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Ecological inference is the process of drawing conclusions about individual-level behavior from aggregate-level data. Recent
advances involve the combination of statistical and deterministic means to produce such inferences.

Ecological inference is the process of using aggregate (historically
called ‘‘ecological’’) data to draw conclusions about individual-
level behavior when no individual-level data are available. The
fundamental difficulty with such inferences is that many different
possible relationships at the individual level can generate the
same observation at the aggregate level. For example, there are
a very large number of ways in which electoral support for a
political candidate can break down among individual voters and
still produce the same aggregate level of support. In the absence
of individual-level measurement (for example in the form of
surveys), such information needs to be inferred.

The ecological inference problem has been among the most
persistent statistical problems in the social sciences. The need to
draw microlevel conclusions from macrolevel data is faced by
researchers in political science as well as in epidemiology, geog-
raphy, sociology, economics, and history, among others. In a study
of the voting behavior of newly enfranchised women in Oregon,
almost eight decades ago, it was noted that ‘‘even though the
method of voting makes it impossible to count women’s votes, one
wonders if there is not some indirect method of solving the
problem’’ (1). The proposed ‘‘indirect method’’ involved corre-
lating aggregates: by observing that local voting districts (‘‘pre-
cincts’’) with higher proportions of women voters revealed higher
proportions of negative votes on certain referenda, it could be
reasoned that women, apparently, were casting votes against the
referendum at a higher rate than men.

However, this conclusion drawn from aggregate quantities is
valid only if the different ratios of men to women across different
precincts are not in themselves correlated with their voting
behavior. Correlating aggregates results in an ‘‘ecological fallacy’’
if men in heavily female precincts are more likely to vote against
the referendum than they are in precincts with higher male
representation. Indeed, one of the most influential contributions
to the ecological-inference literature was the demonstration that
true individual-level relationships often were the inverse of ag-
gregate-level relationships (2). In the absence of data measuring
voting behavior at the individual level, there was no way of
knowing deterministically—that is, with certainty—how behav-
ior at the ballot box broke down by gender.

Indeed, there can be no deterministic solution to the ecological
inference problem: individual-level information is irrecoverably
lost in the process of aggregation. This impossibility has led a
number of researchers to seek out a statistical solution instead.
Because microlevel information (for example, about the voting
behavior of men and women in electoral precincts) could not be
measured from aggregate data, attempts were made to estimate
such information. Quite frequently, however, statistically derived
results were unreliable, often falling outside of the range of what
was even possible—for example estimating that more than 100%
of a particular demographic group voted for a particular candi-
date. The most recent advance in ecological inference is to be
found, not in a pure statistical, but in a deterministic–statistical

method. This type of approach combines deterministic informa-
tion—information that is known with certainty—with a method
of statistical likelihood estimation.

Deterministic Information

As a running example, consider an electoral precinct with a
population of black and white voters. Available to the researcher
are both the precinct’s racial composition and precinct-level
aggregate turnout rates in elections. Given the secret nature of
voting, however, an unobservable quantity of interest is turnout
among these racial groups. The question of how voter participa-
tion breaks down by race is identical to our initial question of how
opposition to a referendum breaks down by gender.

Formally, for a specific precinct i with a total voting population
Ni, aggregate numbers of blacks Xi and whites 1 2 Xi are
observed, as are the proportions of voting-age individuals who
participate in the election Ti and of those who abstain 1 2 Ti (see
table in Box) (3). Not known are the numbers of black and white
participating voters, respectively denoted by bi

b and bi
w.
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Race of Voting Decision
voting-age

person Vote No vote

Black b i
b 1 2 b i

b Xi

White bi
w 1 2 bi

w 1 2 Xi

Ti 1 2 Ti

Notation for Precinct i. Ecological inference is to
estimate the quantities of interest, b i

b (the fraction of
blacks who vote) and bi

w (the fraction of whites who vote)
from the aggregate variables Xi (the fraction of voting-
age people who are black), Ti (the fraction of people who
vote), and Ni (the known number of voting-age people).

bi
b [ FmaxS0,

Ti 2 ~1 2 Xi!

