

### **Opportunities and Challenges for Nutritional Proteomics in Cancer Prevention**<sup>1,2</sup>

Donato F. Romagnolo<sup>3\*</sup> and John A. Milner<sup>4</sup>

<sup>3</sup>Department of Nutritional Sciences and The University of Arizona Cancer Center, The University of Arizona, Tucson, AZ; and <sup>4</sup>Nutritional Sciences Research Group, Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Rockville, MD

#### Abstract

Knowledge gaps persist about the efficacy of cancer prevention strategies based on dietary food components. Adaptations to nutrient supply are executed through tuning of multiple protein networks that include transcription factors, histones, modifying enzymes, translation factors, membrane and nuclear receptors, and secreted proteins. However, the simultaneous quantitative and qualitative measurement of all proteins that regulate cancer processes is not practical using traditional protein methodologies. Proteomics offers an attractive opportunity to fill this knowledge gap and unravel the effects of dietary components on protein networks that impinge on cancer. The articles presented in this supplement are from talks proffered in the "Nutrition Proteomics and Cancer Prevention" session at the American Institute for Cancer Research Annual Research Conference on Food, Nutrition, Physical Activity and Cancer held in Washington, DC on October 21 and 22, 2010. Recent advances in MS technologies suggest that studies in nutrition and cancer prevention may benefit from the adoption of proteomic tools to elucidate the impact on biological processes that govern the transition from normal to malignant phenotype; to identify protein changes that determine both positive and negative responses to food components; and, finally, for predicting responders and nonresponders. However, both the limited accessibility to proteomic technologies and research funding appear to be hampering the routine adoption of proteomic tools in nutrition and cancer prevention of proteomic tools in nutrition and cancer prevention for proteomic tools in nutrition and cancer prevention for proteomic tools in nutrition and cancer prevention research. J. Nutr. 142: 1360S–1369S, 2012.

### Introduction

The adoption of "omic" technologies defined as the collection and analysis of large-scale measurements related to the organi-

<sup>1</sup> Published in a supplement to *The Journal of Nutrition*. Presented at the 2010 American Institute for Cancer Research Annual Conference held in Washington, DC, October 21-22, 2010. The conference was organized by the American Institute for Cancer Research. This work was supported by an Intergovernmental Personnel Act from the Nutritional Sciences Research Group, Division of Cancer Prevention, National Cancer Institute, NIH to Donato F. Romagnolo, University of Arizona, Tucson. The views expressed in this publication are those of the authors and do not reflect the views or policies of the sponsors or the publisher, Editor, or Editorial Board of The Journal of Nutrition. The supplement coordinator for this supplement was Donato F. Romagnolo, University of Arizona, Tucson. Supplement Coordinator disclosures: D. F. Ramagnolo, no conflicts of interest. The supplement is the responsibility of the Guest Editor to whom the Editor of The Journal of Nutrition has delegated supervision of both technical conformity to the published regulations of The Journal of Nutrition and general oversight of the scientific merit of each article. The Guest Editor for this supplement was Harry D. Dawson, ARS/USDA, Guest Editor disclosure: H. D. Dawson, no conflicts of interest, Publication costs for this supplement were defrayed in part by the payment of page charges. This publication must therefore be hereby marked "advertisement" in accordance with 18 USC section 1734 solely to indicate this fact. The opinions expressed in this publication are those of the authors and are not attributable to the sponsors or the publisher, Editor, or Editorial Board of The Journal of Nutrition

<sup>2</sup> Author disclosures: D. F. Romagnolo and J. A. Milner, no conflicts of interest.
 \* To whom correspondence should be addressed. E-mail: donato@u.arizona.
 edu.

zation and regulation of biological systems sparked new enthusiasm for the prevention of chronic diseases, including cancer (1). One of the central tenants of the Human Genome Project was to provide a blueprint to categorize cancers and develop biomarkers of cancer susceptibility based on genetic information (2). However, variations in epidemiologic trials of nutrients for cancer prevention and susceptibility informed that gene-environment interactions have the potential for influencing a person's risk for cancer (3) or response to dietary intervention (4). For example, in BRCA-1 mutation carriers, the risk of breast tumors is either reduced by higher intake of fruits and vegetables (5) or increased by polymorphisms in the methyl-tetrahydrofolate reductase gene (6). The example of BRCA-1 illustrates that in the postgenomic era, there is a need for new investigative tools to explain how diet modifies the risk of cancer (4,7).

The field of proteomics is concerned with the systematic study of all proteins in cell compartments, tissues, and biofluids. Of the  $\sim$ 20,000 protein-coding human genes discovered through the genome project,  $\sim$ 8000 (38%) reportedly lack experimental evidence at the protein level (8). Up to one million different protein molecules have been estimated to originate from the combined effects of alternative splicing, protein modifications, and pathological and physiological conditions. Therefore, it seems reasonable that proteomic tools should be adopted to make a direct assessment of all the proteins that influence biological processes associated with cancer (9).

Historically, large differences in chemical properties of proteins and the wide dynamic range of protein concentrations have made profiling proteins challenging (10). However, recent improvements in technologies allow the identification and quantitation of proteins, analysis of protein-protein interactions, and characterization of posttranslational modifications (11). Therefore, assessing the dynamic changes of protein profiles brought about by dietary components may offer new opportunities for the development of proteomic signatures for each bioactive food component or diet and predictive models of cancer risk.

Articles presented in this supplement are from talks proffered in the "Nutrition Proteomics and Cancer Prevention" session at the American Institute for Cancer Research Annual Research Conference on Food, Nutrition, Physical Activity and Cancer held in Washington, DC on October 21 and 22, 2010. This session originated from the concept that future progress in the implementation of nutritional strategies for cancer prevention requires knowledge of how dietary components influence protein targets that govern the transition from normal to malignant phenotype. Proteomic studies presented by Zhen Xiao et al. (12) highlighted that isothiocyanates  $(ITC)^5$  commonly found in cruciferous vegetables may target the microtubule network. They proposed that the antiproliferative effects of ITC may be related to covalent modifications of cysteine residues of tubulin leading to loss of tubulin polymerization, a process that is necessary for maintaining cell structure. The article presented by Baukje de Roos (13) addressed the benefits of using proteomic approaches to assess the influence of dietary fatty acids on mechanisms involved in carcinogenesis and discovery of new protein biomarkers of cancer risk. Angela Betancourt et al. (14) used proteomic technologies to discover proteins that modulated the response to the hormonally active chemical bisphenol A and the soy component genistein. Unequivocally, these studies offer compelling evidence that the future of nutritional proteomics in cancer prevention remains bright. However, efforts are needed for its incorporation into diagnostic tools for predicting benefits from dietary changes.

# Protein Networks as Targets for Bioactive Food Components

#### **Protein networks**

Implicit in the adoption of proteomic tools is the concept that the composition and functionality of protein networks determine disease risk (15). The value of targeting protein networks rather than individual proteins or protein modifications stems from the fact that protein inter-relationships regulate biological processes such as proliferation, apoptosis, autophagy, DNA repair, inflammation, and angiogenesis. For example, various food components that possess anticarcinogenic properties have been shown to activate the tumor suppressor protein, P53 (16– 21), a highly connected nodal protein that regulates a vast number of signaling pathways (22) (Fig. 1). One important consequence of P53 activation is the halting of transition through G1/S phase by the stimulated expression of the tumor suppressor protein P21, which then interferes with the formation of cyclin-dependent kinase complexes necessary for cell cycle progression (23). In addition, P53 has been reported to block G2/M phase transition by inducing expression of  $14-3-3\sigma$ , which anchors CYCLIN B1-cyclin-dependent kinase 1 in the cytoplasm, and of GADD45, which dissociates CDC2 from CYCLIN B1 and P21. Moreover, the P53 protein has been shown to repress the CYCLIN B1 and CDC2 genes, further reinforcing its effects on cell cycle arrest (24,25). In addition to halting cell cycle progression, P53 induces apoptosis through inhibition of the antiapoptotic protein BCL-2, thus releasing BCL-2's inhibition on the proapoptotic BAX and BAK. The latter proteins stimulate the release of cytochrome-c from mitochondria, the repression of inhibitors of apoptosis proteins, and hampering of AIP's repression on caspase-9, leading to apoptosis (26). Also, P53 has been implicated in the regulation of proteins that participate in DNA repair (XPC, DDB2, P53R2), autophagy (DRAM, MAP-LC3II), inflammation (IKKB/NFKB), and angiogenesis (MASPIN, TSP1, BAI1, VEGF, COLLAGEN VIII $\alpha$ 1) (22). Proteins regulated by P53 may in turn alter the expression levels, posttranslational modifications, DNA binding, protein-protein interactions, and localization of other proteins comprised in subnetworks further amplifying the duration and amplitude of the signal initiated by food components. Moreover, the P53 protein itself is extensively regulated through positive (transcription factor E2F) and negative (murine double minute-2) regulators, post-translational modifications that affect its levels, subcellular localization, DNA binding, and transactivation potential (27). The example of the P53 network provides an excellent proof-of-principle that proteomic tools are necessary to perform the measurement of quantitative and qualitative influences of food components on complex protein networks and subnetworks, the study of which is largely impractical using traditional protein methodologies.

#### **Post-translational modifications**

Factors that contribute to increasing the complexity of protein networks are post-translational modifications such as phosphorylation, acetylation, methylation, glycosylation, myristoylation, nitrosylation, sumoylation, palmitoylation, and ubiquitination. Proteins can also be modified through oxidation, nitration, or binding to lipid moieties (28). Post-translational modifications influence protein structure, stability, and localization. Phosphorylation of the ERK, JNK, and P38 kinases are necessary for their translocation to the nucleus and activation of transcription factors (29). The activation of phosphatidylinositol 3-kinases by point mutations, receptors, small GTPASE rat sarcoma (RAS), and AKT induce system-wide protein responses leading to cell transformation (30). Hence, proteomics offers attractive opportunities for the qualitative and quantitative analysis of how food components influence post-translational modifications associated with growth stimulation (31) or metabolic stress (32).

The human kinome comprises over 500 protein kinases, which transiently phosphorylate predominantly serine and threonine residues, although a subgroup (~90 tyrosine kinases) phosphorylates tyrosine residues on receptors, including EGFR, IR, and FGFR as well as nonreceptor proteins (i.e., tyrosine kinase SRC and others). About one-half of the protein tyrosine kinases are linked to human cancers through constitutive activation (33). ERK alone can phosphorylate >80 substrates in the cytoplasm and the nucleus (34). Interestingly, quantitative phosphoproteomic studies illustrated that a cluster of tyrosine kinases mediated the invasive effects of SRC (35), which is overexpressed in ~80% of human colorectal cancers (36). Therefore, a proteomic overview of the kinome in colonic cells may help

<sup>&</sup>lt;sup>5</sup> Abbreviations used: 2D, 2-dimensional gel electrophoresis; ESI, electrospray ionization; ITC, isothiocyanate; LC, light chromatography; MALDI, matrix-assisted laser desorption/ionization; MS/MS, tandem MS; Q, quadrupole; RAS, rat sarcoma; SILAC, stable isotope-based labeling; TOF, time-of-flight.

**FIGURE 1** Protein networks as targets for bioactive food components. A simplified scheme of how food components reported to induce p53, selected as a prototype interconnecting protein node, may influence proteins that belong to neighboring networks controlling biological processes. Stimulatory effects of p53 are shown in green and repressive effects are shown in red. Proteomic tools are needed to learn about the topology and dynamic behavior of protein networks that impinge on cancer risk and assess quantitative and qualitative influences of food components.



identify dysregulated protein networks and assist in the generation of working hypotheses for targeting of SRC and other tyrosine kinases with food components. Other studies that used proteomic approaches suggested that the anticarcinogenic properties of genistein may be related to inhibition of the tyrosine kinase activity of SRC, EGFR, PDGFR, and IR (37) as well as activation of phosphatases, which reverse phosphorylation. Proteomic studies of peripheral blood mononuclear cells from postmenopausal women revealed that supplementation with soy isoflavones increased the levels of protein tyrosine phosphatases (38).

An example of a post-translational modification that influences subcellular distribution and protein-protein interactions is palmitoylation, which enhances hydrophobic anchoring of proteins to the fatty acid chain into the lipid bilayer. Palmitoylation regulates trafficking and function of many transmembrane proteins, including receptors, SRC family kinases, and RAS proteins. Proteomic analyses have the potential to assess how dietary modulators of palmitoylation influence redistribution of certain proteins to various cellular compartments and regulate processes associated with carcinogenesis (39). For example, palmitoylation of the estrogen receptor- $\alpha$  is necessary for its association with the plasma membrane and interactions with caveolin-1 and for the nongenomic activation of ERK- and AKT-regulated pathways (40). Therefore, proteomics may be useful to investigate how food components influence cellular relocation of proteins involved in growth stimulation. Studies with mouse colonocytes reported that supplementation with DHA disrupted RAS signaling by displacing H-RAS from caveolae while excluding EGFR from lipid rafts (41). Given the large number of cancers with abnormal RAS signaling, the adoption of proteomic approaches may accelerate the development of preventive strategies based on supplementation with DHA and other food components.

## State of Development of Proteomic Technologies and Challenges

An in-depth discussion of the evolution and state of proteomic technologies is beyond the scope of this manuscript. Therefore, we refer to excellent reviews of the scientific principles of various proteomic platforms (42–44). The following paragraphs offer some considerations about the dynamic range and

versatility of MS-based proteomics and examples of applications in nutrition and cancer prevention research. **Table 1** provides a list of preclinical and clinical investigations that have used various MS platforms to assess the impact of various food components and dietary mixtures on biological processes that impinge on cancer.

#### Top-down and bottom-up proteomics

Of the several proteomic methods that have been developed, all involve protein digestion, fractionation, and MS analysis of peptide ions, from which it is possible to derive the amino acid sequence and post-translational modifications and calculate the amount of selected peptides. In top-down proteomics, separation and analysis are performed directly on intact proteins, followed by digestion and MS analysis. The top-down approach starts with the intact protein and it draws inferences about amino acid composition, post-translational modifications, and protein functionality. Conversely, in bottom-up proteomics, protein samples first undergo proteolytic digestion followed by separation of peptides and analytical measurement by MS. The concept behind the bottom-up approach is to use information about amino acid and post-translational modifications to reconstruct the protein of interest and gain knowledge about its functionality. The latter method is more sensitive, but it has the drawback of not capturing all information about small proteins (<30 kD), because they generate fewer peptides (42).

