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Abstract

Knowledge gaps persist about the efficacy of cancer prevention strategies based on dietary food components.

Adaptations to nutrient supply are executed through tuning of multiple protein networks that include transcription factors,

histones, modifying enzymes, translation factors, membrane and nuclear receptors, and secreted proteins. However, the

simultaneous quantitative and qualitative measurement of all proteins that regulate cancer processes is not practical using

traditional protein methodologies. Proteomics offers an attractive opportunity to fill this knowledge gap and unravel the

effects of dietary components on protein networks that impinge on cancer. The articles presented in this supplement are

from talks proffered in the “Nutrition Proteomics and Cancer Prevention” session at the American Institute for Cancer

Research Annual Research Conference on Food, Nutrition, Physical Activity and Cancer held in Washington, DC on

October 21 and 22, 2010. Recent advances in MS technologies suggest that studies in nutrition and cancer prevention

may benefit from the adoption of proteomic tools to elucidate the impact on biological processes that govern the transition

from normal to malignant phenotype; to identify protein changes that determine both positive and negative responses to

food components; to assess how protein networks mediate dose-, time-, and tissue-dependent responses to food

components; and, finally, for predicting responders and nonresponders. However, both the limited accessibility to

proteomic technologies and research funding appear to be hampering the routine adoption of proteomic tools in nutrition

and cancer prevention research. J. Nutr. 142: 1360S–1369S, 2012.

Introduction

The adoption of “omic” technologies defined as the collection
and analysis of large-scale measurements related to the organi-

zation and regulation of biological systems sparked new
enthusiasm for the prevention of chronic diseases, including
cancer (1). One of the central tenants of the Human Genome
Project was to provide a blueprint to categorize cancers and
develop biomarkers of cancer susceptibility based on genetic
information (2). However, variations in epidemiologic trials of
nutrients for cancer prevention and susceptibility informed that
gene-environment interactions have the potential for influencing
a person’s risk for cancer (3) or response to dietary intervention
(4). For example, in BRCA-1 mutation carriers, the risk of breast
tumors is either reduced by higher intake of fruits and vegetables
(5) or increased by polymorphisms in the methyl-tetrahydro-
folate reductase gene (6). The example of BRCA-1 illustrates
that in the postgenomic era, there is a need for new investigative
tools to explain how diet modifies the risk of cancer (4,7).

The field of proteomics is concerned with the systematic study
of all proteins in cell compartments, tissues, and biofluids. Of the
;20,000 protein-coding human genes discovered through the
genome project, ;8000 (38%) reportedly lack experimental
evidence at the protein level (8). Up to one million different
protein molecules have been estimated to originate from the
combined effects of alternative splicing, protein modifications,
and pathological and physiological conditions. Therefore, it
seems reasonable that proteomic tools should be adopted to
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make a direct assessment of all the proteins that influence
biological processes associated with cancer (9).

Historically, large differences in chemical properties of
proteins and the wide dynamic range of protein concentrations
have made profiling proteins challenging (10). However, recent
improvements in technologies allow the identification and
quantitation of proteins, analysis of protein-protein interactions,
and characterization of posttranslational modifications (11).
Therefore, assessing the dynamic changes of protein profiles
brought about by dietary components may offer new oppor-
tunities for the development of proteomic signatures for each
bioactive food component or diet and predictive models of
cancer risk.

Articles presented in this supplement are from talks proffered
in the “Nutrition Proteomics and Cancer Prevention” session at
the American Institute for Cancer Research Annual Research
Conference on Food, Nutrition, Physical Activity and Cancer
held in Washington, DC on October 21 and 22, 2010. This
session originated from the concept that future progress in the
implementation of nutritional strategies for cancer prevention
requires knowledge of how dietary components influence
protein targets that govern the transition from normal to
malignant phenotype. Proteomic studies presented by Zhen
Xiao et al. (12) highlighted that isothiocyanates (ITC)5 com-
monly found in cruciferous vegetables may target the microtu-
bule network. They proposed that the antiproliferative effects of
ITC may be related to covalent modifications of cysteine
residues of tubulin leading to loss of tubulin polymerization, a
process that is necessary for maintaining cell structure. The
article presented by Baukje de Roos (13) addressed the benefits
of using proteomic approaches to assess the influence of dietary
fatty acids on mechanisms involved in carcinogenesis and
discovery of new protein biomarkers of cancer risk. Angela
Betancourt et al. (14) used proteomic technologies to discover
proteins that modulated the response to the hormonally active
chemical bisphenol A and the soy component genistein. Unequiv-
ocally, these studies offer compelling evidence that the future of
nutritional proteomics in cancer prevention remains bright.
However, efforts are needed for its incorporation into diagnostic
tools for predicting benefits from dietary changes.

Protein Networks as Targets for Bioactive

Food Components

Protein networks

Implicit in the adoption of proteomic tools is the concept that
the composition and functionality of protein networks deter-
mine disease risk (15). The value of targeting protein networks
rather than individual proteins or protein modifications stems
from the fact that protein inter-relationships regulate biological
processes such as proliferation, apoptosis, autophagy, DNA
repair, inflammation, and angiogenesis. For example, various
food components that possess anticarcinogenic properties have
been shown to activate the tumor suppressor protein, P53 (16–
21), a highly connected nodal protein that regulates a vast
number of signaling pathways (22) (Fig. 1). One important
consequence of P53 activation is the halting of transition
through G1/S phase by the stimulated expression of the tumor
suppressor protein P21, which then interferes with the formation

of cyclin-dependent kinase complexes necessary for cell cycle
progression (23). In addition, P53 has been reported to block
G2/M phase transition by inducing expression of 14–3-3s,
which anchors CYCLIN B1-cyclin-dependent kinase 1 in the
cytoplasm, and of GADD45, which dissociates CDC2 from
CYCLIN B1 and P21. Moreover, the P53 protein has been
shown to repress the CYCLIN B1 and CDC2 genes, further
reinforcing its effects on cell cycle arrest (24,25). In addition to
halting cell cycle progression, P53 induces apoptosis through
inhibition of the antiapoptotic protein BCL-2, thus releasing
BCL-2’s inhibition on the proapoptotic BAX and BAK. The
latter proteins stimulate the release of cytochrome-c from
mitochondria, the repression of inhibitors of apoptosis proteins,
and hampering of AIP’s repression on caspase-9, leading to
apoptosis (26). Also, P53 has been implicated in the regulation of
proteins that participate in DNA repair (XPC, DDB2, P53R2),
autophagy (DRAM, MAP-LC3II), inflammation (IKKb/NFkB),
and angiogenesis (MASPIN, TSP1, BAI1, VEGF, COLLAGEN
VIIIa1) (22). Proteins regulated by P53 may in turn alter the
expression levels, posttranslational modifications, DNA binding,
protein-protein interactions, and localization of other proteins
comprised in subnetworks further amplifying the duration and
amplitude of the signal initiated by food components. Moreover,
the P53 protein itself is extensively regulated through positive
(transcription factor E2F) and negative (murine double minute-2)
regulators, post-translational modifications that affect its levels,
subcellular localization, DNA binding, and transactivation po-
tential (27). The example of the P53 network provides an
excellent proof-of-principle that proteomic tools are necessary to
perform the measurement of quantitative and qualitative influ-
ences of food components on complex protein networks and
subnetworks, the study of which is largely impractical using
traditional protein methodologies.

Post-translational modifications

Factors that contribute to increasing the complexity of protein
networks are post-translational modifications such as phospho-
rylation, acetylation, methylation, glycosylation, myristoylation,
nitrosylation, sumoylation, palmitoylation, and ubiquitination.
Proteins can also be modified through oxidation, nitration, or
binding to lipid moieties (28). Post-translational modifications
influence protein structure, stability, and localization. Phospho-
rylation of the ERK, JNK, and P38 kinases are necessary for their
translocation to the nucleus and activation of transcription
factors (29). The activation of phosphatidylinositol 3-kinases by
point mutations, receptors, small GTPASE rat sarcoma (RAS),
and AKT induce system-wide protein responses leading to cell
transformation (30). Hence, proteomics offers attractive oppor-
tunities for the qualitative and quantitative analysis of how food
components influence post-translational modifications associated
with growth stimulation (31) or metabolic stress (32).

