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Abstract
Background—It can be difficult to conduct pediatric clinical trials because there is often a low
incidence of the disease in children, making accrual slow or infeasible. In addition, low mortality
and morbidity in this population make it impractical to achieve adequate power. In this case, the
only evidence for treatment efficacy comes from adult trials. Since pediatric care providers are
accustomed to relying on evidence from adult studies, it is natural to consider borrowing
information from adult trials.

Purpose—The goal of this article is to propose a Bayesian approach to the design and analysis of
pediatric trials to allow borrowing strength from previous or simultaneous adult trials.

Methods—We apply a hierarchical model for which the efficacy parameter from the adult trial
and that of the pediatric trail are considered to be draws from a normal distribution. The choice of
(the variance of) this distribution is guided by discussion with medical experts. We show that with
this information, one can calculate the sample size required for the pediatric trial. We discuss how
inference of these studies in pediatric populations depends on the parameter that captures the
similarity of the treatment efficacy in adults compared to children.

Results—The Bayesian approach can substantially increase the power of a pediatric clinical trial
(or equivalently decrease the number of subjects required) by formally leveraging the data from
the adult trial.

Limitations—Our method relies on obtaining a value for the inter-study variability,, which may
be difficult to describe to a clinical investigator.

Conclusions—The Bayesian approach has the potential of making pediatric clinical trials
feasible because it has the effect of borrowing strength from adult trials, thus requiring a smaller
pediatric trial to show efficacy of a drug in children.

Introduction
Many diseases effect both children and adults, but treatments are often developed and tested
only in adults. When there is insufficient information on dose and efficacy in children,
pediatricians face the dilemma of extrapolating the evidence from adult clinical trials to a
pediatric population or treating children with unproven treatments. Recently there has been
pressure on pharmaceutical companies by the US Food and Drug Administration (FDA) and
on the academic community by NIH to conduct clinical trials in children. One approach [1]
is to conduct studies to establish pediatric dosage, but to infer efficacy from adult trials.
There has also been a call to do more efficacy trials in children [2]. However, this is often
challenging as diseases can have a low incidence in children and the timing and course of
the disease can make the trial infeasible. This issue has arisen for us in the context of
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designing clinical trials for children in intensive care units (ICU) to test interventions that
were developed or are in development for adults.

Since a pediatrician’s observation that a drug is effective in adults increases his/her belief in
its effectiveness in children, a natural approach toinference is to make these considerations
explicit using Bayesian methods. Trials that ‘borrow strength’ using Bayesian methods are
currently being considered by the FDA, although the various ‘draft guidance’ documents do
not give explicit suggestions as how to incorporate external information [3]. For the
pediatric ICU studies, we want to use adult clinical trial data to generate a prior distribution
to be used for the pediatric trial, and describe how to design (find the sample size required)
and analyze the results of these studies.

There is a literature on applying Bayesian methods to extrapolate results from trials to
populations who were not included in the original trial. This can occur, for example, when
one wants to register a drug in a country where it was not tested. In a randomized clinical
trial called a ‘bridging’ study, investigators look for similarity in the positive treatment
effect [4,5]. Similarly, Bayesian methods can be used to ‘interpolate’ by determining how to
estimate treatment effects among subsets of patients studied in a clinical trial. Dixon and
Simon [6] propose a method that uses hierarchical models.

The most straightforward way to apply Bayesian methods is to elicit a prior distribution on
the treatment effect from medical experts and use this to design and analyze the trial [7]. In a
study by Goodman and Sladky in 2005 [8], a prior is used that is based on a meta-analysis
with modified mean and variance reflecting the investigator’s beliefs. However, for our
pediatric ICU application, we cannot always assume that the adult trials are already
completed. In this situation the pediatricians would not have an informed prior belief on the
efficacy of the new treatment. Therefore, we would like to design a pediatric trial knowing
only the design of the adult trial. This is often preferable as there may be cost savings in
doing simultaneous pediatric and adult trials. In addition, simultaneous pediatric and adult
trials allow simultaneous approval for both populations and minimizes off-label pediatric
use of a drug that was only proven efficacious in adults. On the other hand, doing one study
after the other may save costs because if an adult study fails the pediatric study may not be
deemed necessary.