#### Protein separation techniques

Two-dimensional (2D) SDS-PAGE has been widely used to detect differentially expressed proteins based on mass and charge. 2D electrophoresis utilizes isoelectric focusing prior to gel separation, which can be followed by gel excision of proteins of interest, digestion, and MS analysis. 2D gel electrophoresis separation followed by in-gel trypsin digestion and MS analysis have been used to identify protein targets of various food components, including grape resveratrol in lymphoma cells (45), cruciferous ITC and indole compounds in colon (46) and prostate (47,48) cancer cells, and the soy isoflavone genistein in developing normal mammary tissue (49) (Table 1). However, 2D gels have a bias against membrane proteins, large proteins, and low-abundance proteins. Also, proteins with an extreme isoe-

**TABLE 1** MS platforms and proteomic studies of food components in cancer prevention research<sup>1</sup>

| Contrant         Contrant           Contrant         Environmentaria         Contrant of secondimican of secondimicant of secondimican                                                      | Food component                    | Model                                          | Proteomic platform             | Combined effects of food<br>components on biological processes   | Reference |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|------------------------------------------------|--------------------------------|------------------------------------------------------------------|-----------|
| UF         Unstant         Description         Description <thdescription< th=""> <thdescripition< th=""> <thdescript< td=""><td>Cruciferous</td><td></td><td></td><td></td><td></td></thdescript<></thdescripition<></thdescription<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Cruciferous                       |                                                |                                |                                                                  |           |
| If                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BITC. PEITC. SEN                  | lung A549                                      | 2D-nano RPI C-MAI DI-TOF/TOF   | Disruption of extoskeleton organization                          | 48        |
| Std         Deart (DT)         ACL (C)(T)         ACL (C)(T) <td>BITC, PEITC, SFN</td> <td>Breast, Ras-MCF10A</td> <td>LC-ESI-Q-TOF</td> <td>Induction of apoptosis</td> <td>69</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | BITC, PEITC, SFN                  | Breast, Ras-MCF10A                             | LC-ESI-Q-TOF                   | Induction of apoptosis                                           | 69        |
| SN         Frame (Locie         Description         Descripion <thdescription< th=""> <thdesc< td=""><td>SFN</td><td>Breast, MCF10, MCF12A</td><td>SILAC, LC-QTOF</td><td>Upregulation of hydroxysteroid metabolism</td><td>59</td></thdesc<></thdescription<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SFN                               | Breast, MCF10, MCF12A                          | SILAC, LC-QTOF                 | Upregulation of hydroxysteroid metabolism                        | 59        |
| SN         Demonstration control         Demonstration control <thdemonstration contro<="" th="">         Demonstration co</thdemonstration>                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SFN                               | Prostate, LNCaP                                | 2D-MALDI-TOF/TOF               | Induction of apoptosis                                           | 47        |
| SNEVInternet denotes2.4XALD TGInternet denotes2.4XALD TGFUEDer (mb.)Der (mb.)Z.4XALD TG/TGDenotes denotes2.4XALD TG/TGDenotes denotes2.4XALD TG/TGFUEDer (mb.)Der (mb.)Denotes denotesDenotes denotes2.4XALD TG/TGDenotes denotes2.4XALD TG/TGFUEDer (mb.)Denotes denotesDenotes denotesDenotes denotes2.4XALD TG/TGDenotes denotes2.4XALD TG/TGFUEDenotesDenotesDenotesDenotesDenotesDenotes2.4XALD TG/TGFUEDenotesDenotesDenotesDenotesDenotesDenotesDenotesFUEDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesFUEDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesFUEDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesFUEDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesFUEDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesFUEDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenotesDenote                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SFN                               | Colon, Caco-2                                  | 2D-MALDI-TOF                   | Decrease of neurotransmitter receptors                           | 46        |
| Eff:         Down, Teacher         Description         Description <thdescription< th=""> <thdescription< th=""> <thd< td=""><td>SFN</td><td>Liver, huh-7</td><td>2D-MALDI-TOF</td><td>Induction of apoptosis</td><td>70</td></thd<></thdescription<></thdescription<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SFN                               | Liver, huh-7                                   | 2D-MALDI-TOF                   | Induction of apoptosis                                           | 70        |
| Eff         Detail and analysis         Detail of analysis <thdetail analysis<="" of="" th="">         Detail of analysis<td>PEITC</td><td>Liver, HepG2</td><td>2D-MALDI-T0F/T0F</td><td>Proapoptotic, antiinflammatory</td><td>71</td></thdetail>                                                                                                                                                                                                                                                                                                                                                                                          | PEITC                             | Liver, HepG2                                   | 2D-MALDI-T0F/T0F               | Proapoptotic, antiinflammatory                                   | 71        |
| FUT         Entrol         Indian of pontinements         Entrol         Indian of anticipation         Entrol         En                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PEITC                             | Plasma, TRAMP mice                             | 2D-MALDI-T0F/T0F               | Induction of autophagy                                           | 72        |
| Indd         Conditionant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | PEITC                             | Cervix, Hela                                   | ESI-LTQ                        | Inhibition of proinflammatory cytokine (MIF)                     | 73        |
| Breases Sporta         BeAK, huma         2.0.Comospary/MS         Convolution freesport protein since         2.0           PressiveS, Stationaria         Servit human         2.0.Comospary/MS         Indention of reasport protein since         2.0           PressiveS, Stationaria         Servit human         2.0.Comospary/MS         Indention of reasport protein since         2.0           Matchine         Contor, CSTBR rise         2.0.AULD-10F         Naturente of interaction contoin         2.0           Matchine         Beast, Sprage Dawly ret         2.0.AULD-10F         Naturente of interaction contoin         2.0           Matchine         Beast, Sprage Dawly ret         2.0.AULD-10F         Naturente of interaction contoin         2.0           Matchine         Beast, Sprage Dawly ret         2.0.AULD-10F         Naturente of interaction contoin         2.0           Matchine         Sorres, SO2701         2.0.AULD-10F         Naturente of interaction contoin         2.0           Gentaria         Sorres, SO2701         2.0.AULD-10F         Naturente of interaction contoin         2.0           Gentaria         Read         Sorres, SO2701         2.0.AULD-10F         Naturente of interaction         2.0           Gentaria         Read         Sorres, SO2701         Sorres SO4701         Sorres of contoportenon contoin contoin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Indol-3-carbinol                  | Lung, A/J mice                                 | iTRAQ-SCX-LC-T0F/T0F           | Detoxification, antiproliferative                                | 60        |
| Sector Sp.         Serun, Imma         MADI-10F         Inhomon of negroup voting in GSIM1* solpcas         55           Yapetule intex         Cons., CSBB mise         MADI-10F         Monored inprovement intercolonic PA         52           Yapetule intex         Cons., CSBB mise         ZD-MADI-10F         Monored intercolonic PA         52           Monored         Env., Imma         Env., Imma         ZD-MADI-10F         Monored intercolonic PA         52           Monored         Env., Imma         Env., Imma         ZD-MADI-10F         Monored intercolonic PA         52           Monored         Env., Imma         Env., Imma         ZD-MADI-10F         Monored intercolonic PA         52           Relation         Env., Imma         Env., Imma         ZD-MADI-10F         Monored intercolonic PA         52           Relation         Env., Relation         ZD-MADI-10F         Monored intercolonic PA         52           Relation         Env., Relation         ZD-MAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Brussels Sprouts                  | PBMC, human                                    | 2D-LC-nanospray-MS             | Growth arrest, proapoptotic, antioxidant                         | 74        |
| Besser Sq.         Beauer Journal         MADI-TOF         Beauer Journal Control         Maturature of intracolonic pH, indication         22           Anionidation         Control         Contro         Control         Control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Brassica Sp.                      | Serum, human                                   | MALDI-TOF                      | Inhibition of receptor tyrosine kinase                           | 75        |
| Weiter of the carine control of macronic plu, carine control carine control of macronic plu, carine control carine carine control carine c | Brassica Sp.                      | Serum, human                                   | MALDI-TOF                      | Reduced lipolysis in GSTM1 <sup>+</sup> subjects                 | 52        |
| Mature<br>Anionidant         Cons, GSBB mice         20-MMD-10F         Mantement of innominic pl,<br>entroper protein ordation         20           Marine<br>Reflexion         Bens, Singue-Dawly ret         20-MMD-10F         Entroper protein ordation         20           Reflexion         Bens, Singue-Dawly ret         20-MMD-10F         Entroper protein ordation         20           Reflexion         Bens, Singue-Dawly ret         20-MMD-10F         Entroper protein ordation         20           Reflexion         Bens, Singue-Dawly ret         20-MMD-10F/10E (ESI-MSNS)         Protein ERIP and<br>Protein ERIP and<br>Entroper ERIP and<br>Singue Station         20-MMD-10F/10E         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Vegetable diets                   |                                                |                                |                                                                  |           |
| Afformation         Bean carrier         D>MALDI-TOF         Reduced protein outdation         77           Reflections         Everst Sprague Dawly rat         2.D-MALDI-TOF         Increased offerentation         28           Revision         Everst Sprague Dawly rat         2.D-MALDI-TOF         Increased offerentation         28           Revision         Everst Sprague Dawly rat         2.D-MALDI-TOF         Increased offerentation         28           Revision         Everst Sprague Dawly rat         2.D-MALDI-TOF         Increased offerentation         28           Revision         Everst Sprague Dawly rat         2.D-MALDI-TOF         Proprintion         28           Revision         Environments         Events Formand         20         29           Revision         Environments         Environments         20         20           Revision         Environments         Environments         20         20           Revision         Colon, HT23         2.D-MALDI-TOF         Proparticin GST         20         20           Revision         Colon, HT23         2.D-MALDI-TOF         Proparticin GST         20         20           Revision         Colon, HT23         2.D-MALDI-TOF         Proparticin GST         20         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Mixture                           | Colon, C57BL6 mice                             | 2D-MALDI-TOF                   | Maintenance of intracolonic pH,                                  | 76        |
| Internation         Increased differrition         Increased differrition         Increased differrition           Genistein         Brast, Sprage Dawley rat         2.0-MALD:107/105/105/105/105         Increased differrition         49           Genistein         Brast, Sprage Dawley rat         2.0-MALD:107/105/105         Increased differrition         49           Genistein         Somech, SGC-700         SUAC-SCX-LC-rap/Obtitrap         Increased differrition         40           Genistein         Condu-Hitz         SuAC-SCX-LC-rap/Obtitrap         Increased differrition         40           Geniterin         Condu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Antioxidant                       | Brain, canine                                  | 2D-MALDI-TOF                   | Reduced protein oxidation                                        | 77        |
| Genistein         Breast. Sprague Dawley rat         2D-MM.DI-TOF         Conserved         2D-MM.DI-TOF         Conserved         Endered ERF         Sprague Dawley rat         2D-MM.DI-TOF         Defense         Reader         Sprague Dawley rat         2D-MM.DI-TOF         Reader         Sprague         Sprager         Sprague         Sprague </td <td>Isoflavones</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Isoflavones                       |                                                |                                |                                                                  |           |
| Genistein         Break, Strogete Dawky rat         2.D-MALDI-10F/T0ELCESH/SMS         Reduced ERR signaling         4           Genistein         Strongete Dawky rat         Strongete Dawky rat         Strongete Dawky rat         3           Genistein         Strongete Dawky rat         Strongete Dawky rat         Strongete Dawky rat         3           Genistein         Strongete Dawky rat         Strongete Dawky rat         Strongete Dawky rat         3           Genistein         Stronget Strongete Dawky rat         Strongete Dawky rat         Strongete Stronget Strongete Strongete Stronget Strongete Strongete Strong                                                                                                                                                                                                                                                                                    | Genistein                         | Breast, Sprague-Dawley rat                     | 2D-MALDI-TOF                   | Increased differentiation                                        | 78        |
| Genistein         Stomach, SGC-7901         SLAC SCVLG-rap/Otherap         Impaired signaling, cell growth, imasion         27           Genistein         Lewina, HL-60         SUAC SCVLG-rap/Otherap         Impaired signaling, cell growth, imasion         29           Genistein         Stratemic, SL-Rey 203         SUAC SCVLG-rap/Otherap         Impaired signaling, cell growth, imasion         29           Genistein         Fraidhollel, EAN 9203         SUAC SCVLG-rap/Otherap         Impaired signaling, cell growth, imasion         29           Genistein         Fraidhollel, EAN 9203         SUAMDI-TOF         Impaired signaling, cell growth, imasion         20           Red cover iso/havones         Iwor, Sprague Dawley rat         20-AMJDI-TOF         Imoreased derokristen-GST         20           Red cover iso/havones         Low, Sprague Dawley rat         20-AMJDI-TOF         Imoreased derokristen-GST         20           Generation         Outerestin         Colon, HT23         20-AMJDI-TOF         Imoreased derokristen-GST         20           Generation         Colon, HT23         20-AMJDI-TOF         Praoportoric         20         20           Generation         Colon, HT23         20-AMJDI-TOF         Praoportoric         20         20           Generation         Colon, F341 at         AMJDI-TOF         Praoportori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Genistein                         | Breast, Sprague Dawley rat                     | 2-D-MALDI-T0F/T0F,LC-ESI-MS/MS | Reduced EGFR signaling                                           | 49        |
| GenisteinCenterinLeukernia, HL-60 $2.0$ -MALDI-TOF fromProsportici $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$ $7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Genistein                         | Stomach, SGC-7901                              | SILAC-SCX-LC-trap/Orbitrap     | Impaired signaling, cell growth, invasion                        | 37        |
| Genistein         Storred, SGC-7901         SLAC, SCVLCTD Orbitap         Induction of G2M arrest and apotosis         S3           Genistein         Endotheliel, EAN 926         20-MALDI-TOF         Increased detorritation-ST         20           So isolationes         Endotheliel, EAN 926         20-MALDI-TOF         Increased detorritation-ST         20           So isolationes         Liver, Sprague Dawley rat         20-MALDI-TOF         Antiinflammatory         20           Red color isolationes         Liver, Sprague Dawley rat         20-MALDI-TOF         Antiinflammatory         20           Red color isolatione         Color, HT23         20-MALDI-TOF         Antiinflammatory         20         20           Ouerostin         Color, HT23         20-MALDI-TOF/TOF         Proapotion of dynakeletion         20         20           Ouerostin         Color, HT23         20-MALDI-TOF/TOF         Proapotion of dynakeletion         20         20           Ouerostin         Color, HT23         20-MALDI-TOF/TOF         Proapotion of dynakeletion         20         20           Ouerostin         Liver, HepC2         SULC-HUPCF         Proapotion of dynakeletion         20         20           Ouerostin         Liver, HepC2         SULC-HUPCF         Proapotinc         20         20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Genistein                         | Leukemia, HL-60                                | 2D-MALDI-T0F/T0F               | Proapoptotic                                                     | 79        |