The human kinome comprises over 500 protein kinases,
which transiently phosphorylate predominantly serine and thre-
onine residues, although a subgroup (;90 tyrosine kinases)
phosphorylates tyrosine residues on receptors, including EGFR,
IR, and FGFR as well as nonreceptor proteins (i.e., tyrosine
kinase SRC and others). About one-half of the protein tyrosine
kinases are linked to human cancers through constitutive
activation (33). ERK alone can phosphorylate .80 substrates
in the cytoplasm and the nucleus (34). Interestingly, quantita-
tive phosphoproteomic studies illustrated that a cluster of
tyrosine kinases mediated the invasive effects of SRC (35), which is
overexpressed in ;80% of human colorectal cancers (36). There-
fore, a proteomic overview of the kinome in colonic cells may help

5 Abbreviations used: 2D, 2-dimensional gel electrophoresis; ESI, electrospray

ionization; ITC, isothiocyanate; LC, light chromatography; MALDI, matrix-assisted

laser desorption/ionization;MS/MS, tandemMS; Q, quadrupole; RAS, rat sarcoma;

SILAC, stable isotope-based labeling; TOF, time-of-flight.
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identify dysregulated protein networks and assist in the generation
of working hypotheses for targeting of SRC and other tyrosine
kinases with food components. Other studies that used proteomic
approaches suggested that the anticarcinogenic properties of
genistein may be related to inhibition of the tyrosine kinase activity
of SRC, EGFR, PDGFR, and IR (37) as well as activation of
phosphatases, which reverse phosphorylation. Proteomic studies of
peripheral blood mononuclear cells from postmenopausal women
revealed that supplementation with soy isoflavones increased the
levels of protein tyrosine phosphatases (38).

An example of a post-translational modification that influ-
ences subcellular distribution and protein-protein interactions
is palmitoylation, which enhances hydrophobic anchoring of
proteins to the fatty acid chain into the lipid bilayer. Palmitoy-
lation regulates trafficking and function of many transmembrane
proteins, including receptors, SRC family kinases, and RAS
proteins. Proteomic analyses have the potential to assess how
dietary modulators of palmitoylation influence redistribution of
certain proteins to various cellular compartments and regulate
processes associated with carcinogenesis (39). For example,
palmitoylation of the estrogen receptor-a is necessary for its
association with the plasma membrane and interactions with
caveolin-1 and for the nongenomic activation of ERK- and
AKT-regulated pathways (40). Therefore, proteomics may be
useful to investigate how food components influence cellular
relocation of proteins involved in growth stimulation. Studies
with mouse colonocytes reported that supplementation with
DHA disrupted RAS signaling by displacing H-RAS from
caveolae while excluding EGFR from lipid rafts (41). Given
the large number of cancers with abnormal RAS signaling, the
adoption of proteomic approaches may accelerate the devel-
opment of preventive strategies based on supplementation with
DHA and other food components.

State of Development of Proteomic

Technologies and Challenges

An in-depth discussion of the evolution and state of proteomic
technologies is beyond the scope of this manuscript. Therefore,
we refer to excellent reviews of the scientific principles of
various proteomic platforms (42–44). The following para-
graphs offer some considerations about the dynamic range and

versatility of MS-based proteomics and examples of applications
in nutrition and cancer prevention research.Table 1 provides a list
of preclinical and clinical investigations that have used various
MS platforms to assess the impact of various food components
and dietary mixtures on biological processes that impinge on
cancer.

Top-down and bottom-up proteomics

Of the several proteomic methods that have been developed,
all involve protein digestion, fractionation, and MS analysis of
peptide ions, from which it is possible to derive the amino acid
sequence and post-translational modifications and calculate
the amount of selected peptides. In top-down proteomics,
separation and analysis are performed directly on intact proteins,
followed by digestion and MS analysis. The top-down ap-
proach starts with the intact protein and it draws inferences
about amino acid composition, post-translational modifica-
tions, and protein functionality. Conversely, in bottom-up
proteomics, protein samples first undergo proteolytic diges-
tion followed by separation of peptides and analytical mea-
surement by MS. The concept behind the bottom-up approach
is to use information about amino acid and post-translational
modifications to reconstruct the protein of interest and gain
knowledge about its functionality. The latter method is more
sensitive, but it has the drawback of not capturing all informa-
tion about small proteins (,30 kD), because they generate fewer
peptides (42).

Protein separation techniques

Two-dimensional (2D) SDS-PAGE has been widely used to
detect differentially expressed proteins based on mass and
charge. 2D electrophoresis utilizes isoelectric focusing prior to
gel separation, which can be followed by gel excision of proteins
of interest, digestion, and MS analysis. 2D gel electrophoresis
separation followed by in-gel trypsin digestion and MS analysis
have been used to identify protein targets of various food
components, including grape resveratrol in lymphoma cells (45),
cruciferous ITC and indole compounds in colon (46) and
prostate (47,48) cancer cells, and the soy isoflavone genistein in
developing normal mammary tissue (49) (Table 1). However, 2D
gels have a bias against membrane proteins, large proteins, and
low-abundance proteins. Also, proteins with an extreme isoe-

FIGURE 1 Protein networks as targets for bioac-

tive food components. A simplified scheme of how

food components reported to induce p53, selected

as a prototype interconnecting protein node, may

influence proteins that belong to neighboring net-

works controlling biological processes. Stimulatory

effects of p53 are shown in green and repressive

effects are shown in red. Proteomic tools are

needed to learn about the topology and dynamic

behavior of protein networks that impinge on cancer

risk and assess quantitative and qualitative influ-

ences of food components.
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lectric point (10 , isoelectric point , 3) are not effectively
resolved (50).

An alternative method to 2D separation is affinity chroma-
tography, which can be used to capture proteins of interest. For
example, in human plasma, ;99% of the protein mass is due to
;22 proteins, and their removal through a chromatographic
approach (e.g., matrix immobilized antibody) is advantageous
prior to MS to enhance the detection of less abundant proteins
(51). The preliminary precipitation of albumin and Ig through
affinity chromatography prior to MS analysis has been used
successfully in clinical studies that examined the effects of the
glutathione-S-transferase-M1 phenotype on the serum pepti-
dome following supplementation with cruciferous vegetables
(52). Other studies that investigated the anticarcinogenic prop-
erties of ITC utilized affinity chromatography with streptavidin-
Sepharose beads to purify cysteine-containing protein targets of
ITC (50). In the latter study, MS analysis of bound proteins
identified macrophage migration inhibitory factor, a proinflam-
matory cytokine, as a primary binding target for ITC.

To by-pass challenges related to protein separation, the entire
proteome from a biological sample (e.g., cell, tissue, biofluid) can
be first digested, typically by trypsin. Then, the resulting peptides
can be separated using various techniques, including ion exchange
chromatography, isoelectric focusing, ion-pairing reversed-phase
HPLC, and phosphopeptide chromatography. To investigate the
effects of genistein on the phosphoproteomic profile of gastric
cancer SGC-7901 cells, hydrophilic interaction chromatography
methods with the metal oxide TiO2 were utilized for the
enrichment of phosphopeptides prior to light chromatography
(LC)-tandem MS (MS/MS) analysis (53). These studies led to
the identification of novel phopshoprotein targets for genistein,
including receptors, signal adaptors, protein kinases, protein
phosphatase regulatory subunits, and transcription regulators.
Principles and applications of global and site-specific quantita-
tive phosphoproteomics are reviewed elsewhere (54).

Ionization of peptides

For MS analysis, peptides first need to be ionized. Two main
ionization techniques are commonly used and include matrix-
assisted laser desorption/ionization (MALDI) and electrospray
ionization (ESI). In MALDI, the peptide mixture is cocrystal-
lized with a matrix that upon excitement with a UV laser leads to
the ionization of peptides through gain of a proton. The ionized
peptide molecule is usually referred to as [M+H]+ (55). ESI
utilizes a solvent system to dissolve the peptide mixture, which is
then electro-sprayed into a vacuum chamber. Then, through
solvent evaporation or extraction methods, the peptides are
ionized. With ESI, most peptide ions gain more than one proton
charge ([M+nH]n+) (56). Regardless of the technique used for
ionization, peptide ions are analyzed based on their m/z (42–44).
Several examples of studies that utilized MALDI or ESI methods in
nutrition and cancer prevention research are reported in Table 1.

MS

In MS, 3 types of information are necessary for each peptide and
include mass, peptide ion intensity, and list of peptide ion
fragments (44). An MS method for peptide ion mass determi-
nation is time-of-flight (TOF), in which travel distance of
peptide ions is calculated based on the square root of m/z, i.e.,
peptides with a highm/z travel slower compared with those with
a lower m/z. Then, the m/z values of unknown peptide ions are
calculated against TOF of internal peptide ion standards. A
second MS method utilizes quadrupole (Q) chambers that
measure “spiraling” trajectories of peptide ions of preselectedm/