One shortcoming of methods for which only one prior is used to determine the posterior of
the efficacy parameter is that the report of a clinical trial using these techniques will only be
helpful to investigators who have same prior as the authors of the report. However, different
pediatricians may develop different prior beliefs about the efficacy of a treatment in children
based on viewing the same adult data. Thus it would be useful to have a method that would
allow each pediatrician to interpret the data from a pediatric study based on their own prior
belief on the relevance of the adult data and the results of one adult study. This would be
facilitated by a prior that has only one parameter which can be relatively easily understood.

Two Bayesian methods of borrowing strength from one clinical trial to another are the use of
hierarchical models and power priors. The former is described in [9,10] and are widely used
while the latter is as an approach [11] where the prior distribution is the likelihood from
another trial (the adult trial) raised to a power that measures the extent to which the result
applies to the current (pediatric) trial [12]. More specifically, if we let π0(θ) denote the prior
distribution for θ, let D0 be the adult data, and let L(θ|D) be the likelihood, then we define a
discounting parameter, a0, which weights the adult data relative to the current (pediatric)
study as
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and ranges from one, when the data from an adult is of equivalent value, to zero where no
borrowing from adult results is appropriate.

In this article, we will propose a Bayesian approach for formalizing what pediatricians do
when they combine the results from large adult trials with the results of smaller pediatric
trials to make treatment decisions. We will use a hierarchical model for this, but will show
that in our setting, the hierarchical model and power prior methods are equivalent. Thus one
can either specify the variation of the efficacy parameters of the adult and pediatric trials or
a power parameter which specifies the extent to which the adult trial extrapolates to
children. Therefore, the difficult task of having medical experts to elicit a prior is reduced to
the specification of one number representing how similar children effects are to the adult
effects. From this, we will be able to propose a design for the trial that can be conducted
simultaneously or subsequent to the adult trial. The results from the trial can be reported so
that interpretation of efficacy can be driven by the prior of the reader. We will apply these
methods to guide pediatric study design and analysis in the context of information from
adult trials. Our goal is to provide a new way to design pediatric trials, which we hope will
encourage the conduct of these trials in a setting that would otherwise be prohibitive to
complete.

Methods
We consider a hierarchical model that allows us to incorporate the information from an adult
study population into our determination of thedistribution of the parameter for the pediatric
population. For this, we will need to specify the parameter of interest, which is the measure
of a treatment’s efficacy, and it’s likelihood. This parameter can be any parameter related to
a hypothesis that can be tested in both a pediatric study and an adult study. We assume that
the parameter estimate is approximately normally distributed. This can either be due to a
large enough sample size or as the result of some transformation (such as logarithmic
transform) on another parameter. This implies that the likelihood function will be Gaussian.
Next, we will need to specify the hierarchical model that allows us to link the information on
efficacy from adult and pediatric trials. We denote the parameters from the adult study and
the associated pediatric study as βA and βP, respectively. We assume that these parameters
have a common prior normal distribution with mean μ and variance ν2. We assume that μ
has a noninformative prior. The specification of ν reflects how much variation we can
expect in studies conducted in adults and children. This approach differs from the usual use
of hierarchical models where ν is given a prior distribution. We discuss this and other
sensitivity issues in section ‘Sensitivity to Assumptions’. We focus on the case where the
posterior is asymptotically normal; otherwise the posterior can be simulated using
WinBUGS [13].

Evaluating treatment efficacy in children

Let  be the estimate of the treatment effect based on the pediatric data from mP subjects,
and let sP be its standard error multiplied by . We factor  out of the standard error
to facilitate the sample size calculation. For example, in a two sample t-test with equal

variance, the treatment effect will have standard error  where σ is the standard
deviation of the outcome. Thus s=2σ.
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Now consider three random variables: βP,  the maximum likelihood estimate of βP, and

, the maximum likelihood estimate from the adult study. If there is more than one adult

study we assume that the  is the parameter estimate from a meta-analysis of all of them.
The parameter ν measures the variation between the response of adults and children to a
treatment and not the variation expected from study to study within those groups. We will

determine a treatment is efficacious if βP > 0. Let  be the variance of μ and let  be

the standard error of , where mA is the sample size of the adult study. Most clinical trials

are large enough so that  and  can be considered normally distributed. This
simplification allows us to analyze studies with all types of endpoints using the same

method [14,15]. The random variables ( ) are jointly multivariate normal with mean
0 and variance covariance matrix given by

The posterior distribution of βP is it’s conditional distribution given  and . We can use

standard methods to perform this calculation and then let  to find the posterior of βP.
To simplify the expression let

(1)

Then the posterior mean of βP is

(2)

and the variance is

(3)

This number ω in (1) can be thought of as the number of adults that are borrowed from the
adult data and used in the analysis of the pediatric data. Our proposed hierarchical model is
equivalent to the Bayesian method suggested by Berry [16] for trials of similar medical
devices. He suggests that the weight of the prior data be multiplied by a factor to account for
uncertainty about the relevance of the prior data to the current problem. That factor is
equivalent to ω/mA. In his examples, he uses a value equal to 0.5, that is he assumes that
half of the data from the previous trial can be pooled into the current trial. If ω/mA = 0.5

then the prior distribution of βP has mean  and variance . This would be equivalent

to letting . Setting ν2 to this value would be equivalent to assuming that the
between study variation is equal to 1/2 the variation of the maximum likelihood estimate.
This would be a reasonable choice of ω or ν2 if mA were originally chosen to be large
enough to resolve treatment differences, but not so large as to distinguish between similar
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studies. This approach is equivalent to a power prior as described in Ibrahim and Chen [11],
since taking a normal probability density to the ω/mA power is equivalent to multiplying the
precision by ω/mA. Thus Ibrahim and Chen’s a0 is equal to ω/mA.

What makes the most sense to us is to elicit ν2 rather than ω or ω/mA because ν or ν2 is a
direct measure of how different adult and pediatric results are expected to be. If the adult

trial is large then . One can think of ω as the ratio of the information that we
have on the difference between adults and children, 1/(2ν2), and the information of one

observation in the adult trial, which is . We note that ω should be interpreted as the
effective sample size representing a discounted amount of information borrowed from the
adult study. When sA = sP, an ω value, say 100, leads to a posterior mean that is the same as
that obtained by adding 100 additional patients to the pediatric sample who have a mean

effect equalling  and variance equalling . However in the general situation this
equivalence does not hold, and ω should be interpreted in context with sA, sP, m, and n as in
(1) above. This is another reason why we prefer eliciting to eliciting ω, because the latter
tends to be more difficult to interpret.

The posterior distribution of βP will be asymptotically normal with mean given by (2) and
variance given by (3). Thus, letting Φ denote the normal cumulative distribution function,
the posterior probability of the null hypothesis that βP ≤ 0 is

(4)

where ω is defined in (1) above. In frequentist terms, this is analogous to a one-sided p-
value for the test of the null hypothesis βP ≤ 0 in that small values constitute evidence
against the null hypothesis. Since pediatricians may disagree on their prior belief as to the
similarity of children and adult effects, we suggest that the data be reported by plotting the
probability of the null hypothesis versus. This would allow each pediatrician to use his/her
own prior when evaluating the data. For the purpose of FDA approval, it will be necessary
to specify these parameters. We discuss this further in the next section in the context of an
analysis of a study.

Sample size calculation
The probability of finding a positive result in children will depend on the result we find in
adults. To find the sample size n required for the pediatric study, we need to define a
Bayesian analogue of power, calculate this ‘power’ for various choices of n and then choose
the value of n for which this ‘power’ is 80–90%. Frequentist power is defined as the
probability of deciding that a treatment is effective under the assumption that the true
difference β is equal to some prespecified clinically meaningful difference. In our
calculations we make the assumption that the design of the two studies will be the same so
sA=sP=s.

Conditional on βP and βA, βP is normal with mean βP and variance . Using the formula
from (4), we can show that the power will be
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This can be simplified to

where ω is defined in (1) above.