| GenisteinEndothelial, EAhy 2562D-MALD-TOFIncreased detoxification-GST00Six jadfaronesPBMC, human2D-MALD-TOFAntiinflammatory38Red clorer isoffaronesIvier, Sprague Dawley rat2D-MALD-TOFAntiinflammatory38Red clorer isoffaronesLiver, Sprague Dawley rat2D-MALD-TOFAntiingringento38RenoreColon, HT/232D-MALD-TOFPencel levels of 34-Mdroxystencid-dehydrogenase31DuerretinColon, FT/24ZD-MALD-TOF/TOFPencel levels of 34-Mdroxystencid-dehydrogenase32DuerretinColon, FT/23ZD-MALD-TOF/TOFPencel levels of 34-Mdroxystencid-dehydrogenase32DuerretinLower NameColon, FT/24MALD-FT-ICR MALD-TOF/TOFPencel levels of 34-Mdroxystencid-dehydrogenase32DuerretinLower NameColon, FT/24MALD-FT-ICR MALD-TOF/TOFPencel levels of 34-Mdroxystencid-dehydrogenase32DuerretinNeutone NameColon, FT/24ZD-MALD-TOF/TOFAntiograppenic32DuerretinNeutone NameDuerretinName32DuerretinNeutone NameZD-MaLD-TOFNampontoic32DuerretinNeutone NameDuerretinName32DuerretinNameNameName3232DuerretinNameDuerretinName3232DuerretinNameNameName3232DuerretinNameDuerretinName3232DuerretinName <td>Genistein</td> <td>Stomach, SGC-7901</td> <td>SILAC, SCX-LC-LTQ-Orbitrap</td> <td>Induction of G2/M arrest and apoptosis</td> <td>53</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Genistein                         | Stomach, SGC-7901                              | SILAC, SCX-LC-LTQ-Orbitrap     | Induction of G2/M arrest and apoptosis                           | 53        |
| Soy isofiaonesPBMC, human $2D$ -MALDI-TOFArtiinfiammatory38Red clorer isofiavonesLiver, Sprague Dawloy rat $2D$ -MALDI-TOFReduced levels of 3a-hydroxystenoid-dehydrogenase38FlavonoidsLiver, Sprague Dawloy rat $2D$ -MALDI-TOFProapoptoric, disruption of cynskeletion38CulorerctinColon, H23 $2D$ -MALDI-TOFProapoptoric, disruption of cynskeletion88OuerectinColon, SW480 $2D$ -MALDI-TOFProapoptoric, disruption of cynskeletion88OuerectinLiver, HapGZSLIAC-ManDHFLCFSI-DTOFArtiangiogenic88OuerectinNeurohlastoma, SJ-NKPHPLCESI-DTOFArtiangiogenic88OuerectinNeurohlastoma, SJ-NKPHPLCESI-DTOFArtiangiogenic88OuerectinNeurohlastoma, SJ-NKPProapoptotic, distrophone of cynskeletion, antiangiogenic88OuerectinNeurohlastoma, SJ-NKPHPLCESI-DTOFArtiangiogenic88DuerectinNeurohlastoma, SJ-NKPProapoptotic88DuerectinNeurohlastoma, SJ-NKPProapoptotic88FlavoneNeurohlastoma, SJ-NKPProapoptotic88DuerectinNeurohlastoma, SJ-NKPProapoptotic88FlavoneNeurohlastoma, Proapoptotic8888ProapostoticNeurohlastoma, Proapoptotic8888FlavoneNeurohlastoma, Proapoptotic8888FlavoneNeurohlastoma20-MALDI-TOF7070NeurohlastomaNeurohlastoma20-MALDI-TOF <td< td=""><td>Genistein</td><td>Endothelial, EA.hy 926</td><td>2D-MALDI-TOF</td><td>Increased detoxification-GST</td><td>80</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Genistein                         | Endothelial, EA.hy 926                         | 2D-MALDI-TOF                   | Increased detoxification-GST                                     | 80        |
| Red clorer isoffavores         Liver, Sprague Dawley rat         ZD-MALDI-TOF         Reduced levels of 3a-hydroxysterid-dehydrogenase         81           Favonoids         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Soy isoflavones                   | PBMC, human                                    | 2D-MALDI-TOF                   | Antiinflammatory                                                 | 38        |
| FlavonoidsColon, HT232D-MALDI-TOFProapototic, disruption of oytoskeleton82QuercetinColon, F344 ratMALDI-F1-CR MALDI-TOF/TOFProapototic, disruption of oytoskeleton83QuercetinColon, F344 ratMALDI-F1-CR MALDI-TOF/TOFPreapototic, disruption of oytoskeleton, proapoprotic84QuercetinColon, F344 ratMALDI-F1-CR MALDI-TOF/TOFAntiangiogenic84QuercetinLiver, HepC2SLAC-NanoHPLC-ES1-O-TOFAntiangiogenic84QuercetinLiver, HepC2SLAC-NanoHPLC-ES1-O-TOFDisruption of cytoskeleton, antiangiogenic84QuercetinNeurolastoma, SJ-N-KPHPLC-ESI-O-TOFAntionofferative, proapoptotic84QuercetinNeurolastoma, SJ-N-KPHPLC-ESI-O-TOFProapototic, reduced glycolysis84QuercetinNeurolastoma, SJ-N-KP2D-NanoHPLC-ion trapProapoptotic, reduced glycolysis84QuercetinNeurolastoma, SJ-N-KP2D-NanoHPLC-ion trap778484QuercetinNeurolastoma, SJ-NanoHPLC-ion trapProapoptotic, reduced glycolysis8484Fatva acids and cyclop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Red clover isoflavones            | Liver, Sprague Dawley rat                      | 2D-MALDI-TOF                   | educed levels of 3a-hydroxysteroid-dehydrogenase                 | 81        |
| QuercetinColor, HT29Z0-MALDI-TOFProapprotic, disruption of cytoskeleton82QuercetinColor, F34 ratMALDI-FT-IGR MALDI-TOF/TOFReduced glycolysis, increased faty acid oxidation, proapoptratic83QuercetinColor, SW480Z0-MALDI-TOF/TOFReduced glycolysis, increased faty acid oxidation, proapoptratic84QuercetinLiver, HepGZZ0-MALDI-TOF/TOFNatiangiogenic84QuercetinLiver, HepGZS1AC-NanoHPC-ESI-O-TOFNatiangiogenic84QuercetinNaruoblastoma, SJ-N-KPHPLC-ESI-O-TOFNationfiferative, proapoptotic84QuercetinOvary, 2774Z0-SELDI-TOFNationfiferative, proapoptotic84QuercetinNaruo Vary, 2774Z0-SELDI-TOFNationfiferative, proapoptotic84QuercetinNaruo Vary, 2774Z0-NanoHPLC-ion trappProapoptotic84QuercetinNaruo Vary, 2774Z0-NanOHPLC-ion trappProapoptotic84QuercetinNaruo Vary, 2774Z0-NanOHPLC-ion trappProapoptotic84QuercetinNaruo Vary, 2774Z0-NanOHPLC-ion trappProapoptotic84QuercetinNaruo Vary, 2774Z0-NALDI-TOFProapoptotic84QuercetinNaruo Vary, 2774Z0-MALDI-TOFProapoptotic84QuercetinNaruo Vary, 2774Z0-MALDI-TOFProapoptotic84Flavo acid storidSerum, humanZ0-MALDI-TOFProapoptotic84Fish oilLiver, APOE <sup>+</sup> Z0-MALDI-TOFInhibition of tropostic84 <td>Flavonoids</td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Flavonoids                        |                                                |                                |                                                                  |           |
| QuercetinColon, F34 ratMALDI-F1-CR MALDI-T0F/T0FReduced glycolysis, increased fatty acid oxidation, proapoptotic83QuercetinColon, SW4802D-MALDI-T0F/T0FAntiangiogenic84QuercetinLiver, HepG2SILAC-NanoHPLC-ESI-Q.T0FAntiangiogenic84QuercetinNeuroblastoma, SJ-NKPHPLC-ESI-Q.T0FDisruption of cytoskeleton, antiangiogenic86QuercetinNeuroblastoma, SJ-NKPHPLC-ESI-Q.T0FAntiproliferative, proapoptotic86QuercetinOvary, 27742D-SLDI-T0FAntiproliferative, proapoptotic86QuercetinNeuroblastoma, SJ-NKP2D-NanoHPLC-in trap7786QuercetinColon, HT-292D-NanoHPLC-in trap7786QuercetinColon, HT-292D-NanoHPLC-in trap7070Latro de cyclopentanone PGFaty acids and cyclopentanone PG7796Faty acids and cyclopentanone PGSerum, human2D-MALDI-T0FInhibition of hypoxia, enhanced faty acid oxidation90Fish oilLiver, E3*Leiden, Mice2D-MALDI-T0FInhibition of hypoxia, enhanced faty acid oxidation91Fish oilLiver, APOE3*Leiden Mice2D-MALDI-T0FInhibition of hypoxia, enhanced faty acid oxidation91Fish oilLiver, APOE3*Leiden Mice2D-MALDI-T0FInhibition of hypoxia, enhanced faty acid oxidation91Lattor ResolLiver, APOE3*Leiden Mice2D-MALDI-T0FInhibition of hypoxia, enhanced faty acid oxidation91Lattor ResolLiver, APOE3*T-Liver2D-MALDI-T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quercetin                         | Colon, HT29                                    | 2D-MALDI-TOF                   | Proapoptotic, disruption of cytoskeleton                         | 82        |
| QuercetinColon, SW48020-MALD-TOF/TOFAntiangiogenic84QuercetinLiver, HepG2SLAC-NanoHPLC-ESI-Q-TOFDisruption of cytoskeleton, antiangiogenic85QuercetinLiver, HepG2SLAC-NanoHPLC-ESI-Q-TOFDisruption of cytoskeleton, antiangiogenic86QuercetinNeuroblastoma, SJ-NKPHPLC-ESI-Q-TOFAntiproliferative, proapoptotic86QuercetinOvary, 277420-SELD-TOFProapoptotic87QuercetinDvary, 277420-SELD-TOFProapoptotic86QuercetinColon, HT-2920-NanoHPLC-ion trap7487Antiproliferative, proapoptoticColon, HT-2920-NanoHPLC-ion trap86Fatty acids and cyclopentenone PGFatty acids and cyclopentenone PG8191Fatty acids and cyclopentenone PGSerum, human20-MALD-TOF, NanoLC-D-TrapInhibition of hypoxia, enhanced fatty acid oxidation91Fatty acids and cyclopentenone PGEnum, human20-MALD-TOFInhibition of hypoxia, enhanced fatty acid oxidation91Fish oilLiver, E3*Leiden, mice20-MALD-TOFInhibition of hypoxia, enhanced fatty acid oxidation91Fish oilLiver, E3*Leiden, mice20-MALD-TOFInhibition of fuconeogenesis91Liver, APDE-T, mice20-MALD-TOFInhibition of fuconeogenesis91Liver, APDE-T, mice20-MALD-TOFInhibition of fuconeogenesis91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Quercetin                         | Colon, F344 rat                                | MALDI-FT-ICR MALDI-TOF/TOF     | Reduced glycolysis, increased fatty acid oxidation, proapoptotic | 83        |
| OutcretinLiver, HepG2SILAC-NanoHPLC-ESI-Q-TOFDisruption of cytoskeleton, antiangiogenic85OurcretinNeuroblastoma, SJ-N-KPHPLC-ESI-Q-TOFDisruption of cytoskeleton, antiangiogenic86OurcretinNeuroblastoma, SJ-N-KPHPLC-ESI-Q-TOFAntiproliferative, proapoptotic86OurcretinNeroblastoma, SJ-N-KP2D-SELDI-TOFAntiproliferative, proapoptotic86OurcretinProstate, PC-32D-NanoHPLC-ion trapProapoptotic87OurcretinProstate, PC-32D-NanoHPLC-ion trapProapoptotic88FlavoneColon, HT-29ZD-NanoHPLC-ion trapAntiproliferative, proapoptotic88Faty acids and cyclopentenone PGFish oilProapoptotic80Fish oilLiver, APOE3*Leiden Mice2D-MALDI-TOF, NanoLC-G-TrapInhibition of hypoxia, enhanced fatty acid oxidation91Fish oilLiver, E3*Leiden Mice2D-MALDI-TOFInhibition of hypoxia, enhanced fatty acid oxidation91Fish oilLiver, E3*Leiden Mice2D-MALDI-TOFInhibition of hypoxia, enhanced fatty acid oxidation91Fish oilLiver, E3*Leiden Mice2D-MALDI-TOFInhibition of hypoxia, enhanced fatty acid oxidation91Fish oilLiver, E3*Leiden Mice2D-MALDI-TOFInhibition of hypoxia, enhanced fatty acid oxidation91Fish oilLiver, E3*Leiden Mice2D-MALDI-TOFInhibition of hypoxia, enhanced fatty acid oxidation91Fish oilLiver, E3*Leiden Mice2D-MALDI-TOFInhibition of hypoxia, enhanced fatty acid oxidation <td>Quercetin</td> <td>Colon, SW480</td> <td>2D-MALDI-T0F/T0F</td> <td>Antiangiogenic</td> <td>84</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Quercetin                         | Colon, SW480                                   | 2D-MALDI-T0F/T0F               | Antiangiogenic                                                   | 84        |
| QuercetinNeuroblastoma, SJ-N-KPHPLC-ESI-0-TOFAntiproliferative, proapoptotic86QuercetinOvary, 277420-SELDI-TOFProapoptotic, reduced glycolysis87QuercetinDvary, 277420-SELDI-TOFProapoptotic, reduced glycolysis88QuercetinColon, HT-2920-MaLDI-TOFProapoptotic, reduced glycolysis88Faty acids and cyclopentenone PGColon, HT-2920-MaLDI-TOF, NanoLC-G-TrapInhibition of acute-phase response, antiinflammatory90Faty acids and cyclopentenone PGSerum, human20-MaLDI-TOF, NanoLC-G-TrapInhibition of acute-phase response, antiinflammatory90Fish oilLiver, APOE3*Leiden Mice20-MaLDI-TOFInhibition of typoxia, enhanced fatty acid oxidation91Liver, APOE3*Leiden, mice20-CESI-MALDI/TOFInhibition of fuctoreogenesis91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Quercetin                         | Liver, HepG2                                   | SILAC-NanoHPLC-ESI-Q-TOF       | Disruption of cytoskeleton, antiangiogenic                       | 85        |
| Ourrectin         Ovary 2774         20-SELDI-TOF         Proapoptotic         Proapoptotic         87           Ourrectin         Prostate, PC-3         20-NanoHPLC-ion trap         Proapoptotic, reduced glycolysis         88           Ourrectin         Prostate, PC-3         20-NanOHPLC-ion trap         Proapoptotic, reduced glycolysis         88           Fatvone         Colon, HT-29         20-MALDI-TOF         Proapoptotic, reduced glycolysis         89           Fatty acids and cyclopentenone PG         Serum, human         20-MALDI-TOF, NanoLC-G-Trap         Inhibition of acute-phase response, antiinflammatory         90           Fish oil         Liver, APOE3*Leiden Mice         20-MALDI-TOF         Inhibition of trup poxia, enhanced fatty acid oxidation         91           fish oil         Liver, APOE3*Leiden Mice         20-MALDI-TOF         Inhibition of trup acid oxidation         91           fish oil         Liver, APOE3*Leiden, mice         20-MALDI-TOF         Inhibition of trup acid oxidation         91           tiO_c12-CLA         Liver, APOE*-/-, mice         20-MALDI-TOF         Inhibition of trup acid oxidation         91           tiO_c12-CLA         Liver, APOE*-/-, mice         20-CL-SL-MALDI-TOF         Inhibition of fuct cycle, stimulation of gluconeogenesis         91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Quercetin                         | Neuroblastoma, SJ-N-KP                         | HPLC-ESI-Q-TOF                 | Antiproliferative, proapoptotic                                  | 86        |
| Ouercetin     Prostate, PC-3     20-NandHIC-ion trap     Prospoptotic, reduced glycolysis     88       Flavone     Colon, HT-29     20-MALDI-TOF     Antiproliferative, prospoptotic     89       Faty acids and cyclopentenone PG     Serum, human     20-MALDI-TOF, NanoLC-0-Trap     Inhibition of acute-phase response, antiinflammatory     90       Fish oil     Liver, APOE <sup>3+</sup> Leiden, mice     20-MALDI-TOF     Inhibition of source-phase response, antiinflammatory     91       I.O.12-CLA     Liver, APOE <sup>-/-</sup> , mice     20-MALDI-TOF     Inhibition of trypoxia, enhanced fatty acid oxidation     91       I.U.er, APOE <sup>-/-</sup> , mice     20-MALDI-TOF     Inhibition of trypoxia, enhanced fatty acid oxidation     91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Quercetin                         | Ovary, 2774                                    | 2D-SELDI-TOF                   | Proapoptotic                                                     | 87        |
| Flavone     Colon, HT-29     20-MALDI-TOF     Antiproliferative, proapoptotic     89       Fatty acids and cyclopentenone PG     Serum, human     20-MALDI-TOF, NanoLC-G-Trap     Inhibition of acute-phase response, antiinflammatory     90       Fish oil     Liver, APDE3*Leiden Mice     20-MALDI-TOF     Inhibition of acute-phase response, antiinflammatory     90       fish oil     Liver, APDE3*Leiden Mice     20-MALDI-TOF     Inhibition of typoxia, enhanced fatty acid oxidation     91       t10,c12-CLA     Liver, C3*Leiden, mice     20-MALDI-TOF     Increased lipid storage     91       t10,c12-CLA     Liver, APOE <sup>-/-</sup> , mice     20-LC-ESI-MALDI/TOF     Inhibition of TCA cycle, stimulation of gluconeogenesis     91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Quercetin                         | Prostate, PC-3                                 | 2D-NanoHPLC-ion trap           | Proapoptotic, reduced glycolysis                                 | 88        |
| Fatty acids and cyclopentenone PGEatury acids and cyclopentenone PGFish oilSerum, humanFish oilLiver, APDE3*Leiden Mice2D-MALDI-TOF, NanoLC-O-TrapInhibition of acute-phase response, antiinflammatory90Fish oilLiver, APDE3*Leiden Mice2D-MALDI-TOFInhibition of hypoxia, enhanced fatty acid oxidation10,c12-CLALiver, E3*Leiden, mice2D-MALDI-TOFIncreased lipid storage10,c12-CLALiver, ADDE <sup>-/-</sup> , mice2D-LC-ESI-MALDI/TOFInhibition of TCA cycle, stimulation of gluconeogenesis92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Flavone                           | Colon, HT-29                                   | 2D-MALDI-TOF                   | Antiproliferative, proapoptotic                                  | 89        |
| Fish oilSerum, human2D-MALDI-TOF, NanoLC-0-TrapInhibition of acute-phase response, antiinflammatory90Fish oilLiver, APDE3*Leiden Mice2D-MALDI-TOFInhibition of hypoxia, enhanced fatty acid oxidation91t10,c12-CLALiver, E3*Leiden, mice2D-MALDI-TOFIncreased lipid storage91t10,c12-CLALiver, APDE <sup>-/-</sup> , mice2D-LC-ESI-MALDI/TOFInhibition of TCA cycle, stimulation of gluconeogenesis92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Fatty acids and cyclopentenone PG |                                                |                                |                                                                  |           |
| Fish oil     Liver, APDE3*Leiden Mice     2D-MALDI-TOF     Inhibition of hypoxia, enhanced fatty acid oxidation     91       t10,c12-CLA     Liver, E3*Leiden, mice     2D-MALDI-TOF     Increased lipid storage     91       Liver, APDE <sup>-/-</sup> , mice     2D-LC-ESI-MALDI/TOF     Inhibition of TCA cycle, stimulation of gluconeogenesis     92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fish oil                          | Serum, human                                   | 2D-MALDI-TOF, NanoLC-Q-Trap    | Inhibition of acute-phase response, antiinflammatory             | 06        |
| t10,c12-CLA Liver, E3*Leiden, mice 2D-MALDI-TOF Increased lipid storage 91<br>Liver, APOE <sup>-/-</sup> , mice 2D-LC-ESI-MALDI/TOF Inhibition of TCA cycle, stimulation of gluconeogenesis 92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Fish oil                          | Liver, APOE3*Leiden Mice                       | 2D-MALDI-TOF                   | Inhibition of hypoxia, enhanced fatty acid oxidation             | 91        |
| Liver, APDE <sup>-/-</sup> , mice 2D-LC-ESI-MALDI/TOF Inhibition of TCA cycle, stimulation of gluconeogenesis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | t10,c12-CLA                       | Liver, E3*Leiden, mice                         | 2D-MALDI-TOF                   | Increased lipid storage                                          | 91        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                   | Liver, APOE <sup><math>-/-</math></sup> , mice | 2D-LC-ESI-MALDI/TOF            | Inhibition of TCA cycle, stimulation of gluconeogenesis          | 92        |

| cit/1.Cla         Liver, APGE <sup>-/-</sup> , mile         20.LCESI-MALD/OF         Antipolificative, antiminamentary         20           Bayma         Colon, HC-16         TIRAQ/OX120.LCMALD/MS         Antipolificative, antiminamentary         29           Bayma         Colon, HC-16         TIRAQ/OX120.LCMALD/MS         Antipolificative, antiminamentary         29           Bayma         Colon, HT-23         20-MALD/106         Prospector         20         20           Bayma         Colon, HT-23         20-MALD/106         Prospector         20         26           Bayma         Colon, HT-23         20-MALD/106         Prospector         20         26           Bayma         Environitie         Environitie         Prospector         26         26           Bayma         Environitie         Prospector         20         20         20         20           Bayma         Environitie         Prospector         20         20         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26         26                                                                                                                                                                                                                                                                                                                                                                              | Food component              | Model                               | Proteomic platform                        | Combined effects of food<br>components on biological processes       | Reference |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|-------------------------------------|-------------------------------------------|----------------------------------------------------------------------|-----------|
| BitWate         Colon, HT-35         TimOD/OFF 2010, MALD-MS         Ampointentive, prosponder, imblian of glycalysi, increased         3           BitWate         Clinn, HT-38         20-MALD-HOF         Prosponder, imblian of glycalysi, increased         3           BitWate         Clinn, HT-38         20-MALD-HOF         Prosponder, imblian of glycalysi, increased         3           BitWate         Clinn, HT-38         20-MALD-HOF         Prosponder, imblian of glycalysi, increased         3           BitWate         Clinn, HT-38         20-MALD-HOF/TOF         Prosponder, impointent, glycalysi, increased         3           BitWate         Dian, MT-31         NameHC-SER-OTOF         Prosponder, impointent, glycalysi, increased         3           Graps seed attents         Binn, Sprage Dawley ret         20-MALD-HOF         NamePC-SER-OTOF         NamePC-SER-OTOF         9           Reserrend         Clinn, HT-38         Zo-MALD-HOF         20-MALD-HOF         NamePC-SER-OTOF         9         9           Reserrend         Clinn, HT-38         Zo-MALD-HOF         ZD-MALD-HOF         NamePC-SER-OTOF         9         9         9           Reserrend         Clinn, HT-34         Zo-MALD-HOF         ZD-MALD-HOF         NamePC-SER-OTOF         9         9         9         9         9         9                                                                                                                                                                                                                                                                      | c9 t11-CLA                  | liver APNF-/- mice                  | 2D-I C-FSI-MAI DI/TOF                     | Antinroliferative antiinflammatorv                                   | 66        |
| Boytette         Oxidative programyation         oxidative programyation | Butyrate                    | Colon, HCT-116                      | itraq/icat-2D-LC-MALDI-MS                 | Antiproliferative, proapoptotic, inhibition of glycolysis, increased | 3 8       |
| Bitymetic         Count #7:3         2D-MALD TGF()F         Presentation         Presentation <td></td> <td></td> <td></td> <td>oxidative phosphorylation</td> <td></td>                                                                                      |                             |                                     |                                           | oxidative phosphorylation                                            |           |
| Binyteit         Colon, HT/33         20 MADI-TOF/CIF         Antiportification, prographotic, disruption of glopolytic pathways         5           Gape certocitis         Fincubast, MH313         NanHPLC.ESI.OT/F         Disruption of cytoskeleton, prographotic, disruption of glopolytic pathways         5           Gape certocitis         Bain, Sprague Dawley rat         20 MADI/TOF C2 PR/C ESI-DT/F         NanPrICLES-Ion rato, Q-TOF         Disruption of cytoskeleton, prographytic         5           Gape certocitis         Disruption         Strongle Dawley rat         20 MADI/TOF CDF         Nanoprotective         5           Resertation         Colon, HC116Bax/T         20 MADI/TOF CDF         Nanoprotective         5         5           Resertation         Colon, HC116Bax/T         20 MADI/TOF CDF         Nanoprotective         5         5           Resertation         Exercation         Exercation         Exercation         Exercation         5         5           Bail         Strongle Davley strongle         Strongle Davley strongle         5         5         5         5           Bail         Strongle Davley strongle         Strongle Davley strongle         5         5         5         5         5           Bail         Exercitie         Exercitie         Exercitie         5         5 <td>Butyrate</td> <td>Colon, HT-29</td> <td>2D-MALDI-TOF</td> <td>Proapoptotic</td> <td>94</td>                                                                                                                                                                    | Butyrate                    | Colon, HT-29                        | 2D-MALDI-TOF                              | Proapoptotic                                                         | 94        |
| Rd,         Enolater, MIH-313         NanoHPLC-ESI-QTOF         Disruption of cytoskeleun, prosperator         Ser           Garpe compounds         Bain, Sprague Dawley rat         20-MAUD/TOF 20-PPLC-ESI-OTO         Nanoprotective         56           Reveratori         Umpforma, Jakol         20-MAUD/TOF 20-PPLC-ESI-OTO         Nanoprotective         56           Reveratori         Umpforma, Jakol         20-MAUD/TOF 20-PPLC-ESI-OTO         Nanoprotective         56           Reveratori         Dain, HCT-TIBERA <sup>V-1</sup> 20-MAUD/TOF 20-LC-ion trap, 0-TOF         Prospratoric         56           Reveratori         Dain/Hrits/FT         20-MAUD/TOF 20-LC-ion trap, 0-TOF         Prospratoric         56           Dain/Hrits/FT         Strunduktion of apoptoric         100         101           Reveratori         Lung, A543         20-MAUD/TOF 20-LC-ion trap, 0-TOF         Nanotropic         101           Dain/Hrits/FT         Strunduktion of apoptoric         101         101         101         101           Reveratori         Lung, A743         Z0-MAUD/TOF         20-LC-ion trap         101         101         101           Reveratori         Lung, A743         Strunduktion of apoptoric         101         101         101         101         101           Reveratori                                                                                                                                                                                                                                                                                             | Butyrate                    | Colon, HT-29                        | 2D-MALDI-T0F/T0F                          | Antiproliferative, proapoptotic, disruption of glycolytic pathways   | 95        |
| Grape compounds         Environment         Processed extracts         Brancy protective         Processed extracts         Brancy processed extracts         Brancy protective         Processed extracts         Brancy procesed extracts         Brancy processed extracts    | PGA1                        | Fibroblast, NIH-3T3                 | NanoHPLC-ESI-Q/TOF                        | Disruption of cytoskeleton, proapoptotic                             | 96        |
| Gape sed ertracts         Bain, Sprague Davley rat         ZD-MALDV: Tor ZD-PRUC-ESt-D10 <sup>†</sup> Neuroprotective         Strutter         Ga           Research         Uymphora, Jeko-1         ZD-MALD-TOF/TOF ZD-PRUC-ESt-D10 <sup>†</sup> Pragopotic         45           Research         Uymphora, Jeko-1         ZD-MALD-TOF/TOF ZD-PRUC-ESt-D10 <sup>†</sup> Pragopotic         45           Research         Colon (LTC1+16Bax')         ZD-MALD-TOF/TOF         Pragopotic         45           Research         Research         Prospective         Prography result         46           Research         Runor (CT-116Bax')         ZD-MALD-TOF/TOF         Pragopotic         46           Research         Runor (CT-116Bax')         ZD-MALD-TOF         Pragopotic         40           Colon (HT-116Bax')         ZD-MALD-TOF         Pragopotic         40           Colon (HT-116Bax')         Rounor (GT         Rounor (GT         40           Rounor (GT                                                                                                                                                                                                                                                                                                                           | Grape compounds             |                                     |                                           |                                                                      |           |
| Research<br>Besearch<br>BesearchUmphoma, Jako-120-Nano RH-RUC ESI-ion trap, Q-10FProapoptotic64Research<br>BesearchColon, HC1-TIBBax <sup>4/1</sup> 2.0-MALD/MS2.0-MALD/MS2.0-MALD/MS2.0-MALD/MS2.0-MALD/MSResearch<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Grape seed extracts         | Brain, Sprague Dawley rat           | 2D-MALDI/-TOF 2D-RPLC-ESI-D-TOF           | Neuroprotective                                                      | 26        |
| Researct         Colon, HCT-116[Bax <sup>4/-1</sup> )         2D-MALD-TOF/TOF         Induced prosportic signaling         89           Researct         Researct         Researct         Researct         Researct         2D-MALD-TOF/TOF         Reduced ghools:         99           Researct         Researct         Researct         Researct         Researct         2D-MALD-TOF         Reduced ghools:         90           Dally-tristifie         Summerh, BCR23         2D-MALD-TOF         Returned ghools:         101           Dally-tristifie         Burs, Sacs2         2D-MALD-TOF         Imbedition of approxis         101           Green tea extracts         Lung, A549         2D-HPLC-ES-IQ-TOF         Imbedition of contractive ginaling, discuption of cytoskeletur, prosporticit         101           Green tea extracts         Lung, A549         2D-HPLC-ES-IQ-TOF         Imbedition of cell motility         101           Green tea extracts         Lung, A549         2D-HPLC-ES-IQ-TOF         Imbedition of cell motility         101           Green tea extracts         Lung, ATAB         Imborne acao         Neuroblestoms, SH-SVSY         2D-HPLC-ES-IQ-TOF         Imborne acao         101           Retorn of approxima         Retorn of approxima         Retorn of approxima         102         102           Retorn of approxima                                                                                                                                                                                                                                           | Resveratrol                 | Lymphoma, Jeko-1                    | 2D-Nano RP-HPLC-ESIion trap, Q-TOF        | Proapoptotic                                                         | 45        |
| Researct<br>Besearct<br>difPostate, INCaPZD-MALDi-MSReduced gycolysis9GalicCalidStimulation of aportosis100Diallyt-risulfideStomach, BGC8232D-MALDi-TOF, ZD-LC-ion trapStimulation of aportosis100Diallyt-risulfideBone, Saos 22D-MALDi-TOFZD-MALDi-TOF100Diallyt-risulfideBone, Saos 22D-MALDi-TOFNimbition of aportosis100Diallyt-risulfideBone, Saos 22D-MALDi-TOFNimbition of aportosis100Tae compoundsLung, A5432D-MALDi-TOFNimbition of cell motility100GCGNueroblastoms, SH-SY5Y2D-MALDi-TOFNimbition of cell motility100Dieborom caraoNueroblastoms, SH-SY5Y2D-MALDi-TOFNimbition of cell motility100Periodic acidBrasat, MDA-MB-231, -436, -468; SKBR3Antibody protein arrayNimbition of cell motility100Periodic acidBrasat, MDA-MB-231, -436, -468; SKBR3Antibody protein arrayNimbition of cell motility100Periodic acidBrasat, WDA-MB-231, -436, -468; SKBR3Antibody protein arrayNimbition of cell motility100Periodic acidBrasat, WDA-MB-231, -436, -468; SKBR3Antibody protein arrayNimbition of cell motility100Periodic acidBrasat, WDA-MB-231, -436, -468; SKBR3Antibody protein arrayNimbition of cell motility100Periodic acidPeriodic acidCell cycle arrayStimulation of cell motility100NitaminsBrasat, MDA-F37D-MALDi-TOF <td< td=""><td>Resveratrol</td><td>Colon, HCT-116(Bax<sup>+/-</sup>)</td><td>2D-MALDI-T0F/T0F</td><td>Induced proapoptotic signaling</td><td>98</td></td<>                                                                                                                                                                                                                             | Resveratrol                 | Colon, HCT-116(Bax <sup>+/-</sup> ) | 2D-MALDI-T0F/T0F                          | Induced proapoptotic signaling                                       | 98        |
| Galic         Simulation of aportsis         100           Diallytrisulfide         Somach, BG233         2D-MALD/T0F, ZD-LC-ion trap         Nimulation of aportsis         100           Diallytrisulfide         Bone, Saos 2         ZD-MALD/T0F, ZD-LC-ion trap         Impaired signaling, disuption of cytoskeleton, proapoptic         101           Diallytrisulfide         Bone, Saos 2         ZD-MALD/T0F, ZD-LC-ion trap         Impaired signaling, disuption of cytoskeleton, proapoptic         101           Diallytrisulfide         Bone, Saos 2         ZD-MLD-T0F         Inhibition of cell motility         102           Green taa extracts         Lung, A549         ZD-MLD-T0F         Inhibition of cell motility         102           FEGG         Neuroblastoma, SH-SYSY         ZD-MLD-T0F         Antipolifierative, proapoptutic         104           Procyanidin         Breast, MDA-ME-Z31, -438, -468; SKBR3         Antiboly protein array         Antipolifierative, proapoptutic         104           Procyanidin         Breast, MDA-ME-Z31, -438, -468; SKBR3         Antiboly protein array         Antipolifierative, proapoptutic         104           Procyanidin         Breast, MDA-ME-Z31, -438, -468; SKBR3         Antipoly protein array         Antipolifierative, proapoptutic         104           Procyanidin         Breast, MDA-ME-Z31, -438, -468; SKBR3         AntiDoly Procyanic                                                                                                                                                                                      | Resveratrol                 | Prostate, LNCaP                     | 2D-MALDI-MS                               | Reduced glycolysis                                                   | 66        |
| Dially-trisulfideStimulation of apoptosis10Dially-trisulfideBone, Saos-2 $2$ D-MLDi/TOF, ZD-LC-ion trapStimulation of apoptosis10Tae compoundsLung, A5a9 $2$ D-MLDi/TOFImpaired signaling, disruption of cytoskeleton, proapoptotic101Tae compoundsLung, A5a9 $2$ D-HPLC-ESt-D-TOFInhibition of cell motility102Green tae extractsLung, A5a9 $2$ D-HPLC-ESt-D-TOFInhibition of cell motility102Theobroma cacaoNeuroblastoma, SH-SYSY $2$ D-HPLC-ESt-D-TOFInhibition of cell motility103Theobroma cacaoNeuroblastoma, SH-SYSY $2$ D-HPLC-ESt-D-TOFInhibition of cell motility103Theobroma cacaoNeuroblastoma, SH-SYSY $2$ D-HPLC-ESt-D-TOFInhibition of cell motility103Theobroma cacaoNeuroblastoma, SH-SYSY $2$ D-HPLC-ESt-D-TOFInhibition of cell motility104SelenumSelenumSelenum2D-MLDI-TOFCell cytel arrest, antiproliferative, proapoptotic104SelenumSelenumSelenum2D-MLDI-TOFCell cytel arrest, antiproliferative, proapoptotic104SelenumSelenum2D-MLDI-TOFCell cytel arrest, antiproliferative, proapoptotic104SelenumBeast, MCF-72D-MLDI-TOFCell cytel arrest, antiproliferative, proapoptotic106NtaminsBeast, MCF-72D-MLDI-TOFCell cytel arrest, antiproliferative, proapoptotic106NtaminsBeast, MCF-72D-MLDI-TOFCell cytel arrest, antiproliferative, proapoptotic106Nta                                                                                                                                                                                                                                                                                                                                                      | Garlic                      |                                     |                                           |                                                                      |           |
| Dially-trisulfideBone, Saas-22D-MALDI-TOFImpaired signaling, disruption of cytoskeleton, proapoptotic101Tea compoundsLung, A5432D-HPLC-ESI-O-TOFInhibition of cell motility102Tea compoundsLung, A5432D-HPLC-ESI-O-TOFInhibition of cell motility102Green tea extractsLung, A5432D-HPLC-ESI-O-TOFNeuroprotective103Green tea extractsNeuroplastoma. SH-SY5Y2D-HPLC-ESI-O-TOFNeuroprotective103Teobroma cazaoNeuroplastoma. SH-SY5Y2D-HPLC-ESI-O-TOFAntibody protein array104ProcyanidinBreast, MDA-MB-231, -436, -488; SKBR3Antibody protein array104ProcyanidinBreast, MDA-MB-231, -436, -488; SKBR3Antibody protein array104Selenomethyl-selenocysteinePlasma, Wistar rat2D-MALDI-TOFSimulation of acute-phase response104Selenomethyl-selenocysteineBreast, MCF-72D-MALDI-TOFSimulation of acute-phase response105VitaminsSelenomethyl-selenocysteineBreast, MCF-72D-MALDI-TOFAtteration of contractile system105VitaminsBreast, MCF-72D-MALDI-TOFCell cycle arrest, antipolificative, prospoptotic105VitaminsBreast, MCF-72D-MALDI-TOFAtteration of contractile system105VitaminsBreast, MCF-72D-MALDI-TOFAtteration of contractile system106Fertorio acidNeuroblastoma, SH-SYSY2D-MALDI-TOFAtteration of contractile system106Fertorio acidPlaseDente                                                                                                                                                                                                                                                                                                                                                                               | Diallyl-trisulfide          | Stomach, BGC823                     | 2D-MALDi/TOF, 2D-LC-ion trap              | Stimulation of apoptosis                                             | 100       |
| Te compounds     Te compounds     Inhibition of cell motility     102       Green tea extracts     Lung, A543     ZD-HPLC-ESI-Q-TOF     Inhibition of cell motility     103       Green tea extracts     Lung, A543     ZD-HPLC-ion trap     Neuroprotective     103       Teobroma cazao     Neuroblastoma, SH-SY5Y     ZD-HPLC-ion trap     Neuroprotective     104       Teobroma cazao     Breast, MDA-MB-231,-436,-468; SKBR3     Antibody protein array     Antiproliferative, proapoptotic     104       Prosyandin     Breast, MDA-MB-231,-436,-468; SKBR3     Antibody protein array     Antiproliferative, proapoptotic     104       Prosyandin     Breast, MDA-MB-231,-436,-468; SKBR3     Antibol for earte-phase response     104       Selenounethyl-selenocyteine     Plasma, Wistar rat     ZD-MALDI-TOF     Stimulation of acute-phase response     105       Vitamins     Kerio     D-MALDI-TOF     ZD-MALDI-TOF     Atteration of marka splicing and translation     107       Vitamins     Retinoic acid     Leakemia, NB4     ZD-MALDI-TOF     Atteration of contractile system     107       Vitamins     Leakemia, NB4     ZD-MALDI-TOF     Atteration of contractile system     107       Vitamins     Leakemia, NB4     ZD-MALDI-TOF     Atteration of contractile system     107       Vitamins     Leakemia, NB4     ZD-MALDI-TOF                                                                                                                                                                                                                                                                            | Diallyl-trisulfide          | Bone, Saos-2                        | 2D-MALDI-T0F                              | Impaired signaling, disruption of cytoskeleton, proapoptotic         | 101       |
| Green tea extractsLung, $4549$ $20$ -HPLC-ES-Q-TOFInhibition of cell motility $102$ EGGNeuroblastoma, SH-SY5Y $20$ -HPLC-ion trapNeuroprotective $103$ Theobroma cacaoNeuroblastoma, SH-SY5Y $20$ -RPLC-ion trapNeuroprotective $103$ Theobroma cacaoBreast, MDA-MB-231, -436, -468; SKBR3Antibody protein arrayAntiporofilerative, proapoptotic $104$ ProcyanidinBreast, MDA-MB-231, -436, -468; SKBR3Antibody protein arrayAntiporofilerative, proapoptotic $104$ ProcyanidinBreast, MDA-MB-231, -436, -468; SKBR3Antibody protein arrayAntiporofilerative, proapoptotic $104$ Selenomethyl-selenocyteinePlasma, Wistar rat $20$ -MALDI-TOFStimulation of acute-phase response $105$ VitaminsBreast, MCF-7 $20$ -MALDI-TOFAntiporofilerative, proapoptotic $106$ Retroic acidBreast, MCF-7 $20$ -MALDI-TOFAnteration of mtRNA splicing and translation $106$ Retroic acidLeukemia, NB4 $20$ -MALDI-NSAnteration of contractile system $106$ Flate deficiencyColon, NCM460 $20$ -NanoL-O-TrapActivation of immure function $109$ Flate deficiencyColon, NCM460 $20$ -NanoL-O-TrapActivation of immure function $106$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Tea compounds               |                                     |                                           |                                                                      |           |
| EGGNeuroblastoma, SH-SY5Y2D-RPLC-ion trapNeuroprotective103Theohroma cacaoTheohroma cacaoNeuroblastoma, SH-SY5Y2D-RPLC-ion trap104ProcyanidinBreast, MDA-MB-231,-436, 468; SKBR3Antibody protein arrayAntibody protein array104ProcyanidinBreast, MDA-MB-231,-436, 468; SKBR3Antibody protein array104SeleniumSelenomethyl-selenocysteinePlasma, Wistar rat2D-MALDI-TOFStimulation of acute-phase response105VitaminsNitaminsSelenomethyl-selenocysteineRetroit of acute-phase response106NaminsNataminsCell cycle arrest, antiproliferative, proapoptotic106NataminsNeuroblastoma, SH-SY5Y2D-MALDI-TOF/TOF, iTRAQ-LC-NandESI- Q-TOFAlteration of mark splicing and translation107L-Ascorbic acidLeukemia, NB42D-MALDI-TOF/TOF, iTRAQ-LC-NandESI- Q-TOFAlteration of contractile system107Flatte deficiencyColon, NCM4602D-NandLO-O-TrapActivation of immune function109Folate deficiencyColon, NCM4602D-NandLO-O-TrapIncreased DNA danage, metastasis reduced phase II enzymes110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Green tea extracts          | Lung, A549                          | 2D-HPLC-ESI-Q-TOF                         | Inhibition of cell motility                                          | 102       |
| Theobroma cacaoProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcyanidinProcya                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EGCG                        | Neuroblastoma, SH-SY5Y              | 2D-RPLC-ion trap                          | Neuroprotective                                                      | 103       |
| ProcyanidinBreast, MDA-MB-231,-436,-468; SKBR3Antibody protein arrayAntipody protein array104SeleniumSeleniumSelenium105SeleniumSelenium2D-MALDI-TOFStimulation of acute-phase response105VitaminsNama, Wistar rat2D-MALDI-TOFCell cycle arrest, antipoliferative, proapoptotic106VitaminsNationic acidBreast, MCF-72D-MALDI-TOFCell cycle arrest, antipoliferative, proapoptotic106Retinici acidNeuroblastoma, SH-SYSY2D-MALDI-TOF/TOF, iTRAQ-LC-NanoESI- Q-TOFAlteration of mRNA splicing and translation107L-Ascorbic acidLeukemia, NB42D-MALDI-MSAlteration of ontractile system108FolatePlasma, human2D-NanoLC-Q-TrapActivation of immune function109Folate deficiencyColon, NCM4602D-NanoLC-O-TrapIncreased DNA damage, metastasis reduced phase II enzymes110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Theobroma cacao             |                                     |                                           |                                                                      |           |
| Selenium     Selenium       Selenium     Plasma, Wistar rat     2D-MALDI-TOF       Selenomethyl-selenocysteine     Plasma, Wistar rat     2D-MALDI-TOF       Kitamins     Cell cycle arrest, antipoliferative, proapoptotic     106       Nitamins     Neuroblastoma, SH-SY5Y     2D-MALDI-TOF     Cell cycle arrest, antipoliferative, proapoptotic     107       Retinicic acid     Breast, MCF-7     2D-MALDI-TOF/TOF, iTRAQ-LC-NandESI- Q-TOF     Alteration of mRNA splicing and translation     107       L-Ascorbic acid     Leukemia, NB4     2D-MALDI-TOF/TOF, iTRAQ-LC-NandESI- Q-TOF     Alteration of contractile system     108       Folate     Plasma, human     2D-MALDI-TOF/TOF, iTRAQ-LC-NandESI- Q-TOF     Atteration of contractile system     108       Folate     Class     Plasma, human     2D-MaLDI-TOF/TOF, iTRAQ-LC-NandESI- Q-TOF     Activation of immune function     109       Folate deficiency     Colon, NCM460     2D-MandLC-O-Trap     Activation of immune function     109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Procyanidin                 | Breast, MDA-MB-231,-436,-468; SKBR3 | Antibody protein array                    | Antiproliferative, proapoptotic                                      | 104       |
| Selenomethyl-selenocyteinePlasma, Wistar rat2D-MALDI-TOFStimulation of acute-phase response105VitaminsVitamins106VitaminsBreast, MCF-72D-MALDI-TOFCell cycle arrest, antipoliferative, proapoptotic106Retinoic acidBreast, MCF-72D-MALDI-TOF/TOF, iTRAQ-LC-NandESI- 0-TOFAlteration of mRNA splicing and translation107L-Ascorbic acidL-Ascorbic acid2D-MALDI-TOF/TOF, iTRAQ-LC-NandESI- 0-TOFAlteration of contractile system108FolatePlasma, human2D-MaLDI-TOF/TOF, iTRAQ-LC-NandESI- 0-TOFActivation of mRNA splicing and translation108FolatePlasma, human2D-MaLDI-TOF/TOF, iTRAQ-LC-NandESI- 0-TOFActivation of mRNA splicing and translation108FolatePlasma, human2D-ManDLC-0-TrapActivation of immune function109Folate deficiencyColon, NCM4602D-NandLC-0-TrapIncreased DNA damage, metastasis reduced phase II enzymes110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Selenium                    |                                     |                                           |                                                                      |           |
| VitaminsVitaminsRetinoic acidBreast, MCF-72D-MALDI-TOFCell cycle arrest, antiproliferative, proapoptotic106Retinoic acidNeuroblastoma, SH-SY5Y2D-MALDI-TOF/TOF, iTRAQ-LC-NanoESI- Q-TOFAlteration of mRNA splicing and translation107L-Ascorbic acidLeukemia, NB42D-MALDI-TOF/TOF, iTRAQ-LC-NanoESI- Q-TOFAlteration of contractile system108FolatePlasma, human2D-NanoLC-Q-TrapActivation of immune function109Folate deficiencyColon, NCM4602D-NanoLC-Q-TrapIncreased DNA damage, metastasis reduced phase II enzymes110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Selenomethyl-selenocysteine | Plasma, Wistar rat                  | 2D-MALDI-T0F                              | Stimulation of acute-phase response                                  | 105       |
| Retinoic acidBreast, MCF-72D-MALDI-TOFCell cycle arrest, antiproliferative, proapoptotic106Retinoic acidNeuroblastoma, SH-SY5Y2D-MALDI-TOF/TOF, iTRAQ-LC-NandESI- Q-TOFAtteration of mRNA splicing and translation107L-Ascorbic acidLeukemia, NB42D-MALDI-MSAtteration of contractile system108FolatePlasma, human2D-MaLDI-MSAtteration of immune function109Folate deficiencyColon, NCM4602D-NandLC-Q-TrapIncreased DNA damage, metastasis reduced phase II enzymes110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Vitamins                    |                                     |                                           |                                                                      |           |
| Retinoic acidNeuroblastoma, SH-SY5Y2D-MALDI-T0F/T0F, iTRAQ-LC-NanoESI- Q-T0FAtteration of mRNA splicing and translation107L-Ascorbic acidLeukemia, NB42D-MALDI-MSAtteration of contractile system108FolatePlasma, human2D-NanoLC-O-TrapActivation of immune function109Folate deficiencyColon, NCM4602D-NanoLC-O-TrapIncreased DNA damage, metastasis reduced phase II enzymes110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Retinoic acid               | Breast, MCF-7                       | 2D-MALDI-T0F                              | Cell cycle arrest, antiproliferative, proapoptotic                   | 106       |
| L-Ascorbic acid     Leukemia, NB4     2D-MALDI-MS     Alteration of contractile system     108       Folate     Plasma, human     2D-NanoLC-0-Trap     Activation of immune function     109       Folate deficiency     Colon, NCM460     2D-NanoLC-0-Trap     Increased DNA damage, metastasis reduced phase II enzymes     110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Retinoic acid               | Neuroblastoma, SH-SY5Y              | 2D-MALDI-T0F/T0F, iTRAQ-LC-NanoESI- Q-T0F | Alteration of mRNA splicing and translation                          | 107       |
| Folate         Plasma, human         2D-NanoLC-0-Trap         Activation of immune function         109           Folate deficiency         Colon, NCM460         2D-NanoLC-0-Trap         100         110                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L-Ascorbic acid             | Leukemia, NB4                       | 2D-MALDI-MS                               | Alteration of contractile system                                     | 108       |
| Folate deficiency Colon, NCM460 2D-NanoLC-O-Trap Increased DNA damage, metastasis reduced phase II enzymes 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Folate                      | Plasma, human                       | 2D-NanoLC-Q-Trap                          | Activation of immune function                                        | 109       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Folate deficiency           | Colon, NCM460                       | 2D-NanoLC-Q-Trap                          | Increased DNA damage, metastasis reduced phase II enzymes            | 110       |

~ linear trap quadrupole; MALDI, matrix-assisted laser desorption/ionization; PEITC, phenetyl isothiocyanate; RPLC, reverse-phase-LC; SELDI, surface-enhanced laser desorption/ionization; SFN, sulforaphane; SILAC, stable isotope-based labeling; SXC, strong cation exchange; TOF, time-of-flight; 2D, 2-dimensional gel electrophoresis; Q, quadrupole.

TABLE 1 Continued

lectric point (10 < isoelectric point < 3) are not effectively resolved (50).

An alternative method to 2D separation is affinity chromatography, which can be used to capture proteins of interest. For example, in human plasma,  $\sim 99\%$  of the protein mass is due to  $\sim$ 22 proteins, and their removal through a chromatographic approach (e.g., matrix immobilized antibody) is advantageous prior to MS to enhance the detection of less abundant proteins (51). The preliminary precipitation of albumin and Ig through affinity chromatography prior to MS analysis has been used successfully in clinical studies that examined the effects of the glutathione-S-transferase-M1 phenotype on the serum peptidome following supplementation with cruciferous vegetables (52). Other studies that investigated the anticarcinogenic properties of ITC utilized affinity chromatography with streptavidin-Sepharose beads to purify cysteine-containing protein targets of ITC (50). In the latter study, MS analysis of bound proteins identified macrophage migration inhibitory factor, a proinflammatory cytokine, as a primary binding target for ITC.

To by-pass challenges related to protein separation, the entire proteome from a biological sample (e.g., cell, tissue, biofluid) can be first digested, typically by trypsin. Then, the resulting peptides can be separated using various techniques, including ion exchange chromatography, isoelectric focusing, ion-pairing reversed-phase HPLC, and phosphopeptide chromatography. To investigate the effects of genistein on the phosphoproteomic profile of gastric cancer SGC-7901 cells, hydrophilic interaction chromatography methods with the metal oxide TiO<sup>2</sup> were utilized for the enrichment of phosphopeptides prior to light chromatography (LC)-tandem MS (MS/MS) analysis (53). These studies led to the identification of novel phopshoprotein targets for genistein, including receptors, signal adaptors, protein kinases, protein phosphatase regulatory subunits, and transcription regulators. Principles and applications of global and site-specific quantitative phosphoproteomics are reviewed elsewhere (54).

#### **lonization of peptides**

For MS analysis, peptides first need to be ionized. Two main ionization techniques are commonly used and include matrixassisted laser desorption/ionization (MALDI) and electrospray ionization (ESI). In MALDI, the peptide mixture is cocrystallized with a matrix that upon excitement with a UV laser leads to the ionization of peptides through gain of a proton. The ionized peptide molecule is usually referred to as  $[M+H]^+$  (55). ESI utilizes a solvent system to dissolve the peptide mixture, which is then electro-sprayed into a vacuum chamber. Then, through solvent evaporation or extraction methods, the peptides are ionized. With ESI, most peptide ions gain more than one proton charge ( $[M+nH]^{n+}$ ) (56). Regardless of the technique used for ionization, peptide ions are analyzed based on their *m/z* (42–44). Several examples of studies that utilized MALDI or ESI methods in nutrition and cancer prevention research are reported in Table 1.

#### MS

In MS, 3 types of information are necessary for each peptide and include mass, peptide ion intensity, and list of peptide ion fragments (44). An MS method for peptide ion mass determination is time-of-flight (TOF), in which travel distance of peptide ions is calculated based on the square root of m/z, i.e., peptides with a high m/z travel slower compared with those with a lower m/z. Then, the m/z values of unknown peptide ions are calculated against TOF of internal peptide ion standards. A second MS method utilizes quadrupole (Q) chambers that measure "spiraling" trajectories of peptide ions of preselected m/z.

*z* values. Because of their sensitivity, triple Q have been used for quantitative measurement of single or multiple fragment ions. In single/multiple reaction monitoring, the first Q chamber is used to select the peptide ion of interest; in the second Q, the peptide ion is fragmented; and in the third Q, one or a few peptide ions are collected. Therefore, multiple Q are used as mass filters that allow the passage of ions of selected *m*/*z* ratios (57). A third approach for MS determination is based on ion traps, which eject peptide ions of different *m*/*z* values onto the MS detector. In general, ion traps are useful, because they accumulate ions of interest but have limited resolution (500–2000) compared with TOF analyzers (>10,000). A fourth group of MS known as Orbitraps and Fourier transform-ion cyclotron resonance separate ions based on oscillation frequencies and have a mass resolution >60,000 (44).

Platforms for proteomic analysis need to combine an ionization technique with an MS platform. Widely used combinations are MALDI-TOF for 2D electrophoresis and ESI-ion trap/ Orbitrap for LC-MS. MS platforms commonly used today include a chromatographic technique (e.g., nano HPLC) followed by ESI-MS/MS analysis. Because the on-line nanoHPLC-ESI combination operates in the liquid phase, it eliminates losses due to separation and collection steps. Conversely, when combining LC with MALDI, eluted peptides need to be mixed with the appropriate matrix for subsequent MALDI analysis. The latter solution is more time-consuming compared with the LC-based platforms (42).

After peptide mass determination, a second goal in MS is to determine the amino acid sequence of the peptides of interest. This is accomplished through fragmentation of the peptide and recording of the m/z values of the fragments in a tandem mass spectrum. This approach relies on the use of 2 distinct (tandem) MS analyzers or the sequential use of the same MS analyzer. Examples of tandem platforms include Q-TOF, triple Q, and TOF-TOF (44). Sequential platforms utilize ion traps or Fourier transform-ion cyclotron resonance analyzers (42). The fragmentation of peptide ions can be accomplished through collision with gas molecules such as He, N2, or Ar, which cause preferential cleavage of peptide bonds and weak modifications such as glycosylation and phosphorylation linkages (42). An alternative fragmentation technique utilizes electron transfer, in which positively charged peptide ions react either with an electron donor (e.g., fluoranthene) or electrons generated by heat, leading to the gain of an unpaired electron and peptide bond cleavage. Compared with collision methods, the electron transfer approach appears to be more accurate for the analysis of large peptides or peptides with post-translational modifications (54).

The selection of MS peaks for sequencing is commonly carried out using 3 strategies. In shotgun or discovery proteomics, a full scan of the peptide ions entering the MS is performed. Then, peptide ions are selected for fragmentation and determination of the amino acid sequence. This strategy has a bias for more intense protein signals. A second protein identification approach involves 2 separate MS analyses for quantification and sequencing. This method improves quantitative measurements in favor of less abundant proteins. A third approach is targeted proteomics, which focuses on determination of the spectrum of fragment ions from a preselected list of peptides (43,57).

When determining the amino acid sequence of the peptides of interest, the fragmentation spectrum of a peptide is compared with theoretical fragmentation patterns of peptides contained in databases. Then, the fidelity of the predicted amino acid sequence is scored using different computational tools. An example of a database of consensus spectra is available through the PeptideAtlas project (58). A main issue in proteomic experiments is that of discriminating true- from false-positive matches. In de novo sequencing, the fragment ion spectrum is used to determine the peptide sequence (44).

## Quantitative assessment and prediction of protein networks

Several LC-MS/MS-based methods have been developed for quantitative proteomics and include label-free methods (42), and stable isotope methods such as metabolic stable isotopebased labeling (59), enzymatic isotope-coded affinity tag (42), and chemical isobaric tag for relative and absolute quantification (60) labeling. In label-free methods, the MS is used directly for quantitation based on signal intensity of peptides or spectral counting. In MS methods that use stable isotope labeling, quantitation is based on the mass increase of the label. For example, linear ion trap-Orbitrap and quantitative stable isotope-based labeling analyses were adopted in shotgun proteomics to identify in gastric cancer SGC-7901 cells the phosphoproteins and their regulatory sites in signaling pathways targeted by genistein (53). These investigations helped to identify proteins that mediated genistein-induced G2/M phase arrest and apoptosis. Specifically, phosphorylation of BCLAF1 at Ser-512 was identified as the regulatory event involved in the repression of Bcl-2 expression in response to genistein (Table 1). These proteomic studies suggested that specific phosphosites rather than the whole protein should be examined to learn about the impact of food components on the regulation of protein networks. Similarly, proteomic studies that adopted a Q-TOF approach (45) revealed that the grape compound resveratrol induced apoptosis in lymphoma cells through upregulation of Ser-3 phosphorylated cofilin, which functions in mitochondria as a checkpoint for programmed cell death (61).

Results of shotgun proteomic studies suggest this is the method of choice when no prior knowledge is available and for measurements of relative and absolute protein abundance (62). One of the limitations of the shotgun approach is that repeated analyses of the same samples may generate different, partially overlapping proteomes. This problem can be overcome with repeated analysis and prefractionation or use of the last generation of MS-Orbitrap or Q-TOF (59).

A main objective of proteomic studies in nutrition and cancer prevention research is to develop predictive models of how pathways and protein complexes relay signals from food components. However, the cross-talk among pathways renders the dynamic prediction of protein network response to food components challenging. Sophisticated computational tools are now available to study protein-protein interaction networks (63) and for the proteomic-based analysis of cancer processes (64). Proteomic workflows should also include validation steps with various biochemical assays (65). Useful tools for the validation of MS data are protein microarrays, including forward- and reverse-phase protein arrays, which offer the advantage of high throughput. Some drawbacks of protein microarrays may be inability to fully inform about proteinprotein interactions and complexity of spotting the complete proteome under study (66).

# Future Areas of Proteomic Research and Needs

The complexity of protein wiring is a major challenge in the design of cancer prevention strategies based on individual

1366S Supplement

bioactive components or food associations. Thousands of compounds present in the diet likely induce synergistic or opposing effects. Proteomic approaches are welcome to make an important paradigm shift. Specific research questions that should be addressed using proteomic approaches include: 1) how the timing and dose of exposure to bioactive compounds influence the activity of protein networks that contribute to cancer processes; 2) which are the protein networks and protein modifications that mediate the cell- and tissue-specific response to food components [global proteomic studies suggest that tissue specificity may be achieved by precise regulation of protein levels and modifications in space and time (67)]; 3) whether food components lead to sustained regulation of protein networks even after the original food exposure has been removed; and 4) which are the qualitative and quantitative proteomic modifications that discriminate between responders and nonresponders. Ideally, the systematic adoption of proteomic tools rather than a classical protein-by-protein approach should help isolate groups of proteins that can be targeted with individual food components or associations. However, the integration of proteomics with other complementary, high-throughput, "omic" approaches, such as genomics, epigenetics, and metabolomics, may offer the best insight into the mechanisms that determine the switch from normal to cancer phenotype and response to food components (68). This need for integration is perhaps best underlined by studies showing that interactions between inter-individual genotypic differences in metabolism and disposition influence the proteomic response to cruciferous vegetables (52).

To date,  $\sim$ 30,000 proteomic publications are available through a PubMed search. However, only ~6000 have reported on the use of proteomics in cancer research, and of the latter studies, only a small number ( $\sim$ 120) focused on the effects of food components and diet. Also, many of the published nutrition proteomic and cancer studies do not report a comprehensive analysis of protein networks. It is clear that the adoption of proteomics tools in nutrition and cancer prevention research is lagging behind other research areas such as pharmacology, for which >5400 studies are available through PubMed. Several factors appear to be hindering the wide adoption of proteomic tools in nutrition and cancer prevention research and include: 1) limited accessibility to proteomic technologies; 2) insufficient preanalytical, sample handling, instrumentations, and sample processing training; and 3) insufficient cross-training in postanalytical bioinformatics, computational biology, structural biology, and system biology analyses. Progress in these areas may be accelerated by pre- and postdoctoral training, early-career awards, workshops, and conferences. The widespread utilization of proteomic tools could be facilitated by the availability of low-cost platforms. It is important that professional organizations and funding agencies develop targeted initiatives, foster collaborations, and support new funding mechanisms to support and encourage collaborative efforts among proteomic, nutrition, and cancer scientists.

#### Acknowledgments

D.F.R. and J.A.M. co-chaired the Nutrition Proteomics and Cancer Prevention session at the American Institute for Cancer Research Annual Research Conference on Food, Nutrition, Physical Activity and Cancer held in Washington, DC on October 21 and 22, 2010. Both authors wrote, read, and approved the final manuscript.

### **Literature Cited**

- 1. Milner JA. Nutrition in the 'omics' era. Forum Nutr. 2007;60:1–24.
- Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al. Initial sequence analysis of the human genome. Nature. 2001;409:860–921.
- 3. Conney AH. Tailoring cancer chemoprevention regimens to the individual. J Cell Biochem. 2004;91:277–86.
- Fortes C, Boffetta P. Nutritional epidemiological studies in cancer prevention: what went wrong, and how to move forwards. Eur J Cancer Prev. 2011;20:518–25.
- Ghadirian P, Narod S, Fafard E, Costa M, Robidoux A, Nkondjock A. Breast cancer risk in relation to the joint effect of BRCA mutations and diet diversity. Breast Cancer Res Treat. 2009;117:417–22.
- Jakubowska A, Gronwald J, Menkiszak J, Górski B, Huzarski T, Byrski T, Edler L, Lubiński J, Scott RJ, Hamann U. Methylenetetrahydrofolate reductase polymorphisms modify BRCA1-associated breast and ovarian cancer risks. Breast Cancer Res Treat. 2007;104:299–308.
- 7. Kaput J, Rodriguez RL. Nutritional genomics: the next frontier in the postgenomic era. Physiol Genomics. 2004;16:166–77.
- 8. A gene-centric human proteome project: Hupo, The Human Proteome Organization. Mol Cell Proteomics. 2010;9:427–9.
- Fuchs D, Winkelmann I, Johnson IT, Mariman E, Wenzel U, Daniel H. Proteomics in nutrition research: principles, technologies and applications. Br J Nutr. 2005;94:302–14.
- Corthésy-Theulaz I, den Dunnen JT, Ferre P, Geurts JM, Müller M, van Belzen N, van Ommen B. Nutrigenomics: the impact of biomics technology on nutrition research. Ann Nutr Metab. 2005;49:355–65.
- 11. Veenstra TD, Zhou M. Tissue proteomics and metabolomics: an excellent start and a promising future. J Proteome Res. 2009;8:1617.
- Xiao Z, Mi L, Chung F-L, Veenstra TD. Proteomic analysis of covalent modifications of tubulins by isothiocyanates. J Nutr. 2012;142:13775–815.
- 13. de Roos B, Romagnolo DF. Proteomic approaches to predict bioavailability of fatty acids and their influence on cancer and chronic disease prevention. J Nutr. 2012;142:1370S–76S.
- Betancourt AM, Wang J, Jenkins S, Mobley J, Russo J, Lamartiniere C. Altered carcinogenesis and proteome in mammary glands of rats after prepubertal exposures to the hormonally active chemicals bisphenol A and genistein. J Nutr. 2012;142:13825–885.
- 15. Ideker T, Sharan R. Protein networks in disease. Genome Res. 2008; 18:644–52.
- Gamet-Payrastre L. Signaling pathways and intracellular targets of sulforaphane mediating cell cycle arrest and apoptosis. Curr Cancer Drug Targets. 2006;6:135–45.
- Kemp MQ, Jeffy BD, Romagnolo DF. Conjugated linoleic acid inhibits cell proliferation through a p53-dependent mechanism: effects on the expression of G1-restriction points in breast and colon cancer cells. J Nutr. 2003;133:3670–7.
- Rahal OM, Simmen RC. PTEN and p53 cross-regulation induced by soy isoflavone genistein promotes mammary epithelial cell cycle arrest and lobuloalveolar differentiation. Carcinogenesis. 2010;31:1491–500.
- Afaq F, Khan N, Syed DN, Mukhtar H. Oral feeding of pomegranate fruit extract inhibits early biomarkers of UVB radiation-induced carcinogenesis in SKH-1 hairless mouse epidermis. Photochem Photobiol. 2010;86:1318–26.
- Mousa AS, Mousa SA. Anti-angiogenesis efficacy of the garlic ingredient alliin and antioxidants: role of nitric oxide and p53. Nutr Cancer. 2005;53:104–10.
- Kang SW, Choi JS, Choi YJ, Bae JY, Li J, Kim DS, Kim JL, Shin SY, Lee YJ, Kwun IS, et al. Licorice isoliquiritigenin dampens angiogenic activity via inhibition of MAPK-responsive signaling pathways leading to induction of matrix metalloproteinases. J Nutr Biochem. 2010;21: 55–65.
- Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature. 2000; 408:307–10.
- Kastan MB, Bartek J. Cell-cycle checkpoints, cancer. Nature. 2004; 432:316–23.
- 24. Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S, Kinzler KW, Vogelstein B. 14–3-3 sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell. 1997;1:3–11.
- 25. Taylor WR, Stark GR. Regulation of the G2/M transition by p53. Oncogene. 2001;20:1803–15.

- 26. Kang MH, Reynolds CP. Bcl-2 inhibitors: targeting mitochondrial apoptotic pathways in cancer therapy. Clin Cancer Res. 2009;15: 1126–32.
- 27. Polager S, Ginsberg D. p53 and E2f: partners in life and death. Nat Rev Cancer. 2009;9:738–48.
- Jensen ON. Interpreting the protein language using proteomics. Nat Rev Mol Cell Biol. 2006;7:391–403.
- Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation in mammalian cells. Cell Res. 2002;12:9–18.
- 30. Garcia-Echeverria C, Sellers WR. Drug discovery approaches targeting the PI3K/Akt pathway in cancer. Oncogene. 2008;27:5511–26.
- Olsen JV, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen P, Mann M. Global, in vivo, and site-specific phosphorylation dynamics in signaling networks. Cell. 2006;127:635–48.
- Sung MK, Yeon JY, Park SY, Park JH, Choi MS. Obesity-induced metabolic stresses in breast and colon cancer. Ann N Y Acad Sci. 2011;1229:61–8.
- Lahiry P, Torkamani A, Schork NJ, Hegele RA. Kinase mutations in human disease: interpreting genotype-phenotype relationships. Nat Rev Genet. 2010;11:60–74.
- Orton RJ, Sturm OE, Vyshemirsky V, Calder M, Gilbert DR, Kolch W. Computational modelling of the receptor-tyrosine-kinase-activated MAPK pathway. Biochem J. 2005;392:249–61.
- Leroy C, Fialin C, Sirvent A, Simon V, Urbach S, Poncet J, Robert B, Jouin P, Roche S. Quantitative phosphoproteomics reveals a cluster of tyrosine kinases that mediates SRC invasive activity in advanced colon carcinoma cells. Cancer Res. 2009;69:2279–86.
- Summy JM, Gallick GE. Src family kinases in tumor progression and metastasis. Cancer Metastasis Rev. 2003;22:337–58.
- Yan GR, Xiao CL, He GW, Yin XF, Chen NP, Cao Y, He QY. Global phosphoproteomic effects of natural tyrosine kinase inhibitor, genistein, on signaling pathways. Proteomics. 2010;10:976–86.
- Fuchs D, Vafeiadou K, Hall WL, Daniel H, Williams CM, Schroot JH, Wenzel U. Proteomic biomarkers of peripheral blood mononuclear cells obtained from postmenopausal women undergoing an intervention with soy isoflavones. Am J Clin Nutr. 2007;86:1369–75.
- 39. Resh MD. Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci STKE. 2006;2006:re14.
- Acconcia F, Ascenzi P, Bocedi A, Spisni E, Tomasi V, Trentalance A, Visca P, Marino M. Palmitoylation-dependent estrogen receptor alpha membrane localization: regulation by 17beta-estradiol. Mol Biol Cell. 2005;16:231–7.
- Seo J, Barhoumi R, Johnson AE, Lupton JR, Chapkin RS. Docosahexaenoic acid selectively inhibits plasma membrane targeting of lipidated proteins. FASEB J. 2006;20:770–2.
- Mallick P, Kuster B. Proteomics: a pragmatic perspective. Nat Biotechnol. 2010;28:695–709.
- Domon B, Aebersold R. Options and considerations when selecting a quantitative proteomics strategy. Nat Biotechnol. 2010;28:710–21.
- Choudhary C, Mann M. Decoding signalling networks by mass spectrometry-based proteomics. Nat Rev Mol Cell Biol. 2010;11:427–39.
- 45. Cecconi D, Zamò A, Parisi A, Bianchi E, Parolini C, Timperio AM, Zolla L, Chilosi M. Induction of apoptosis in Jeko-1 mantle cell lymphoma cell line by resveratrol: a proteomic analysis. J Proteome Res. 2008;7:2670–80.
- Mastrangelo L, Cassidy A, Mulholland F, Wang W, Bao Y. Serotonin receptors, novel targets of sulforaphane identified by proteomic analysis in Caco-2 cells. Cancer Res. 2008;68:5487–91.
- 47. Lee CH, Jeong SJ, Yun SM, Kim JH, Lee HJ, Ahn KS, Won SH, Kim HS, Lee HJ, Ahn KS, et al. Down-regulation of phosphoglucomutase 3 mediates sulforaphane-induced cell death in LNCaP prostate cancer cells. Proteome Sci. 2010;8:67.
- Mi L, Xiao Z, Hood BL, Dakshanamurthy S, Wang X, Govind S, Conrads TP, Veenstra TD, Chung FL. Covalent binding to tubulin by isothiocyanates. A mechanism of cell growth arrest and apoptosis. J Biol Chem. 2008;283:22136–46.
- 49. Wang J, Betancourt AM, Mobley JA, Lamartiniere CA. Proteomic discovery of genistein action in the rat mammary gland. J Proteome Res. 2011;10:1621–31.
- Mi L, Xiao Z, Veenstra TD, Chung FL. Proteomic identification of binding targets of isothiocyanates: a perspective on techniques. J Proteomics. 2011;74:1036–44.

- Anderson NL, Anderson NG. The human plasma proteome: history, character, and diagnostic prospects. Mol Cell Proteomics. 2002;1:845–67.
- 52. Brauer HA, Libby TE, Mitchell BL, Li L, Chen C, Randolph TW, Yasui YY, Lampe JW, Lampe PD. Cruciferous vegetable supplementation in a controlled diet study alters the serum peptidome in a GSTM1-genotype dependent manner. Nutr J. 2011;10:11.
- Yan GR, Yin XF, Xiao CL, Tan ZL, Xu SH, He QY. Identification of novel signaling components in genistein-regulated signaling pathways by quantitative phosphoproteomics. J Proteomics. 2011;75:695–707.
- Macek B, Mann M, Olsen JV. Global and site-specific quantitative phosphoproteomics: principles and applications. Annu Rev Pharmacol Toxicol. 2009;49:199–221.
- 55. Albrethsen J. The first decade of MALDI protein profiling: a lesson in translational biomarker research. J Proteomics. 2011;74:765–73.
- Liuni P, Wilson DJ. Understanding and optimizing electrospray ionization techniques for proteomic analysis. Expert Rev Proteomics. 2011;8:197–209.
- Elschenbroich S, Kislinger T. Targeted proteomics by selected reaction monitoring mass spectrometry: applications to systems biology and biomarker discovery. Mol Biosyst. 2011;7:292–303.
- 58. The Human Protein Atlas [cited April 15, 2012]. Available from: www. proteinatlas.org.
- Agyeman AS, Chaerkady R, Shaw PG, Davidson NE, Visvanathan K, Pandey A, Kensler TW. Transcriptomic and proteomic profiling of KEAP1 disrupted and sulforaphane-treated human breast epithelial cells reveals common expression profiles. Breast Cancer Res Treat. 2012;132:175–87.
- Kassie F, Anderson LB, Scherber R, Yu N, Lahti D, Upadhyaya P, Hecht SS. Indole-3-carbinol inhibits 4-(methylnitrosamino)-1-(3-pyridyl)-1butanone plus benzo(a)pyrene-induced lung tumorigenesis in A/J mice and modulates carcinogen-induced alterations in protein levels. Cancer Res. 2007;67:6502–11.
- 61. Wabnitz GH, Goursot C, Jahraus B, Kirchgessner H, Hellwig A, Klemke M, Konstandin MH, Samstag Y. Mitochondrial translocation of oxidized cofilin induces caspase-independent necrotic-like programmed cell death of T cells. Cell Death Dis. 2010;1:e58.
- 62. Sabidó E, Selevsek N, Aebersold R. Mass spectrometry-based proteomics for systems biology. Curr Opin Biotechnol. 2011;23:1–7.
- Sardiu ME, Washburn MP. Building protein-protein interaction networks with proteomics and informatics tools. J Biol Chem. 2011;286: 23645–51.
- Zhang GL, DeLuca DS, Brusic V. Database resources for proteomicsbased analysis of cancer. Methods Mol Biol. 2011;723:349–64.
- Pontén F, Jirström K, Uhlen M. The human protein atlas: a tool for pathology. J Pathol. 2008;216:387–93.
- Boja E, Hiltke T, Rivers R, Kinsinger C, Rahbar A, Mesri M, Rodriguez H. Evolution of clinical proteomics and its role in medicine. J Proteome Res. 2011;10:66–84.
- 67. Pontén F, Gry M, Fagerberg L, Lundberg E, Asplund A, Berglund L, Oksvold P, Björling E, Hober S, Kampf C, et al. A global view of protein expression in human cells, tissues, and organs. Mol Syst Biol. 2009;5:337.
- Britton LM, Gonzales-Cope M, Zee BM, Garcia BA. Breaking the histone code with quantitative mass spectrometry. Expert Rev Proteomics. 2011;8:631–43.
- Lin RK, Zhou N, Lyu YL, Tsai YC, Lu CH, Kerrigan J, Chen YT, Guan Z, Hsieh TS, Liu LF. Dietary isothiocyanate-induced apoptosis via thiol modification of DNA topoisomerase IIα. J Biol Chem. 2011; 286:33591–600.
- Jeon YK, Yoo DR, Jang YH, Jang SY, Nam MJ. Sulforaphane induces apoptosis in human hepatic cancer cells through inhibition of 6phosphofructo-2-kinase/fructose-2,6-biphosphatase4, mediated by hypoxia inducible factor-1-dependent pathway. Biochim Biophys Act. 2011;1814:1340–8.
- Neo JC, Rose P, Ong CN, Chung MC. β-Phenylethyl isothiocyanate mediated apoptosis: a proteomic investigation of early apoptotic protein changes. Proteomics. 2005;5:1075–82.
- Powolny AA, Bommareddy A, Hahm ER, Normolle DP, Beumer JH, Nelson JB, Singh SV. Chemopreventative potential of the cruciferous vegetable constituent phenethyl isothiocyanate in a mouse model of prostate cancer. J Natl Cancer Inst. 2011;103:571–84.
- 73. Cross JV, Rady JM, Foss FW, Lyons CE, Macdonald TL, Templeton DJ. Nutrient isothiocyanates covalently modify and inhibit the inflam-

matory cytokine macrophage migration inhibitory factor (MIF). Biochem J. 2009;423:315–21.

- 74. Hoelzl C, Lorenz O, Haudek V, Gundacker N, Knasmüller S, Gerner C. Proteome alterations induced in human white blood cells by consumption of Brussels sprouts: results of a pilot intervention study. Proteomics Clin Appl. 2008;2:108–17.
- Mitchell BL, Yasui Y, Lampe JW, Gafken PR, Lampe PD. Evaluation of matrix-assisted laser desorption/ionization-time of flight mass spectrometry proteomic profiling: identification of alpha 2-HS glycoprotein B-chain as a biomarker of diet. Proteomics. 2005;5:2238–46.
- 76. Breikers G, van Breda SG, Bouwman FG, van Herwijnen MH, Renes J, Mariman EC, Kleinjans JC, van Delft JH. Potential protein markers for nutritional health effects on colorectal cancer in the mouse as revealed by proteomics analysis. Proteomics. 2006;6:2844–52.
- 77. Opii WO, Joshi G, Head E, Milgram NW, Muggenburg BA, Klein JB, Pierce WM, Cotman CW, Butterfield DA. Proteomic identification of brain proteins in the canine model of human aging following a longterm treatment with antioxidants and a program of behavioral enrichment: relevance to Alzheimer's disease. Neurobiol Aging. 2008; 29:51–70.
- Rowell C, Carpenter DM, Lamartiniere CA. Chemoprevention of breast cancer, proteomic discovery of genistein action in the rat mammary gland. J Nutr. 2005;135:S2953–9.
- Zhang D, Tai YC, Wong CH, Tai LK, Koay ES, Chen CS. Molecular response of leukemia HL-60 cells to genistein treatment, a proteomics study. Leuk Res. 2007;31:75–82.
- Fuchs D, Erhard P, Rimbach G, Daniel H, Wenzel U. Genistein blocks homocysteine-induced alterations in the proteome of human endothelial cells. Proteomics. 2005;5:2808–18.
- Pakalapati G, Li L, Gretz N, Koch E, Wink M. Influence of red clover (Trifolium pratense) isoflavones on gene and protein expression profiles in liver of ovariectomized rats. Phytomedicine. 2009;16:845–55.
- Wenzel U, Herzog A, Kuntz S, Daniel H. Protein expression profiling identifies molecular targets of quercetin as a major dietary flavonoid in human colon cancer cells. Proteomics. 2004;4:2160–74.
- 83. Dihal AA, van der Woude H, Hendriksen PJ, Charif H, Dekker LJ, Ijsselstijn L, de Boer VC, Alink GM, Burgers PC, Rietjens IM, et al. Transcriptome and proteome profiling of colon mucosa from quercetin fed F344 rats point to tumor preventive mechanisms, increased mitochondrial fatty acid degradation and decreased glycolysis. Proteomics. 2008;8:45–61.
- Mouat MF, Kolli K, Orlando R, Hargrove JL, Grider A. The effects of quercetin on SW480 human colon carcinoma cells: a proteomic study. Nutr J. 2005;4:11.
- Zhou J, Liang S, Fang L, Chen L, Tang M, Xu Y, Fu A, Yang J, Wei Y. Quantitative proteomic analysis of HepG2 cells treated with quercetin suggests IQGAP1 involved in quercetin-induced regulation of cell proliferation and migration. OMICS. 2009;13:93–103.
- Zanini C, Giribaldi G, Mandili G, Carta F, Crescenzio N, Bisaro B, Doria A, Foglia L, di Montezemolo LC, Timeus F, et al. Inhibition of heat shock proteins (HSP) expression by quercetin and differential doxorubicin sensitization in neuroblastoma and Ewing's sarcoma cell lines. J Neurochem. 2007;103:1344–54.
- 87. Hu W, Wu W, Verschraegen CF, Chen L, Mao L, Yeung SC, Kudelka AP, Freedman RS, Kavanagh JJ. Proteomic identification of heat shock protein 70 as a candidate target for enhancing apoptosis induced by farnesyl transferase inhibitor. Proteomics. 2003;3:1904–11.
- Aalinkeel R, Bindukumar B, Reynolds JL, Sykes DE, Mahajan SD, Chadha KC, Schwartz SA. The dietary bioflavonoid, quercetin, selectively induces apoptosis of prostate cancer cells by down-regulating the expression of heat shock protein 90. Prostate. 2008;68:1773–89.
- Herzog A, Kindermann B, Döring F, Daniel H, Wenzel U. Pleiotropic molecular effects of the pro-apoptotic dietary constituent flavone in human colon cancer cells identified by protein and mRNA expression profiling. Proteomics. 2004;4:2455–64.
- 90. de Roos B, Geelen A, Ross K, Rucklidge G, Reid M, Duncan G, Caslake M, Horgan G, Brouwer IA. Identification of potential serum biomarkers of inflammation and lipid modulation that are altered by fish oil supplementation in healthy volunteers. Proteomics. 2008;8: 1965–74.
- 91. de Roos B, Duivenvoorden I, Rucklidge G, Reid M, Ross K, Lamers RJ, Voshol PJ, Havekes LM, Teusink B. Response of apolipoprotein E\*3-Leiden transgenic mice to dietary fatty acids: combining liver proteomics with physiological data. FASEB J. 2005;19:813–5.

- 92. de Roos B, Rucklidge G, Reid M, Ross K, Duncan G, Navarro MA, Arbones-Mainar JM, Guzman-Garcia MA, Osada J, Browne J, et al. Divergent mechanisms of cis9, trans11-and trans10, cis12-conjugated linoleic acid affecting insulin resistance and inflammation in apolipoprotein E knockout mice: a proteomics approach. FASEB J. 2005; 19:1746–8.
- Tan HT, Tan S, Lin Q, Lim TK, Hew CL, Chung MC. Quantitative and temporal proteome analysis of butyrate-treated colorectal cancer cells. Mol Cell Proteomics. 2008;7:1174–85.
- Tan S, Seow TK, Liang RC, Koh S, Lee CP, Chung MC, Hooi SC. Proteome analysis of butyrate-treated human colon cancer cells (HT-29). Int J Cancer. 2002;98:523–31.
- 95. Fung KY, Lewanowitsch T, Henderson ST, Priebe I, Hoffmann P, McColl SR, Lockett T, Head R, Cosgrove LJ. Proteomic analysis of butyrate effects and loss of butyrate sensitivity in HT29 colorectal cancer cells. J Proteome Res. 2009;8:1220–7.
- Gharbi S, Garzón B, Gayarre J, Timms J, Pérez-Sala D. Study of protein targets for covalent modification by the antitumoral and antiinflammatory prostaglandin PGA1: focus on vimentin. J Mass Spectrom. 2007;42:1474–84.
- Deshane J, Chaves L, Sarikonda KV, Isbell S, Wilson L, Kirk M, Grubbs C, Barnes S, Meleth S, Kim H. Proteomics analysis of rat brain protein modulations by grape seed extract. J Agric Food Chem. 2004; 52:7872–83.
- Lee SC, Chan J, Clement MV, Pervaiz S. Functional proteomics of resveratrol-induced colon cancer cell apoptosis: caspase-6-mediated cleavage of lamin A is a major signaling loop. Proteomics. 2006;6: 2386–94.
- 99. Narayanan NK, Narayanan BA, Nixon DW. Resveratrol-induced cell growth inhibition and apoptosis is associated with modulation of phosphoglycerate mutase B in human prostate cancer cells: twodimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and mass spectrometry evaluation. Cancer Detect Prev. 2004; 28:443–52.
- 100. Li N, Guo R, Li W, Shao J, Li S, