–50 kb. For each window, the probability
that the sample haplotype originates from any of the panel
populations is estimated on the basis of the position in PCA
space. Finally, PCAdmix uses these probabilities as emission
probabilities of a hidden Markov model and ancestry is in-
ferred via Viterbi decoding.

Local ancestry patterns have been used to identify disease
loci (see Seldin et al. 2011 and references therein) and to
search for regions experiencing selection (Tang et al. 2007;
Bhatia et al. 2011). They also provide hints about the history
of migration (Pool and Nielsen 2009). The purpose of this
article is to understand and model the observed ancestry
patterns on the basis of detailed demographic models, to
learn about human demography, and to empower selection
and association scans. In particular, we are interested in the
length distribution of the continuous ancestry tracts, and the
variation in ancestry proportions across chromosomes and
individuals.
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A dominant stochastic process leading to these patterns is
recombination, which tends to break down segments of
continuous ancestry in admixed individuals. As a result, the
length of continuous ancestry tracts tends to be shorter for
more ancient admixture. The tract-length distribution is
sensitive to details of recent migration (i.e., tens of gener-
ations) and is thus complementary to analysis based on the
joint site-frequency spectrum (Gutenkunst et al. 2009;
Gravel et al. 2011), which is more sensitive at time scales
of hundreds to thousands of generations.

Recently, Pool and Nielsen (2009) proposed a model in
which a target population receives migrants from a source
population, initially at a constant rate m2. Starting at a time
T in the past, the rate changes to m1. In this model, back
migrations are not allowed, recombinations within migrant
chromosomes are neglected, and tracts shorter than a cutoff
value are forgotten (since migration occurs over an infinite
period, this is necessary to avoid having a genome completely
replaced by migrants). Assuming that recombinations occur
according to a Poisson process, these approximations allow
for an analytical solution for the distribution of tract lengths,
which was used to infer demographic events in mice (Pool
and Nielsen 2009). This model is limited to admixture pro-
portions weak enough that recombinations between migrant
chromosomes are unlikely. A second limitation is that the
model assumes two epochs of constant migration rate, which
might or might not be the most appropriate for a given pop-
ulation. The special case m2 = 0 has been used to infer de-

mographic histories in humans for North African individuals
(Henn et al. 2012).

Here we propose a more general approach to predicting
the distribution of tract lengths that can accommodate both
time-dependent and strong migration. This approach builds
on that of Pool and Nielsen (2009) but introduces multiple
improvements. First, general time-dependent migrations can
be considered. Second, recombinations between tracts of the
same ancestry are not neglected, allowing for the modeling
of strong migration and the simultaneous study of tracts
of multiple ancestries. Third, chromosomal end effects are
modeled explicitly. Fourth, our model can be modified to
incorporate errors in tract assignments. As in the Pool and
Nielsen approach, we model recombination as a Poisson
process with a unit rate per morgan, and the recombination
map is taken to be identical across populations [a reasonable
approximation at the centimorgan scale (Wegmann et al.
2011)]. To perform demographic inference, we further re-
quire that local ancestry inference can be performed to high
accuracy using one of the methods mentioned above. Whether
this can be done depends on the degree of divergence of the
ancestral populations (or sources), the availability of data for
panel populations that are good proxies for the sources, and
the possibility of accurately phasing diploid genomes.

Admixture history also leaves a trace in the variance in
admixture proportions across individuals, as stochastic
mating and recombination tend to uniformize ancestry pro-
portions with time (Verdu and Rosenberg 2011). Generaliz-
ing the models of (Ewens and Spielman 1995; Verdu and
Rosenberg 2011) to include the effects of recombination in a
finite genome and drift, we show that after a discrete ad-
mixture event, the variance decays in time in three consec-
utive regimes, first exponentially as differences in individual
genealogies average out, then linearly as recombination creates
shorter tracts, and finally exponentially again as drift fixes local
ancestry along a chromosome. A simple approximate equation
captures all three regimes accurately. By contrast, variance in
continuous migration models is dominated by the first regime,
and the expressions from the model of Verdu and Rosenberg
(2011) are reasonably accurate (see Appendix 3).

In general, distinguishing the effects of population
structure and time-dependent patterns of gene flow is not
straightforward, and the inference problem is prone to
overfitting, as is the case, e.g., for inference based on the
site-frequency spectrum (Myers et al. 2008). However, our
analysis shows that tract lengths, and more generally ances-
try correlation patterns, can help resolve subtle differences
in patterns of historical gene flow. An implementation of the
proposed methods for tract length modeling, called tracts, is
available at http://tracts.googlecode.com.

Theory

Admixture models: definitions and global properties

We construct a model for the admixture of diploid individ-
uals that takes into account recombination, drift, migration,

Figure 1 Local ancestry across 22 autosomes for an African-American in-
dividual inferred by PCAdmix, a local ancestry inference software (Brisbin
2010) using HapMap European (CEU) and Yoruba (YRI) as source popula-
tions. The majority of the genome is inferred to be of African origin (blue),
but a significant fraction of the genome is inferred to be of European origin
(red). The purpose of this article is to model the distribution of ancestry
assignments in such admixed individuals.
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and finite chromosome length. Since a full coalescent treat-
ment of these effects is computationally prohibitive (Griffiths
and Marjoram 1996), we simplify the model to consider only
the demography of our samples up to the first migration
event, T generations ago. We label generations s 2 {0, 1,
2, . . ., T 2 1}, and the total fraction of the population m(s)
that is replaced by migrants in a generation s can be sub-
divided in contributions mp(s) from M migrant populations:
p 2 {1, . . ., M}. We treat the replacement fraction mp(t) as
deterministic, while the replaced individuals are selected at
random (see Figure 2). Generations follow a Wright–Fisher
model with random mating in a population with 2N genome
copies, each with K finite chromosomes of morgan length
{Li}i=1. . ., K. We consider two different variations of the
Wright–Fisher model with recombination.

The first variation (model 1) is meant to be the most
biologically motivated and will be used for all simulations.
Starting from a finite parental diploid population of size N,
we first replace m(s)N randomly selected individuals with
diploid migrants. Diploid offspring are generated by draw-
ing one gamete from each of two randomly selected diploid
parents. Gamete formation is a Markov path with transition
rate of one transition per morgan across the two parental
chromosomes (see Figure 2B).