Xi
D , minS1,

Ti

X iDG [1]

bi
w [ FmaxS0,

Ti 2 Xi

1 2 Xi
D , minS1,

Ti

1 2 Xi
DG [2]

Formal expression of the deterministic bounds on
voter turnout among blacks, b i

b (Eq. 1), and whites bi
w

(Eq. 2). Ti is voter turnout in Precinct i. Xi is the
proportion of black voters among Precinct i’s voting-age
population, with (1 2 Xi) representing the complement
white voters.
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Of course, there are extreme instances where aggregate-level
information provides a certain solution: if a precinct’s population
is 100% white or black (if Xi 5 0 or Xi 5 1.0), the ratio of racial
composition collapses into its extreme and a deterministic point
estimate can be produced. While this case is statistically uninter-
esting, it is instructive. For even in more realistic instances where
both racial groups are represented, deterministic information can
still be derived. In this case, we can no longer derive unique
individual-level point estimates but can derive ranges within
which such values necessarily will reside.

This approach is known as the ‘‘method of bounds’’ (4). It tells
us that there is both a minimum and a maximum possible value
for the number of participating black voters. At a minimum, this
value can be no lower than the total number of voters partici-
pating in the election, minus the number of whites in the
voting-age population. If this number is smaller than zero (that is,
if the number of voting-age whites is greater than the total
number of participating voters), the minimum possible number of
blacks voting in the population is zero. At a maximum, the
number of participating black voters in the population can be no
greater than either the number of voting-age blacks, or the total
number of voters, whichever is smaller.

The level of deterministic information that can be derived for
each quantity will vary by instance, as the extent of the restriction
is a function of the data. In the type of example discussed here,
the width of the bound typically is reduced to less than half the
[0, 1] (or 0–100%) range. There is nothing questionable about
results provided by the method of bounds, although it may at
times be too unrestrictive to be of substantive value for the
researcher. Controversy enters the scene when a statistical solu-
tion is introduced, either as an alternative to the method of
bounds, or as a procedure to reduce its range further.

Statistical Solutions

A fundamental feature of any inference method is that assump-
tions are introduced. Researchers pursuing a statistical approach
to ecological inference, consequently, need to address three
questions.

First, and most obviously, are the assumptions correct for the
given data? Second, what happens to the estimation procedure
when the assumptions are incorrect, given its particular substan-
tive application? Third, will the researcher know if the assump-
tions are incorrect? The first question concerns the specification
of assumptions. The second concerns the estimation procedure’s
robustness to a mis-specification of assumptions. And the third
concerns the procedure’s diagnostic capacity of identifying a
mis-specification of assumptions.

The original study of voting behavior among women in Oregon
represents an early, crude, attempt at a statistical solution to the
ecological inference problem. Correlating aggregates of pre-
cincts’ gender composition and support for a particular referen-
dum yielded a point estimate for women’s opposition to a
referendum. Yet this conclusion was entirely dependent on the
assumption that men’s and women’s attitudes toward the refer-
endum were not themselves affected by the relevant precinct’s
gender composition. Furthermore, there were no diagnostic
features in the estimation procedure that would indicate to
researchers how much faith they could have in their estimates.

A more recent statistical approach is found in the ‘‘neighbor-
hood model’’ (5). It, too, assumes that demographic composition
will not determine voting behavior and simply projects the ratio
of demographic composition within a precinct onto its voting
behavior. For example, if 40% of a voting-age population is
female, then 40% of that same precinct’s Democratic voters are
estimated to be female.

The neighborhood model was formulated in response to an
earlier statistical approach known as Goodman’s ‘‘ecological
regression’’ (6). This method would estimate voter participation
not at the local precinct level, but at the more aggregated district

level. Each district contains several precincts. Unlike for the
neighborhood model, precinct-level estimates in ecological re-
gression can be inferred from the district-level only on the specific
assumption that voter participation by race remains constant
across precincts.

In terms of its diagnostic and robustness qualities, neither
Goodman’s regression nor the neighborhood model fares well.
In terms of diagnostics, neither approach will typically reveal
information about the appropriateness of its statistical as-
sumptions. In terms of robustness, the reliability of estimation
is highly sensitive to the correctness of its underlying assump-
tions. In addition, because Goodman’s method utilizes linear
regression, it quite frequently produces estimates outside of
the [0, 1] interval, thus providing impossible microlevel esti-
mates smaller than 0% or greater than 100%. As recently as
1990, in a federal trial in Ohio on the redrawing of electoral
districts, an expert witness using Goodman’s regression was
forced to state that 109.63% of blacks voted for the Democratic
candidate in District 42. Despite these problems, Goodman’s

FIG. 1. Three different truncated bivariate normal distributions for
b i

b and bi
wbiw. Graphs b and c are more affected by the truncating

bounds than is graph a.
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method until recently has remained the only court-accepted
method of ecological inference in legal testimony.

Deterministic–Statistical Solutions

There are crude ways in which deterministic information can be
brought to bear on the statistical results obtained through eco-
logical regression. At a minimum, all estimates outside of the [0,
1] interval can be capped at the interval’s limit. Adding infor-
mation from the method of bounds, estimates can be narrowed
further by drawing them into the limit of the deterministic ranges.
Either method, however, generates an unreasonable number of
‘‘corner solutions,’’ in which a disproportionate number of ob-
servations reside at the limit of the range. Furthermore, it is
unlikely that the remaining realistic-appearing estimates are
reliable, if others become so only once they are reined in.

A more sophisticated combination of the deterministic method
of bounds and a statistical approach is found in King’s procedure,
EI (named after the software program that implements it) (3). EI
begins with the method of bounds to establish a deterministic
range within which true values must reside. The procedure
subsequently utilizes a statistical method to further narrow these
bounds: following a maximum likelihood approach, each possible
value within the deterministic bounds is given a relative likelihood
of being the true value. These likelihoods are generated through
the addition to Goodman’s regression model of three statistical
assumptions.

First, in contrast to Goodman’s method, which requires the
assumption that voter participation by race remains constant
across precincts, black and white turnout can now vary across
different precincts, and will do so in a mutually dependent
manner. The relationship between the two is defined by a
(bivariate) normal distribution, with its tails truncated at the
deterministic bounds. Fig. 1 shows this relationship graphically
and also reveals how flexible the assumption of this type of
mutually dependent variation is. As the figure shows, values for
both black and white turnout (bi

b and bi
w) could be dispersed very

narrowly around a particular point, or either one or both quan-

tities could be dispersed more widely. One fundamental feature
of the normality assumption is the presence of a single mode in
the bivariate distribution of bi

b and bi
w.

The two remaining assumptions are, first, that voter turnout
(T) in one precinct is independent of turnout in another—there
is no ‘‘spatial correlation.’’ Second, in the basic EI model, the
different turnouts among black and white voters are uncorrelated
with the proportion of voter-age blacks (Xi) and whites (1 2 Xi)
in the precinct population. In an extended EI model, this latter
assumption is relaxed, and the dependence of black and white
turnout on the precinct’s racial composition itself can be assumed
or estimated.

Fig. 2 provides a graphical representation of the deterministic
information about bi

b and bi
w, given combinations of Ti and Xi in

each precinct. Each line represents all possible values for black
and white voter turnout for one precinct, given its voter turnout
and its racial composition. The horizontal spread of a line across
the [0, 1] interval provides that precinct’s deterministic bound on
bi

b, the percentage of blacks voting. The vertical spread of a line
does the same for bi

w. EI subsequently superimposes a probability
density, as in Fig. 1, on the deterministic information of Fig. 2.
The peak of the superimposed surface is anchored above the
highest density of line intersections, as it is here that combinations
of bi

b and bi
w are most likely. Fig. 3 shows the resultant probability

contours corresponding to different heights of the probability
surface.

The procedure follows the logic of tomography in seismic or
medical imaging: X-rays are sent through a human head, with
each individual ray revealing information as to whether it has
passed through a tumor. We know whether a tumor resides
along the path of any one ray. We do not know, however, how
far into that ray’s path the tumor was hit. Assembling infor-
mation from several rays, shot at different angles, however,
allows the researcher to infer a cluster of hits, resulting in a
probabilistic estimate of the tumor’s location. The tumor most
likely resides at the point at which most tumor-striking rays
intersect. EI—in much the same way—borrows strength from

FIG. 2. Tomography plot showing the deterministic information
about b i

b and bi
w, given combinations of Ti and Xi in a precinct. The

horizontal spread of a line across the [0, 1] interval provides a
particular precinct’s deterministic bound on b i

b. The vertical spread of
a line does the same for bi

w.

FIG. 3. Tomography plot with 95% (blue) and 50% (red) maximum
likelihood contours superimposed on the deterministic information of
Fig. 2. Each contour represents a constant height sliced out of the
truncated bivariate normal distribution from which b i

b and bi
w are

assumed to be drawn. The peak of the probability surface is anchored
above the highest density of line intersections and represents the point
estimate.
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the information of all other precinct-level lines by anchoring
the peak of its probability surface above the highest density of
line intersections, thus revealing probabilistically information
about any one precinct’s black and white turnout values.

There is some controversy surrounding the reliability of EI’s
estimation procedure. While several researchers have found EI to
produce reliable point estimates and a trustworthy measure of
confidence attached to each estimate, some have begun to
identify conditions under which EI may produce misleading
results, or its diagnostic capacity for detecting a violation of
assumptions may fail (7, 8). An important consideration is the
consequence of assumption violation. While here, too, no broad
consensus exists, researchers have found that for at least some
violations that occur in practice, EI’s estimation is remarkably
robust (3, 9). More work remains to be done on uncovering the
exact contours of EI’s performance under different conditions.
However, it is not premature to note that this estimation proce-
dure to date represents the most dramatic advance in researchers’
abilities to draw microlevel inferences from aggregate-level data.
Perhaps more importantly still, its general approach—combining
statistical and deterministic means—has set a new methodolog-
ical direction for ecological inference.

The Future of Ecological Inference

Several EI-focused developments are currently underway. Re-
searchers have begun to utilize alternative distributional specifi-
cations for instances in which diagnostic plots indicate that the
assumption of a single mode in the probability surface is not
appropriate (10). Others have developed an approach of ecolog-
ical panel inference (EPI) which enables researchers to use
independent surveys taken at different points in time, from
different segments of the population, to infer how individuals’
behavior changed over time (9). Previously such information
could be obtained only from rarely collected panel data which
tracks individual-level behavior by repeatedly asking the same
respondents the same questions on different occasions. In addi-
tion, researchers have begun to improve efficiency of computa-
tionally intensive EI procedures (10, †). They have also begun to
establish simplified estimation procedures for cases where pa-
rameters of interest divide into more than two categories (for
example, when voters break down into more than two demo-
graphic groups) (11).

These continued advances should not, however, deflect from
our original emphasis: The ecological inference problem will
never yield a deterministic solution. Recent advances in ecolog-
ical inference do, however, strongly suggest two important char-
acteristics for its future. First, further improvements most likely
will continue to combine a deterministic and a statistical ap-
proach. Second, they will involve the development of new statis-
tical methods of bringing external qualitative information (e.g.,
from ethnographic or journalistic accounts) to bear on the
estimation procedure. There will always be instances where a
statistical procedure will not improve—significantly, sufficiently,
or at all—on deterministic ranges on the basis of aggregate data
alone. This is not a weakness of the statistical method itself but
a consequence of the irrecoverable loss of microlevel information
as it is aggregated. Much of the future of ecological inference,
therefore, paradoxically resides in the development of statistical–
deterministic means of introducing into its inference what is
known (or suspected) at the microlevel.

†Lewis, J., ‘‘Method of Moment Estimators for King’s Ecological
Inference Model,’’ 23rd Annual Meeting of the Social Science
History Association, Nov. 19–22, 1998, Chicago.
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