One could get the power by calculating g(βP) with βP set to a clinically meaningful
alternative hypothesis, and ω calculated using (1) and the that is specified by a clinical
expert. This is a frequentist power calculation. It gives the probability of rejecting the null
hypothesis, albeit using a Bayesian analysis, under the assumption of a clinically meaningful
change. An alternative method to calculate power is to use the prior distribution of βP. Thus,

letting ϕ be the normal density function with mean  and variance s2/ω, the probability of
rejecting the null hypothesis given that βP > 0 (the power), is

(5)

This calculation would require numerical integration. Note also that we calculate the
probability that the null hypothesis is rejected conditional on βP > 0. This is because we do
not want to reject the null hypothesis if βP ≤ 0 so we do not include that region in our power
calculation. This is similar to the method described in [17]. It is also possible to run Monte
Carlo simulations to estimate this quantity.

Application to study design and inference
We now illustrate the use of our methods to both design a trial that would evaluate efficacy
in a pediatric population, as well as to analyze and synthesize data available from adult and
pediatric trials. In addition, we consider a third example for which adequate trials were
conducted in bothpediatric and adult population. This third example is meant to illustrate the
interpretation of the parameter ν that must be elicited from a medical expert.

Power and sample size calculations
We use the study of Omega-3 Fatty Acid, Gamma-Linolenic Acid, and Anti-Oxidant
Supplementation in the Management of Acute Lung Injury or Acute Respiratory Distress
Syndrome in Children (OMEGA) as an example to illustrate the difference between our
proposed power calculation and the traditional power calculation based only on one study.
As of this writing the adult study is ongoing and a pediatric study using the methods of this
article is being proposed.

The parameter of interest is the difference in ventilation free days (VFD) [18] between
patients who receive the medical food as opposed to standard feeding. The adult study will
accrue 1000 eligible patients and the pediatric study would accrue 200 patients with a
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treatment: control ratio of 1:1. In the adult study the mean difference in VFD to study day 28
is 2.25 days with a standard deviation of VFD of 10.5.

We estimate the power of the test using the Bayesian method and the power of the test based
just on the pediatric study under varying true treatment effects. We use ν = 0.8 and 0.5 and
assume that the standard deviation of VFD is equal in adults and children.

Table 1 gives a comparison of the Bayesian power calculation and the traditional power
calculation based only on pediatric study.

Clearly, the Bayesian approach of combining the data from the two trials provides more
power to detect treatment efficacy even under the more modest assumption that ν = 0.8.
Looking at this graphically, Figure 1 gives the relationship of the power of the Bayesian
approach to the value of ν (and ω), assuming the true pediatric effect is 1 VFD. This graph
illustrates the sensitivity of the power to the value of ν, noting for example that the power of
the Bayesian method exceeds 80% when ν < 0.45 and exceeds 90% when ν < 0.38. It is
important to understand the effect of this method on Type I error. The frequentist Type I
error rate in a one-sided test will be greater than 0.025 when the adult study is positive. This
is expected because the adult results are providing information on the pediatric efficacy. One
approach to evaluating the impact of the choice of is to consider the inference that would be
made if the observed pediatric result were zero or negative and the adult effect were
positive. For instance if the pediatric result were zero VFD and adult result were 2.25 from
1000 patients, then from (4) the pediatrician would conclude the pediatric effect significant
(Prob(βP ≤ 0|data, ν) < 0.025) if he/she believes the value of ν was < 0.48. If an investigator
believes the value of ν is in this range, then they would only be convinced that the treatment
was not of benefit in children if the pediatric result went in the wrong direction or the adult
result were equivocal. This suggests that one could try to elicit ν by asking under what
situations an investigator would use a drug for children given different results in adults and
children.

Inference
We use a study of the effect of Drotrecogin Alfa to illustrate the effect of ν values on
Bayesian inference. In a published report [19], the efficacy of Drotrecogin Alfa in treating
severe sepsis was demonstrated in 1690 adult patients (840 in placebo group, 850 in
Drotrecogin Alfa group). The 28 day mortality rate was 30.8% in the placebogroup and
24.7% in the treatment group, giving an odds ratio of 1.36. The study found a statistically
significant association between Drotrecogin Alfa treatment and mortality.

In a separate study led by Giroir [20], the efficacy of Drotrecogin Alfa was assessed in
pediatric patients. A total of 477 patients were included. The 28-day mortality was 17.45%
in the placebo arm and 17.15% in the treatment group, with no statistically significant
evidence that the treatment was effective in the pediatric population.

We apply Bayesian methods described here to assess the efficacy of Drotrecogin Alfa for
pediatric patients using the data from both studies. We calculate the posterior distribution of
the log-odds ratio and the associated posterior probability that the null hypothesis is true. We
calculate these statistics with values ranging from 0 to 1.

Figure 2 gives the Bayesian posterior probability that the null hypothesis is true Prob(βP ≤ 0|
data, ν) in the pediatric clinical trial under varying values. This probability is an increasing
function of and takes values greater than 0.025 when ν > 0.044. This figure could be used
for interpretation of the results of the study, as it informs an investigator how to examine the
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data from that of the pediatric trial within the context of their belief in the relationship
between the efficacy in the pediatric versus the adult population.

The specification of ν is difficult in this setting because the parameter is the log-odds of
mortality which is not intuitive. One way to express the results would be to say that if an
investigator were willing to believe a-priori that the true odds ratio in children was between

0.89 and 1.13 ( ) times the true odds ratio in adults, with 95%
probability, then their value of ν would be 0.044 and they would see the pediatric trial as
‘just barely significant’, P(βP > 0|ν = 0.044) = 0.975.

Estimation of ν from clinical trials
There are some diseases and indications that have been carefully studied in sufficiently large
clinical trials in both pediatric and adult populations. There are several drugs for treating
HIV/AIDS and cancer that have been tested by multi-centered trials groups focused on each
of these populations. In addition, there are treatments for symptoms experienced by both
populations that have undergone extensive clinical trails, such as for example, analgesic
treatments for fever from upper respiratory tract infection (URTI). We consider treatments
for fever to obtain an estimate for the parameter ν discussed in this article.

Table 2 summarizes findings from three published papers [21-23] regarding the average
temperature reduction effect within 6 h using Ibuprofen or Tylenol (Acetaminophen) on
adult and children. We consider both treatments to get our estimate for ν as we can get a
better estimate of the parameter by utilizing two or more studies and obtaining a Bayesian
estimate that incorporates all sources of variation. This requires an assumption that ν can be
drawn from trials that have the same efficacy endpoint (decrease in fever) and the same

disease/symptom (URTI). Using Table 2, we can estimate . The estimated ν
= 0.32 for Ibuprofen and ν = 0.18 for Acetaminophen.

From the publications we obtain estimated  for Ibuprofen and 0.0078 for
Acetaminophen. Applying (1) using these estimates of ν leads to ω/mA = 0.163 and 0.107,
for Ibuprofen and Acetaminophen, respectively. This implies that the adult study sample is
counted as equivalent to 16.3 and 10.7% of the original size in a pediatric study under a
Bayesian design. Therefore, the effective sample size contribution from the adult Ibuprofen
study to the test of efficacy in children would be about 7. In a corresponding Acetaminophen
pediatric study, the effectivesample size contributed by the adult trial would be about 16.

Sensitivity to assumptions
In the methods described above we assume a Gaussian likelihood and a Gaussian
hierarchical model where is specified rather than having a prior distribution itself. We
discuss these assumptions in turn.

We use a Gaussian likelihood because we assume that these methods will mainly be used for
clinical trials with relatively large sample size. The advantage of using a Gaussian likelihood
and priors is that they allow a closed form expression for all the quantities of interest and
they make the interpretation of the method we propose more straightforward. The only
common clinical trial situation where this might not work is the analysis of rare adverse
events, where a Poisson likelihood or binomial likelihood would be more appropriate.

In order to understand the sensitivity of our assumptions on the prior distribution of βP, βA,
and ν, consider that when the adult study is complete there will be an induced prior on βP.

This prior will be normal and have a location which is equal to  and a dispersion that is a

Schoenfeld et al. Page 8

Clin Trials. Author manuscript; available in PMC 2012 June 13.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



function of the size of the adult study and the value of. If rather than choosing a value of ν
we choose a prior for it, then the effect will be to change the shape of the distribution and
it’s dispersion but not it’s location. For instance if we assume that 1/ν2 has a prior that is
Γ(a, b) then the prior for βP will have a t-distribution with degrees of freedom and dispersion
dependent on (a, b). For most choices of (a, b) there is a corresponding choice of a fixed ν
which will usually yield similar inferences. Choosing (a, b) rather than ν adds complexity
without adding much in the way of flexibility. The effect of the choice of a normal prior for
βA and βP is similar to the specification of ν rather than specifying it’s prior. The
consequences of the choice of a different distribution will be small compared to the
consequences of a different choice of ν.

There would be advantages to using a prior for ν if there were more than one type of ‘adult’.
For instance, in bridging studies with multiple countries, the use of a prior distribution for ν
allows the hierarchical model to adapt to the observed variation between countries. In that
case the prior for the country of interest will depend not only on the mean of the estimates
from the other countries but on the observed dispersion of the estimates. It is worth pointing
out that in the case of multiple historical studies, some properties discussed in this article,
such as the equivalence between using a power prior and using a hierarchical model, no
longer hold [7]. In this situation, we would prefer a prior on ν. It is also possible that one

would want a prior for βP that isn’t centered at , but has some offset or multiplicative
factor that derives from known differences between children and adults. This can be
accommodated with some cost in complexity. We prefer in these cases to try to find a
parameterization that naturally makes this correction such as we did with the use of the log-
odds as a parameter in example 2.

Discussion
When practical factors limit the investigators’ ability to recruit large samples in a pediatric
study, information from the corresponding adult study can be useful for statistical analyses.
Our examples suggest that the Bayesian approach can improve the power of statistical
inference in pediatric clinical trials. The approach can improve the precision of statistical
estimation by reducing the width of the confidence intervals in a pediatric study. Bayesian
methods allow for designs with sample sizes smaller than that required in a completely
standalone study, which can be prohibitively large. We caution that it is wise to carefully
review the design and analyses of an adult study before including it in a Bayesian design and
analysis, as the conditions of the trial or the patient population may make this extrapolation
inappropriate.

We note that although clinical trials are primarily focused on testing efficacy, they also serve
the important function of providing a profile of the side effects and complications of a new
therapy. Some side effects in pediatric subjects may be too rare or require too long follow-
up to be revealed in a study based on this Bayesian technique. It may be important in such a
case to carry out a more careful monitoring of the side effects in a post-marketing
surveillance or Phase IV or V trial.

Our proposed techniques could also be used in other situations where one is trying to extend
the results of a study to new populations. For instance, pharmaceutical companies often have
to decide whether to test an approved drug in a new population, the often-called phase IIIB
trial. Using our technique, by leveraging the data from the previous trial, they could get
enough data from a relatively small study to decide whether to go on to larger registration
trials. This method could also be used in a registration trial itself, although the subjectivity in
the choice of might be a problem for regulators.
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We have proposed a Bayesian approach for formalizing what pediatricians do when they use
results from large adult trials in combination with evidence from pediatric studies to make a
decision about whether a treatment should be used to treat children. Our methods can be
applied to both design and analysis of trials done in these two populations. Bayesian
methods allow a formalization of the belief about the relationship between the outcome of
treatment in the two populations, which is a strength in that it translates the discussion to a
more quantitative comparison. However, it also represents the challenge of these methods
both in communicating the design and analysis with medical colleagues and in determining
the correct prior to use. We have tried to respond to this issue by framing the relationship in
terms of a single parameter that can be used graphically and descriptively to aid the
discussion. It is our hope that this approach may increase the use of Bayesian methods in the
arena of pediatric clinical research, which will ultimately increase the chance that pediatric
clinical trials will be carried out and reported in way that convinces care-givers and
ultimately improves pediatric care.
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Figure 1.
Power of Bayes analysis for varying ν and ω values
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Figure 2.
Posterior probability of the null hypothesis being true under a range of ν and ω values
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Table 1

Comparison of power calculations

Adult effect True effect
in peds

Bayes power
ν=0.8 (%)

Bayes power
ν=0.5

Traditional
(%) power (%)

2.25 1 36 74 10

2.25 2 63 91 27

2.25 3 84 98 52

2.25 4 95 99 77

2.25 5 99 99 92

Clin Trials. Author manuscript; available in PMC 2012 June 13.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Schoenfeld et al. Page 15

Table 2

Estimated temperature reduction in adults and children by two drugs

Drug Adult effect Pediatric effect

Ibuprofen 1.21°C(n=44) 1.66°C(n=58)

Acetaminophen 0.62°C(n=157) 0.87°C(n=56)
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