Model 1 results in long-range, non-Markovian correla-
tions along the genome. This complicates the modeling
without necessarily having a large effect on most global
statistics. We therefore also consider a more tractable model
(model 2) in which gametes are drawn from the migrant
populations with probability m(s) and are otherwise gener-
ated by following a Markov path along all nonmigrant pa-
rental gametes (see Figure 2). The reason for singling out
new migrants is that it is possible to generate their gametes
as in the more realistic model 1, without sacrificing tracta-
bility. Model 2 may not capture all long-range correlations in
ancestry but it has the correct distribution of crossovers and

for small portions of the chromosomes is very similar to
model 1: the only difference is that each draw from the
parental gamete pool is independent in model 2, whereas
the fact that a diploid individual can have multiple off-
spring induces a small degree of correlation between
draws in model 1. Unless otherwise stated, we calculate
all population-wide statistics after the migration step, but
before gamete generation.

Model 2 is reminiscent of the Li and Stephens (2003)
copying model used in HAPMIX (Price et al. 2009), as it also
neglects back-and-forth recombinations due to multiple
crossovers during a single meiosis. The purpose of the mod-
els are different, in that the current Markov models attempt
to simulate gamete formation from parental chromosomes
and represent evolution in time, whereas the Li and Stephens
model attempts to simulate an unobserved haplotype on the
basis of haplotypes from the same generation. The Markov
ancestry transition model used in HAPMIX (and many other
local ancestry inference software) corresponds to a special
case of model 2 when each population contributes migrants
at a single generation.

Local ancestry patterns are sensitive to the three stochastic
processes of migration, recombination, and random genetic
drift. Where possible, we take all three effects into account.
By contrast, we do not model the effects of population
structure, of selection, and of population size fluctuations.
We derive our results under the assumption that local
ancestries can be determined exactly; the effects of mis-
identification are discussed throughout, together with
possible correction strategies.

Given a history of migrations, it is relatively straight-
forward to calculate the expected population averages for
ancestry proportions and tract lengths. If m(s) is the total
fraction of the population that is replaced by migrants, s
generations ago, with mi(s) from population i, the expected
ancestry from population i at a time t in the past is the sum

Figure 2 (A) Illustration of an admixture model starting at generation T 2 1, where the admixed population (purple) receiving mi(t) migrants from
diverged red (i ¼ 1) and blue (i ¼ 2) source populations at generation t. If these are statistically distinct enough, it is possible to infer the ancestry along
the admixed chromosomes. Independent of our statistical power to infer this detailed local ancestry, the mosaic pattern may leave distinct traces in
genome-wide statistics, such as global ancestry or linkage patterns. (B) Gamete formation in two versions of the Wright–Fisher model with recombi-
nation. In model 1, diploid individuals are generated by randomly selecting two parents and generating gametes by following a Markov paths along the
parental chromosomes. In model 2, gametes are generated by following a Markovian path across the parental allele pool. Both models have the same
distribution of crossover numbers and are equivalent for genomic regions small enough that multiple crossovers are unlikely. Model 1 is more
biologically realistic and is used in the simulations, whereas model 2 is more tractable and is used for inference and analytic derivations.
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over generations s of migrant contributions mi(s) weighted
by the survival probability

Qs21
s9¼tð12mðs9ÞÞ to time t. After

the migration step, the ancestry proportions are

aiðtÞ ¼
XN
s¼t

miðsÞ
Ys21

s9¼t

ð12mðs9ÞÞ:

We can follow a similar procedure to obtain the expected
density wij of ancestry switch points from population i to
population j per morgan, replacing the amount of new
migrants mi(s) by the density of new switch points, which
are proportional to the recombination rate (assumed constant
with unit rate in genetic units) and the expected fraction of
the genome hij(s) that is heterozygous with respect to ances-
tries i and j after generation s. In the gamete pool, we find

E
�
wijðtÞ

� ¼XN
s¼t

hijðsÞ
Ys2 1

s9¼t

ð12mðs9ÞÞ:

The ancestry heterozygocity hij can be evaluated using
a recursive equation (such as Equation A1), as in the case of
allelic heterozygocity. In the absence of drift, hij(s) =
(1 2 m(s))ai(s + 1)aj(s + 1). In the population (before
gamete generation), the sum over s starts at t + 1 rather
than t. The expected number of switch points per morgan at
time 0 is therefore

wij  [  E
�
wijð0Þ

� ¼XN
s¼1

hijðsÞ
Ys21

s9¼0

ð12mðs9ÞÞ:

To estimate the expected tract length E[xi(t = 0)] for
ancestry i on a chromosome of length L, we divide the
expected length covered by this ancestry, ai(0)*L, by the
expected number of tracts of this ancestry, which is
L
2

P
jwij þ aið0Þ since each tract must begin and end by an

ancestry switch or by the end of the chromosome. We thus find

E½xiðt ¼ 0Þ� ¼ 2aið0ÞL
L
P
j
wij þ 2aið0Þ

:

If the demographic model under consideration has a single
parameter, such as the timing of a single pulse of migration,
demographic inference can proceed from this single esti-
mate. However, the mean tract length may be largely de-
pendent on the number of very short tracts that are difficult
to detect; this statistic is therefore sensitive to false-positive
and false-negative ancestry switches. Here we are interested
in studying more detailed models of migration and their
impact on tract-length distribution.

Tract-length distribution

For illustration, we first consider a source population (Blue),
and a target population (Red), with a single, infinitely long
diploid chromosome. At generation t = T 2 1, a fraction m

of population Red is replaced by individuals from population
Blue. Consider the Markovian Wright–Fisher model dis-
cussed above (model 2). In this model, the position of the
closest recombination to either side of a point along an
infinite chromosome is exponentially distributed and there
is no memory of previously visited states along a chromo-
some. The chromosomes resulting from this admixture pro-
cess can therefore be modeled as a continuous-time Markov
model with a Red and a Blue state (Figure 3A), where each
recombination event corresponds to a Markov transition and
the continuous Markov “time” corresponds to the position
along the chromosome. The transition rate out of a state in
this model is proportional to the number of recombinations,
namely t 2 1 per morgan: since recombinations within first-
generation migrants do not induce ancestry changes, and we
suppose that we sequence somatic cells at generation 0, re-
combination can occur only during gamete formation at
generations 1, ..., t 2 1. If a recombination occurs, the prob-
ability of transitioning ism to the Red state and is (12m) to
the Blue state.