z values. Because of their sensitivity, triple Q have been used for
quantitative measurement of single or multiple fragment ions. In
single/multiple reaction monitoring, the first Q chamber is used
to select the peptide ion of interest; in the second Q, the peptide
ion is fragmented; and in the third Q, one or a few peptide ions
are collected. Therefore, multiple Q are used as mass filters that
allow the passage of ions of selected m/z ratios (57). A third
approach for MS determination is based on ion traps, which
eject peptide ions of differentm/z values onto theMS detector. In
general, ion traps are useful, because they accumulate ions of
interest but have limited resolution (500–2000) compared with
TOF analyzers (.10,000). A fourth group of MS known as
Orbitraps and Fourier transform-ion cyclotron resonance sep-
arate ions based on oscillation frequencies and have a mass
resolution .60,000 (44).

Platforms for proteomic analysis need to combine an ioniza-
tion technique with an MS platform. Widely used combinations
are MALDI-TOF for 2D electrophoresis and ESI-ion trap/
Orbitrap for LC-MS. MS platforms commonly used today
include a chromatographic technique (e.g., nano HPLC) followed
by ESI-MS/MS analysis. Because the on-line nanoHPLC-ESI
combination operates in the liquid phase, it eliminates losses due
to separation and collection steps. Conversely, when combining
LC with MALDI, eluted peptides need to be mixed with the
appropriate matrix for subsequent MALDI analysis. The latter
solution is more time-consuming compared with the LC-based
platforms (42).

After peptide mass determination, a second goal in MS is to
determine the amino acid sequence of the peptides of interest.
This is accomplished through fragmentation of the peptide and
recording of the m/z values of the fragments in a tandem mass
spectrum. This approach relies on the use of 2 distinct (tandem)
MS analyzers or the sequential use of the same MS analyzer.
Examples of tandem platforms include Q-TOF, triple Q, and
TOF-TOF (44). Sequential platforms utilize ion traps or Fourier
transform-ion cyclotron resonance analyzers (42). The fragmen-
tation of peptide ions can be accomplished through collision with
gas molecules such as He, N2, or Ar, which cause preferential
cleavage of peptide bonds and weak modifications such as
glycosylation and phosphorylation linkages (42). An alternative
fragmentation technique utilizes electron transfer, in which
positively charged peptide ions react either with an electron
donor (e.g., fluoranthene) or electrons generated by heat, leading
to the gain of an unpaired electron and peptide bond cleavage.
Compared with collision methods, the electron transfer approach
appears to be more accurate for the analysis of large peptides or
peptides with post-translational modifications (54).

The selection ofMS peaks for sequencing is commonly carried
out using 3 strategies. In shotgun or discovery proteomics, a full
scan of the peptide ions entering the MS is performed. Then,
peptide ions are selected for fragmentation and determination
of the amino acid sequence. This strategy has a bias for
more intense protein signals. A second protein identification
approach involves 2 separate MS analyses for quantification
and sequencing. This method improves quantitative measure-
ments in favor of less abundant proteins. A third approach is
targeted proteomics, which focuses on determination of the
spectrum of fragment ions from a preselected list of peptides
(43,57).

When determining the amino acid sequence of the peptides of
interest, the fragmentation spectrum of a peptide is compared
with theoretical fragmentation patterns of peptides contained
in databases. Then, the fidelity of the predicted amino acid
sequence is scored using different computational tools. An
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example of a database of consensus spectra is available through
the PeptideAtlas project (58). A main issue in proteomic
experiments is that of discriminating true- from false-positive
matches. In de novo sequencing, the fragment ion spectrum is
used to determine the peptide sequence (44).

Quantitative assessment and prediction of protein
networks

Several LC-MS/MS–based methods have been developed for
quantitative proteomics and include label-free methods (42),
and stable isotope methods such as metabolic stable isotope-
based labeling (59), enzymatic isotope-coded affinity tag (42),
and chemical isobaric tag for relative and absolute quantifica-
tion (60) labeling. In label-free methods, the MS is used directly
for quantitation based on signal intensity of peptides or
spectral counting. In MS methods that use stable isotope
labeling, quantitation is based on the mass increase of the label.
For example, linear ion trap-Orbitrap and quantitative stable
isotope-based labeling analyses were adopted in shotgun
proteomics to identify in gastric cancer SGC-7901 cells the
phosphoproteins and their regulatory sites in signaling path-
ways targeted by genistein (53). These investigations helped to
identify proteins that mediated genistein-induced G2/M phase
arrest and apoptosis. Specifically, phosphorylation of BCLAF1
at Ser-512 was identified as the regulatory event involved in the
repression of Bcl-2 expression in response to genistein (Table
1). These proteomic studies suggested that specific phospho-
sites rather than the whole protein should be examined to learn
about the impact of food components on the regulation of protein
networks. Similarly, proteomic studies that adopted a Q-TOF
approach (45) revealed that the grape compound resveratrol
induced apoptosis in lymphoma cells through upregulation of
Ser-3 phosphorylated cofilin, which functions in mitochondria as
a checkpoint for programmed cell death (61).

Results of shotgun proteomic studies suggest this is the
method of choice when no prior knowledge is available and for
measurements of relative and absolute protein abundance (62).
One of the limitations of the shotgun approach is that repeated
analyses of the same samples may generate different, partially
overlapping proteomes. This problem can be overcome with
repeated analysis and prefractionation or use of the last gener-
ation of MS-Orbitrap or Q-TOF (59).

A main objective of proteomic studies in nutrition and
cancer prevention research is to develop predictive models of
how pathways and protein complexes relay signals from food
components. However, the cross-talk among pathways renders
the dynamic prediction of protein network response to food
components challenging. Sophisticated computational tools are
now available to study protein-protein interaction networks
(63) and for the proteomic-based analysis of cancer processes
(64). Proteomic workflows should also include validation steps
with various biochemical assays (65). Useful tools for the
validation of MS data are protein microarrays, including
forward- and reverse-phase protein arrays, which offer the
advantage of high throughput. Some drawbacks of protein
microarrays may be inability to fully inform about protein-
protein interactions and complexity of spotting the complete
proteome under study (66).

Future Areas of Proteomic Research and

Needs

The complexity of protein wiring is a major challenge in the
design of cancer prevention strategies based on individual

bioactive components or food associations. Thousands of
compounds present in the diet likely induce synergistic or
opposing effects. Proteomic approaches are welcome to make an
important paradigm shift. Specific research questions that
should be addressed using proteomic approaches include: 1)
how the timing and dose of exposure to bioactive compounds
influence the activity of protein networks that contribute to
cancer processes; 2) which are the protein networks and
protein modifications that mediate the cell- and tissue-specific
response to food components [global proteomic studies suggest
that tissue specificity may be achieved by precise regulation of
protein levels and modifications in space and time (67)]; 3)
whether food components lead to sustained regulation of
protein networks even after the original food exposure has
been removed; and 4) which are the qualitative and quantita-
tive proteomic modifications that discriminate between re-
sponders and nonresponders. Ideally, the systematic adoption
of proteomic tools rather than a classical protein-by-protein
approach should help isolate groups of proteins that can be
targeted with individual food components or associations.
However, the integration of proteomics with other comple-
mentary, high-throughput, “omic” approaches, such as ge-
nomics, epigenetics, and metabolomics, may offer the best
insight into the mechanisms that determine the switch from
normal to cancer phenotype and response to food components
(68). This need for integration is perhaps best underlined by
studies showing that interactions between inter-individual
genotypic differences in metabolism and disposition influence
the proteomic response to cruciferous vegetables (52).

To date, ;30,000 proteomic publications are available
through a PubMed search. However, only ;6000 have
reported on the use of proteomics in cancer research, and of
the latter studies, only a small number (;120) focused on the
effects of food components and diet. Also, many of the
published nutrition proteomic and cancer studies do not
report a comprehensive analysis of protein networks. It is clear
that the adoption of proteomics tools in nutrition and cancer
prevention research is lagging behind other research areas
such as pharmacology, for which .5400 studies are available
through PubMed. Several factors appear to be hindering the
wide adoption of proteomic tools in nutrition and cancer
prevention research and include: 1) limited accessibility to
proteomic technologies; 2) insufficient preanalytical, sample
handling, instrumentations, and sample processing training;
and 3) insufficient cross-training in postanalytical bioinfor-
matics, computational biology, structural biology, and system
biology analyses. Progress in these areas may be accelerated by
pre- and postdoctoral training, early-career awards, work-
shops, and conferences. The widespread utilization of proteo-
mic tools could be facilitated by the availability of low-cost
platforms. It is important that professional organizations and
funding agencies develop targeted initiatives, foster collabo-
rations, and support new funding mechanisms to support and
encourage collaborative efforts among proteomic, nutrition,
and cancer scientists.
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