We are interested in the length distribution of continuous
segments in the Blue or Red ancestry, independent of the
number of within-ancestry transitions, which are difficult to
detect. We avoid these complications by setting the self-
transition rates to zero: this does not affect the trajectories,
but now all transitions change the ancestry. We therefore
have the model shown in Figure 3A, and the distribution of
tract lengths fi(x) is equal to the exponential distribution of
distance between Markov transitions:

fRðxÞ ¼ mðt21Þe2mðt21Þx
fBðxÞ ¼ ð12mÞðt2 1Þe2ð12mÞðt21Þx:

(1)

Note that the distribution is ill-defined for t = 1, since this
situation produces tracts that are infinite in the infinite-
chromosome limit.

Multiple populations, discrete migration: As long as the
migration from each population is limited to a single gener-
ation and the target population is infinitely large, model 2

Figure 3 (A) A two-state Markov model for ancestry along a chromosome
for a single pulse of migration at time t1. Tract-length distributions are
exponential. (B) A three-population Markov model with a pulse of blue and
red ancestry at time t1 followed by a pulse of migration from the yellow
population at time t2. All tract-length distributions are exponential. (C) A
two-population model in which the blue population contributes migrants at
generation t1 and t2. The distribution of blue ancestry tracts is no longer
exponential, as we cannot detect transitions between blue states.
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produces Markovian trajectories along ancestry states. To
see this, consider a point x along the genome in a segment
from ancestry p that arrived t generations ago. As before, the
distance to the first recombination event downstream from x
is exponentially distributed (with rate t2 1), and the timing
t of the recombination is uniform on (1, t 2 1). Moreover,
since gametes in model 2 are formed by following a Markov
path in the parental gamete pool, the probability of observ-
ing ancestry p9 downstream from the recombination is pro-
portional to the ancestry proportions in the parental pool at
the time t of the recombination. Thus we have the discrete
transition rate

Mðp/p9Þ ¼
Xt21

t¼1

Pðp9j tÞPðt j pÞ ¼
Xt21

t¼1

ap9ðt þ 1Þ
t2 1

;

which depends only on the time of arrival t of ancestry p. We
note that the Markov property over ancestry states would be
lost in model 1, because the state downstream of the recom-
bination is correlated with upstream states. Drift reduces the
transition rates and also breaks the Markov property: miti-
gation strategies are discussed in Appendix 1. The Markov
property over ancestry states is also lost if a population con-
tributes migrants over many generations, and our next step
is to restore the Markov property in this situation by extend-
ing the state space.

General incoming migration in the absence of drift: We
now allow for general incoming migration histories that start
at a time T 2 1 in the past. For each generation t 2 {0, . . .,
T 2 1}, a fraction mp(t) of the individuals from the target
populations are replaced by individuals from the source pop-
ulation p, with mðtÞ ¼PpmpðtÞ#1. We further impose that
the first generation is composed of nonadmixed individuals:m
(T 2 1) = 1. Since the ancestry switches are no longer Mar-
kovian in the general migration case, it is convenient to con-
sider states defined by both ancestry p and time of arrival t.
Intuitively, we may imagine that we have a large number of
migrant populations (p, t), each contributing migrants over
a single generation (see Figure 3, B and C). Here the Markov
property is maintained, but ancestry states can now corre-
spond to multiple Markov states.

We first calculate the transition rates between states
(p, t) as we did for the discrete migration case. First, the
probability of encountering state (p, t) downstream from
a recombination that occurred at time t is

Pðp; tjtÞ ¼ Qðt2 ðt þ 1ÞÞmpðtÞ
Yt21

t9¼tþ1

ð12mðt9ÞÞ;

where

QðsÞ ¼
�
1 s$ 0
0 otherwise

is the Heaviside function.

As before, given a point x in state (p, t), the position of
the next downstream recombination is exponentially distrib-
uted with rate t 2 1, and the time of this recombination is
uniformally distributed on (1, t 2 1). In the two Wright–
Fisher models considered here, states on either side of the
recombination are uncorrelated, and we can write the dis-
crete transition probabilities

Rðp; t/p9; t9Þ ¼
Xminðt;t9Þ2 1

t¼1

Pðp9; t9jtÞ
ðt2 1Þ ;

which is independent of p. The continuous transition rate is
obtained by multiplying the discrete transition rate by the
continuous overall transition rate t 2 1:

Qðp; t/p9; t9Þ ¼ mp9ðt9Þ
Xminðt;t9Þ2 1

t¼1

Yt921
s¼tþ1

ð12mðsÞÞ: (2)

These transition probabilities are valid for both Wright–
Fisher models in the infinite-population size limit. Since
model 2 is Markovian, these transition rates are sufficient
to fully specify the ancestry state model.

Given the transition matrix Q, we can use standard tools
for the study of Markov chains to efficiently estimate the
length distribution of excursions on Markov states correspond-
ing to a single ancestry. In Appendix 2, we first derive results
under the approximation that chromosomes are infinitely
long. We account for finite chromosomes by studying the
distribution of tract lengths in finite windows, randomly cho-
sen along the infinite chromosomes. We thus obtain a distri-
bution of tracts fp(x) for each population p. To compare these
predictions to observed data, a computationally efficient strat-
egy is to bin data by tract length and treat the observed counts
in each bin as an independent Poisson variable with mean
obtained by integrating fp(x) over the bin range.

Short ancestry tracts are likely to have both elevated false-
positive and false-negative rates, and inference based on such
tracts is likely to be biased, whereas longer tracts can be
detected with increased confidence. Following Pool and
Nielsen (2009), we therefore perform inferences using only
tracts longer than a cutoff value C. We should emphasize that
a large number of uniformly distributed spurious short tracts
may still affect the distribution of longer tracts, making non-
exponential distributions look more exponential. Therefore,
significant assignment error may cause an underestimation of
the amount of continuous migration. By contrast, drift would
tend to reduce the transition rates and cause underestimates
of the time since admixture (see Appendix 1).

Variance among individuals

We now consider the variance across individuals in total
migrant ancestry Xp from population p, measured as a pro-
portion of the morgan length of the genome whose origin is
from p. The variance in ancestry can be separated in two
components, which we label the genealogy variance and
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assortment variance. The genealogy variance is due to a dif-
ferent number of migrant ancestors; if a randomly chosen
fraction m of the population is replaced by migrants at each
generation, a fraction m2 of individuals will have two mi-
grant parents, 2m(12 m) will have one migrant parent, and
(1 2 m)2 will have none. The assortment variance accounts
for the fact that two individuals with the same genealogy
can vary in their genetic ancestry proportions, since not all
ancestors contribute the same amount of genetic material to
an individual. Recombination and the independent assort-
ment of chromosomes tend to reduce such variance.

We can use the law of total variance, conditioning over
the genealogies g, to isolate these two contributions to the
variance Var(Xp):

VarðXpÞ ¼ Varg½EðXpj gÞ� þ Eg½VarðXpj gÞ�:

Here E[Xp|g] is the fraction of migrant ancestry from pop-
ulation p, based on the genealogy g. Alternatively, this can
be thought of as the infinite-sites expectation for the an-
cestry proportions. The first term therefore represents the
genealogy variance in ancestry, whereas the second term
represents the assortment variance. Because of random chro-
mosome assortment, the variance in ancestry among chro-
mosomes is informative of the assortment variance. We
discuss in Appendix 3 how, in the absence of drift, the var-
iance can thus be broken down in these two components
without requiring a demographic model. We discuss below
how to obtain expectations for each components given a spe-
cific demographic model.

Genealogy variance: To ease calculations of the genealogy
variance, we neglect correlations due to overlap between in-
dividual genealogies and describe each individual as being
sampled from an independent genealogy (in a randomly
mating population, this amounts to neglecting drift). In this
model, the genealogy variance Varg(E[Xp|g]) is easily calcu-
lated. Considering the genealogy g of a nonmigrant sample up
to T generations ago (we label the current generation 0, and
the generation with the first migrants T2 1), we first note that

E½Xpj g� ¼ 1
2T21

X2T21

i¼1

z
p

i ;

where zpi is 1 if there has been a migrant on the lineage
leading from the root to leaf i and 0 otherwise. Results with
continuous admixture since time immemorial can be ob-
tained by taking a limit T/N. In such cases, the approx-
imation of independent pedigrees eventually breaks down,
but the resulting expression might remain approximately
correct if the majority of present-day genomes originate
from recent migrants.

The expectation over genealogies g and assortments
Eg[E[X|g]] is then ap(0). The calculation of Eg[E[X|g]2]
is also straightforward if we can calculate the expectation
Eg½zpi zpj �. For zpi zpj to be nonzero, we must have had a migrant

either on the common branch leading to the two leafs i and
j, or one migrant on each of the separate branches,

Eg

h
zpi z

p
j

i
¼ PT2 12 dij

s¼0
mpðsÞ

Qs21

s9¼0
ð12mðs9ÞÞ þ a2

pðT2 dijÞ
QT2 12 dij

s¼0
ð12mðsÞÞ

[  eðdijÞ;
(3)

with dij half the tree distance between leafs i and j. Then we
can write the sum over half distances, weighted by the num-
ber of leaf pairs at each distance:

Eg

h
E½Xj g�2

i
¼
XT21

d¼1

2d2TeðdÞ þ að0Þ=2T21: (4)

Since Eg[ E[X|g]] = a(0), we have

VargðE½Xj g�Þ ¼
XT21

d¼1

2d2TeðdÞ þ að0Þ
�

1
2T21 2að0Þ

�
:

In the two-population pulse model, with mp=1(t) = mdt,T21,
we have the expected VargðE½Xj g�Þ ¼ mð12mÞ=2T21; with
a rapid exponential decay of the variance as a function of T.
By contrast, if we have continuous migration of population
p in a target population, with, mp

i ¼ mQðT2i21Þ, the vari-
ance reads

VargðE½Xj g�Þ ¼
22ðT21Þmð12mÞT

�
½2ð12mÞ�T 2 1

�
12 2m

; (5)

with a more complex dependence of the variance on T. Fi-
nally, in the case in which two populations provide respec-
tively pm and (1 2 p)m migrants to a target population at
each generation since the beginning of time, we have the
simple expression

VargðE½Xj g�Þ ¼  
2pð12 pÞm

1þm
: (6)

This expression supposes that the variance is calculated after
migration occurs. If variance is calculated before replace-
ment by migrants, the factor of 2 disappears, and we recover
Equation 47 in Verdu and Rosenberg (2011).

Assortment variance: To study the global ancestry variance
due to assortment, a natural starting point is to consider the
ancestry variance at a particular point in the genome. In
a randomly mating population with two ancestries, the
variance in ancestry at a site is h/2, where h is the ancestry
heterozygocity at that site. The ancestry heterozygocity can
be calculated using the same recursive strategy commonly
used for allelic heterozygocity (Equation A1). The case of
three or more ancestries can be reduced to two ancestries
by singling out one ancestry and pooling the others. As a
specific example, in the case of a pulse migration with mi-
gration rates m and 12m at generation T2 1, the hetero-
zygocity at generation 0 is
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h0 ¼
�
12

1
2N

�T21

2mð12mÞ: (7)

We wish to combine these local variances into an expression
for the genome-wide variance. In Appendix 3 we provide
a derivation of the expected ancestry variance using Markov
models. Here, to obtain a simple approximation for the
migration pulse model, we imagine that the length of the
genome is divided in n tracts by uniformly drawing n 2 1
separators. We suppose that the ancestry is chosen indepen-
dently on each segment, with variance h0/2. Then the var-
iance in ancestry in the large-n limit is

Eg½VarðXpj gÞ�  ≃  h0
n
:

The effect of drift is therefore captured by the decay of
ancestry heterozygocity with time, whereas the effect of
recombination is captured by the number of independent
tracts n, which is proportional to the number of recombina-
tions. In the case of a pulse of migration T generations ago
without drift, we write n = 1 + (T 2 2)Li for a single hap-
loid chromosome (the 1 accounts for the chromosome edge
and can be neglected for large TLi), and 2K + 2(T 2 2)L for
a diploid genome with K chromosome pairs of total length
L ¼PiLi. Thus the total variance reads

VarðXpÞ ¼ mð12mÞ
2T21 þ 2mð12mÞð121=2NÞT21

2K þ 2ðT2 2ÞL : (8)

Even though it neglects the effect of drift on the number of
independent tracts n, this expression provides excellent quan-
titative agreement with simulations over multiple regimes
(Figure 6). If we model the variation over time of the pop-
ulation ancestry proportion as a randomwalk with decreasing
step size VarðXpÞ=N; the variation will be dominated by the
genealogy variance, which after an infinite time contributes
a finite variance of s2 ¼ ðmð12mÞÞ=N. Thus for an initial
population of 100 individuals divided equally between two
ancestries, we can expect the final ancestry proportions to be
0.5 6 2s = 0.5 6 0.1, a relatively modest uncertainty given
the small population size. Assortment variance for continuous
migration models is discussed in Appendix 3.

Comparison with Simulation and Experimental Data

In this section we first present results of Wright–Fisher sim-
ulations, comparing our model predictions to the simulation
results. We then consider the HapMap African-American
panel, for which we performed local ancestry inference
and analyzed the tract length distribution.

Tract lengths

We performed a 30-generation diploid Wright–Fisher simu-
lation (using model 1; see Figure 2) of 10000 chromosomes
of length 1 M with continuous gene flow from population 1
into a population initially composed of individuals from pop-

ulation 2. We considered three different migration intensi-
ties, namely m1 = 0.001, 0.03, and 0.05 per generation. We
kept track of the ancestry of each segment during the sim-
ulation, so that the continuous ancestry tracts could easily
be tabulated. In Figure 4, we compare the observed histo-
grams of tract lengths for population 1 (dots) to predictions
from Equation 10 in Pool and Nielsen (2009) (dashed lines)
and to predictions from the Markovian Wright–Fisher model
(model 2 on Figure 2), using rates from Equation 2 and
implemented as described in Appendix 2 to account for fi-
nite chromosome length (solid lines). As expected, the pre-
dictions of the two models are similar when migration rates
are low and differ substantially when we depart from the
weak migration assumptions of the Pool and Nielsen model
(see Figure 4). The Markov model predictions are in good
agreement with the simulations over the range of models
considered, including when the migrant population becomes
the majority population.

We now consider the HapMap African-American panel
(ASW) (International HapMap 3 Consortium 2010) and
focus on 20 unrelated samples that were trio phased, to
reduce biases due to phasing errors. We obtained local
ancestry inferences using PCAdmix (Brisbin 2010), using
132 unrelated HapMap samples from Europe (CEU) and
204 from West Africa (YRI) as reference panels. We used
windows of size 0.3 cM for the HMM and based our infer-
ences on the number of tracts longer than 10 cM. We pooled
tracts in 50 bins according to tract length (chromosomes
with no ancestry switches were in a separate bin inde-
pendent of the chromosome length) and calculated model
likelihood assuming that counts in each bin are Poisson dis-
tributed with mean given by the model predictions for this
bin.

Figure 4 Comparison of the Markov model, the Pool and Nielsen (2009)
prediction, and Wright–Fisher simulation for migrant tract length distri-
butions. Each dot represents the normalized number of ancestry tracts
whose length is contained in one of 20 bins. The simulation followed
10000 chromosomes over 30 generations, with constant migration rates
m ¼ 0.001, 0.03, 0.05 giving rise to final ancestry fractions of a ¼ 0.03,
0.6, 0.8. Since recombination between migrant tracts were neglected in
(Pool and Nielsen 2009), the results depart significantly from simulation at
high migration, whereas the Markov model is accurate in the three
regimes.
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We compared inferences on the basis of two different
models; (a) a “pulse” model, with a single migration event,
and (b) a two-pulse model, with a subsequent migration of
Europeans (Figure 5). Model b has two additional parame-
ters, corresponding to time and proportion of the subse-
quent European migration. A likelihood-ratio test shows
that ln(Lb/La) ≃ 7. To establish the significance of the extra
two parameters, we simulated 1000 random tract-length
distributions from the maximum-likelihood model a, and
obtained maximum-likelihood estimates for both models.
The probability of obtaining such a likelihood ratio under
model a is P = 0.002.

Ancestry proportions and variance

Simulations of 80 individuals, each with 22 autosomal
chromosomes of realistic lengths (namely 2.78, 2.63, 2.24,
2.13, 2.04, 1.93, 1.87, 1.70, 1.68, 1.79, 1.59, 1.73, 1.27,
1.16, 1.26, 1.35, 1.30, 1.19, 1.08, 1.08, 0.62, 0.73 M, for
chromosomes 1–22, respectively) and 30% of initial admix-
ture proportion, illustrate many of the effects predicted in
variance models. The global ancestry proportions and frac-
tion of sites heterozygous for ancestry fluctuate considerably
over the first few generations, but the fluctuations decrease
in time as ancestry proportions approach a fixed value and
ancestry heterozygocity decays following Equation 7.

Figure 6 shows that the variance in ancestry across individ-
uals follows three different regimes; first, the variance is dom-
inated by the genealogy variance, with a rapid exponential
decay. After about 10 generations, the assortment variance
starts to dominate, and decays polynomially due to recombi-
nation until drift becomes important, where an exponential
decay is resumed, although at a much reduced rate.

Equation 8 captures these three regimes in quantitative
detail—the average variance over 50 independent simula-

tions follows the model prediction closely. The continuous
migration case, in which genealogy variance tends to dom-
inate, is discussed in Appendix 3.

Comparing the ancestry variance from the African-American
data to those predicted by the demographic models, we
find that the pulse model predicts a genealogy variance
of 0.0005, whereas the variance in the model with two
distinct pulses is 0.002. The total variance in the African-
American sample is 0.0047, of which we infer that 0.0041
is due to genealogy variance (using the method described in
Appendix 3). Thus the model with two pulses of migration is
again more realistic than the single pulse model; the fact
that it still underestimates the variance can be due to a com-
bination of factors that have not been modeled: our demo-
graphic model may be underestimating low level, very recent
migration because of the parameterization as two discrete
pulses of migration, and both population structure and er-
rors in ancestry assignment may be adding to the observed
variance.

Discussion

Limitations and possible improvements

A limitation of all demographic inference methods is that the
model space is very large, and the information available to
learn about the models is limited. Thus we need to coarsely
parameterize model space at the risk of introducing biases.
This is similar to the modeling of allele frequency distri-
butions: even though the vast majority of scenarios are
inconsistent with the data, the number of models that are
consistent with the data remains large, and model fitting
often requires simplifying assumptions. When applied to
HapMap trio-phased African-American data (ASW), inferred
parameters were reasonable and we found evidence for

Figure 5 Distribution of continuous ancestry tract lengths in 20 HapMap African-American (ASW) trio individuals [as inferred by PCAdmix (Brisbin
2010), a local ancestry inference software], compared with predictions from a single-pulse migration model (top) and a model with subsequent
European migration (bottom). Each dot represents the number of continuous ancestry tracts whose length is contained in one of 50 bins. The shaded
area marks the 68.3% confidence interval based on the model. The second model, in which over 30% of European origin in the ASW samples is quite
recent, provides a sufficiently better fit to justify the extra parameters (likelihood-ratio test, P = 0.002).
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migration patterns that depart from the migration pulse with
subsequent random mating, which is at the heart of many
approaches. However, distinguishing between continuous mi-
gration and nonrandom mating remains challenging.

The demographic inference strategy we presented re-
quires accurate local ancestry assignments. Since longer
tracts contain more ancestry information, we expect the
most significant types of misassignment to be short, spurious
ancestry tracts and the failure to identify real, short ancestry
tracts. In the HapMap ASW data used here, the source
populations are diverged enough that assignments are
relatively reliable down to relatively short tracts, and indeed
we find that the number of tracts predicted by the model is
in good agreement with the data for the shortest tracts, even
though these were not used in the fitting procedure. If the
expected number of misidentified short tracts is large
enough that it will strongly affect the distribution of longer
tracts (by introducing spurious breaks in longer tracts), the
Markov models should be modified to include misidentifi-
cation states, and transition rates could be estimated via
simulated admixed individuals.

Alternatively, it is possible to circumvent the local
ancestry inference step altogether by focusing on a derived
statistic, such as the decay of correlation in ancestry in-
formative markers with genetic distance. Such a method
was proposed in Reich et al. (2009), for the case of pairwise
ancestry correlations in a pulse migration model. Even
though such an approach avoids possible biases due to local
ancestry assignment, pairwise ancestry correlations become
noisy as distance is increased and are thus less sensitive to
continuous gene flow patterns. The Markov models pre-
sented here provide a natural framework to generalize link-
age-based models for more general admixture scenarios, as

arbitrary order linkage statistics can be derived in the Markov
framework. Furthermore, HMM approaches could be devel-
oped to model the complete mosaic pattern without the
need to focus on summary statistics such as the tract-length
distributions and ancestry variances. Even though such ap-
proaches would be more computationally intensive, they
may increase the accuracy of the inference, especially when
assignment errors are important.

Conclusion

Overall, we found that the proposed models accurately
describe the distribution of ancestry tract lengths and
variances when compared to Wright–Fisher simulations.
The models we used allow for general migration histories,
yet are tractable and can be used for inferring demographic
parameters in real data. They are therefore useful to im-
prove our understanding of the consequences of gene flow
and our ability to infer demography in populations with
complex histories. Such populations have often been under-
represented in medical genetic studies, in part because of
complications in the modeling of genetic heterogeneity. As
medical genetics sampling efforts strive to reduce this dis-
parity, detailed models for genetic diversity will be increas-
ingly important to make the most out of the resulting data.
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Appendix 1: The Effect of Drift
on Ancestry Transitions

Drift increases the probability that recombinations occur
between segments of the same ancestry. In the infinite-time
limit, ancestry will be fixed at every site, no more ancestry
switches are created, and the tract-length distribution is
constant in time. In the presence of drift, the ancestry
switches are no longer Markovian; if a recombination occurs
between two IBD segments, it increases the posterior
probability that the next recombination will also be between
IBD segments. However, it is likely that a Markovian
approximation will remain accurate for moderate drift if
we take into account the reduced probability of ancestry-
switching recombinations.

We first wish to obtain the fraction of recombinations
that occur within segments (p, t), of ancestry p having mi-
grated at generation t, as these recombinations do not in-
duce ancestry switches and will be most affected by drift. In
other words, we want to find the fraction of sites that are
homozygous for the ancestry (p, t), and contrast this to the
case with no drift. For this purpose, we consider all other
ancestries as a single allele, and in the first step we compute
the total homozygocity of nonmigrants in this system s gen-
erations ago: f s

p ;t
. We write the usual recursive relation over

generations, noting that a homozygous state in a Wright–
Fisher model can be obtained in one of four parental situa-

tions: drawing the same nonmigrant parent twice, drawing
two nonmigrant parents with the same ancestry, drawing
one last-generation migrant and a nonmigrant with the
same ancestry, and finally drawing two last-generation
migrants:

f sp;t ¼
�

1
2Nð12mðsþ 1ÞÞ þ

�
12

1
2Nð12mðsþ 1ÞÞ

�
f sþ1
p;t

�
ð12mðsþ 1ÞÞ2

þmðsþ 1Þð12mðsþ 1ÞÞ	12ap;tðsþ 2Þ
þm2ðsþ 1Þ:
(A1)

This recursion can be initiated with the homozygocity one
generation after t, namely f t21

p;t ¼ mpðtÞ2 þ ð12mpðtÞ2Þ: Fi-
nally, to get the fraction cp,t of nonmigrant sites that are
homozygous for the p, t ancestry at generation s, we write

2ap;tðsþ 1Þ ¼ 2cp;tðsÞ þ 12 f s
p ;t

(A2)

and solve for cp, t

cp;tðsÞ ¼
f sp;t 2 1

2
þ ap;tðsþ 1Þ; (A3)

which reduces to a2
p;tðsþ 1Þ in the driftless limit.

In the driftless case, the probability of the state to the
right of a recombination depended only on the time of the
recombination. Due to the possibility of recombining within
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segments identical-by-descent, this is no longer the case
when drift is present. However, consider a given point x in
state (p, t) along the genome. The distribution of the dis-
tance to the first recombination encountered upstream (or
downstream) from x is unaffected by drift. Thus the relation-
ship between transition rates Q and discrete transition prob-
abilities R is maintained: Q(t, p / t9, p9) = (t 2 1)R(t, p /
t9, p9) for (t, p) 6¼ (t9, p9). If we indicate the state to the left
or right of a recombination by a left- and right-pointing
arrow, respectively, we write

Rðt; p/t9; p9Þ [  Pððt9; p9Þ/jðt; pÞ)Þ

¼ Pminðt;t9Þ21

t¼1

Pððt9; p9Þ/
��t; ðt; pÞ)Þ

t21

¼
Xminðt;t9Þ21

t¼1

Pððt; pÞ); ðt9; p9Þ/
��tÞ

ðt21ÞPððt; pÞ)Þ : (A4)

We can then write the rate matrix as

Qðt; p/t9; p9Þ ¼
Xminðt;t9Þ21

t¼1

cp;t;p9;t9ðtÞ
2ap;tðt þ 1Þ; (A5)

where cp,t,p9,t9 is the proportion of nonmigrant (diploid) sites
with joint ancestry (p, t) and (p9, t9), which can be obtained
using a recursive equation, as in Equation A3. In the driftless
case, this reduces to

Qðt; p/t9; p9Þ ¼
Xminðt;t9Þ21

t¼1

ap9;t9ðt þ 1Þ;

as obtained in Equation 2.
A case of particular interest is the pulse migration, with

proportions m and 1 2 m for populations 1 and 2, respec-
tively. We then get a1(t) = m, and

ap;t;p9;t9ðtÞ ¼ 2mð12mÞ
�
12

1
2N

�T212t

:

We can therefore calculate the transition probabilities, which
are still proportional to the migration rates, but now exhibit
a more complex time dependence:

Qði/j 6¼ iÞ ¼ mjð2N2 1Þ
�
12

�
12

1
2N

�T22�
:

The limit N/N yields the driftless case

Qði/j 6¼ iÞ ¼ mjðT22Þ;

and the limit T/N reveals a linear dependence of the tran-
sition rate on the population size:

Qði/j 6¼ iÞ ¼ mjð2N2 1Þ:

The infinite-time tract lengths are thus inversely propor-
tional to the effective population size.

Appendix 2: Numerical Estimation of Tract Length
Distribution

In this section we describe how to obtain the expected
distribution of tract lengths, given a set of Markov transition
rates. A straightforward numerical solution strategy is to
uniformize the transition matrix (Stewart 1994). Uniform-
ization uses the fact that self-transition probabilities can be
adjusted without affecting the trajectory statistics and in
such a way that the total transition rate from each state is
equal to the rate of the state with the highest transition rate,
Q0. Once all states have the same outgoing rate Q0, the
problem can be decomposed in two steps: a discrete calcu-
lation of the number of transitions in a given excursion and
a calculation of the trajectory lengths given the number of
transitions.

In the first step, we establish the distribution {bn}n=1, . . ., N

of the number of steps spent in tracts of a given ancestry p,
which is a standard discrete Markov excursion problem. In
principle, the number of steps can be arbitrarily large, but the
probability of very long tracts decays rapidly, and after a cer-
tain number of steps the expected length of the excursion is
more than the chromosome length. We therefore calculate
{bn}n=1,. . .,L up to a cutoff L, such that

PL
i¼1bi ≃ 1 (we usually

also choose L such that LQ0 . L, the length of a chromo-
some). To ensure a proper probability distribution, we then
set bLþ1 ¼ 12

PL
i¼1bi. There are many ways to obtain the bn.

For our purposes, we have found it convenient to evolve the
state vector by repeated multiplication with a transition ma-
trix modified to have a single, absorbing state corresponding
to the non-p ancestries and recording the amount of absorbed
probability per multiplication.

The second step is straightforward since the length of the
trajectories with k steps follows the Erlang distribution

Ek;Q0
ðxÞ ¼ Qk

0 x
k21e2Q0x

ðk2 1Þ! ;

leading to the following expression for the tract-length
distribution:

fðxÞ  ≃
XLþ1

k¼1

bkEk;Q0
ðxÞ: (A6)

Ancestry tract-length distributions obtained in the infin-
ite-chromosome limit may not be appropriate for finite
genomes, particularly if many tracts have a length compa-
rable to the chromosome length. For example, predicted
tracts may be longer than the full chromosome length L, and
these will not be observed. To model the tract-length distri-
bution on a finite chromosome, we consider a general tract
length distribution f(x) on an infinite chromosome and ask
for the distribution of tract lengths observed in a given win-
dow of length L. To this end, we first calculate the proba-
bility that the intersection of a tract of length x0 and
a window of length L has length x. The probability P(I) that
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a tract of length x0 intersects the window of length L is
proportional to x0 + L. Given I, and assuming that x0 , L,
the probability that the intersection is of length x is

Pðxjx0 # L; IÞ¼ 2
x0 þ L

Qðx0 2 xÞ þ
�
12

2x0
x0 þ L

�
dðx2 x0Þ;

(A7)

with Q the Heaviside function and d Dirac’s delta function.
The result for x0 . L can be obtained by the permutation

x0 4 L, so that

Pðxjx0 $ L; IÞ ¼ 2
x0 þ L

Qðh2 xÞ þ
�
12

2h
x0 þ L

�
dðx2hÞ

(A8)

with h = min(x0, L). This yields

Pðxjx0Þ} Pðxjx0; IÞ*ðLþ x0Þ: (A9)

As a result, we can write the expected new tract distribution,
ranging from 0 to L, as

f9ðxÞ} 2
RN
x dx0fðx0Þ þ ðL2 xÞfðxÞ

þ dðL2 xÞ RNL ðx0 2 LÞfðx0Þdx0: (A10)

The first term corresponds to the tracts that contact the
edges of the window, the second term describes tracts that
are strictly included in the window, whereas the third term
describes all tracts that span the full window. Note that the
“edge” tracts therefore generally have a different length dis-
tribution compared to the “inner” tracts and that as L goes to
infinity, the second term dominates and is proportional to
f(x).

The normalizing factor is

Z ¼ Lþ
Z N

0
xfðxÞdx; (A11)

if all tracts are taken into account, and

Z,L ¼ L
�
22

Z L

0
fðxÞdx

�
þ
Z L

0
xfðxÞdx; (A12)

if only tracts with length x, L are considered. Finally, if only
tracts of length .C are considered, we have

ZC ¼ ðL22CÞ
Z N

C
fðxÞ þ

Z N

C
xfðxÞ

and

Z,L
C ¼ ðL2 2CÞ

Z N

C
fðxÞ þ L

Z N

L
fðxÞdx þ

Z L

C
xfðxÞ:

We now apply these results to the tract-length distributions
from Equation A6. First, we note the Erlang distribution is
related to the generalized incomplete gamma function by

Z x2

x1
dx9Ek;Tðx9Þ ¼  

GðTx1;Tx2; kÞ
ðk2 1Þ! ;

Z x2

x1
dx9x9Ek;Tðx9Þ ¼  

GðTx1;Tx2; 1þ kÞ
Tðk21Þ! :

(A13)

This way, using our series expansion (A6), everything can be
calculated in terms of gamma functions. For example,

Z ¼ Lþ
XLþ1

k¼1

bkk=T

and

ZC ¼ Z2 2C þ ð2C2 LÞ
XLþ1

k¼1

bk
Gð0;TC; kÞ
ðk21Þ! 2

XLþ1

k¼1

bk
Gð0;TC; kþ 1Þ

Tðk21Þ! :

We can thus write separately the probabilities of having
inside, edge, or full tracts of various lengths:

fiðxÞ ¼
ðL2 xÞ

Z

XLþ1

k¼1

bkEk;TðxÞ

feðxÞ ¼
2
Z

XLþ1

k¼1

bk
GðTx;N; kÞ
ðk21Þ!

ff ðxÞ ¼
dðL2 xÞ

Z

·
PLþ1

k¼1
bk

LGðTL;N; kÞ þ GðTL;N; kþ 1Þ
ðk2 1Þ! :

(A14)

Appendix 3: Ancestry Variance in the Absence
of Drift

Ancestry variance under a Markov model of ancestry

We consider in this section the assortment variance, in the
absence of drift, where ancestry in two individuals is
modeled as independent realizations of a two-state Markov
process. Let the Markov states representing ancestry be
labeled by k= 1, 2 with rates q1 and q2 out of states 1 and 2,
respectively. The generalization to multistate Markov pro-
cesses is discussed below. We first consider a single chromo-
some of length L and are interested in the variance in X, the
length of this chromosome covered in state k = 1. We have
X ¼ R L0 dxckðxÞ, with ck(x) the indicator function of state k
at position x along the genome. Changing the order of the
expectation and the integrals, we have

E
�
X2
�
2E½X�2¼

Z L

0

Z L

0
dxdyE½ckðxÞckðyÞ�

2E½ckðxÞ�E½ckðyÞ�:
(A15)

All these expectations are independent of the position along
the chromosome. We therefore have
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E
�
X2�2E½X�2¼

Z L

0

Z L

0
dxdyakðPðyjxÞ2akÞ; (A16)

with ak = q12k/(q1 + q2) and Pk(y|x) is the probability that y
is in ancestry k given that x is in ancestry k. In a Markov pro-
cess, PðyjxÞ ¼ ð12akÞe2ðq2þq1Þjx2yj þ ak: The integral yields

E
�
X2�2E½X�2

L2
¼ 2akð12akÞ

ðq1 þ q2ÞL

 
12

12 e2ðq1þq2ÞL

ðq1 þ q2ÞL

!
:

In the absence of drift, q1 + q2 = T 2 2, and in the limit
(q1 + q2)L � 0, we recover our estimate

E
�
X2
�
2E½X�2
L2

≃
2apð12apÞ
ðT2 2ÞL :

Assortment variance for nonconstant migration

The generalization to arbitrary one-way migrations is straight-
forward, in the absence of drift. We evaluate Equation A16 by
expanding on arrival times s for ancestry p:

E
�
X2�2E½X�2¼

Z L

0

Z L

0
dxdy

�X
s

P
	
yp
��xðp;sÞ
ap;s2apap

�
:

(A17)

The probability that y is in the ancestry p, given that x is in
state (p, s), can be written as Pðypjxðp;sÞÞ ¼

P
i;na

s
i e

kiryinrnp,
where r is the distance between x and y in morgans, n

represents a Markov state (p9, s9), rnp is the indicator that
p9 = p, and (ki, yin) are the eigenvalues and eigenvectors
of the transition matrix Qnn9. To obtain the asi , we setP

ia
s
iyin ¼ dn;ðp;sÞ. For computational efficiency, we can first

perform the sum over s in Equation A17 and solve only once
for ai ¼

P
sa

s
iðap;s=apÞ. Assuming that the Markov chain has

a unique stationary distribution (which is the case if the
number of generations is finite and last-generation migrants
are not allowed), there is a unique i0 with ki0 ¼ 0. The
corresponding term cancels out in (A17), so that we can
finally write

E
�
X2
�
2E½X�2¼ ap

P
i6¼i0;s

aiyisrsp

Z L

0

Z L

0
dxdyekir;

¼ ap
P

i6¼i0;s
aiyisrsp

	
21þ eLki 2 Lki



k2i

:

(A18)

Distinguishing the two components of the ancestry
variance from interchromosomal variance

We argued that, due to random chromosome assortment,
the variance in ancestry between chromosomes is informa-
tive of the assortment variance. If all chromosomes had the
same length, we could expect that the assortment variance
in ancestry proportion across individuals would be pro-

portional to the variance across chromosomes and inversely
proportional to the number of chromosomes per individual.
However, the different chromosomes have different lengths,
and to combine the information we need an idea of how
ancestry variance depends on chromosome length. We as-
sume that the assortment variance on ancestry is inversely
proportional to the chromosome length in morgans; in ef-
fect, we suppose that the number of independent ancestry
observations is proportional to the chromosome length. The
proportionality factor sg depends on the pedigree, so that

VarðXp
��gÞ ¼ Var

	P
i
LiX

p
i

��g
�L2
¼P

i
Li
2VarðXp

i

��gÞ=L2
≃ 

s
p
g

L2
X
i
Li

¼ s
p
g

L
:

(A19)

Furthermore, since we are interested in the average variance
over all pedigrees, we get

Eg½VarðXpjgÞ� ¼  
Eg
�
s
p
g
�

L
:

We therefore obtain an expression for Eg½sp
g� derived from

the data. For each individual and each chromosome, we can
obtain an estimate for this variance by comparing the ances-
try proportion in that chromosome to the individual mean.
We can then obtain the best-fitting sp

g. An average over all
sequenced individuals provides us with an estimate for
Eg½sp

g�. This procedure is used to decompose the simulated
variances in Figure A1.

Figure A1 Time evolution of the variance for a population of 200 diploid
individuals for a constant migration rate of 5% starting at generation 1.
As the fraction of genetic ancestry originating from the migrant popula-
tions grows from 0 to 1, the variance reaches a maximum before the
migration frequency reaches 0.5. Using the assumptions of Equation A19,
we decompose the observed variance (red dots) in a genealogy (purple)
and an assortment (blue) contribution. As expected, the genealogy con-
tribution dominates.
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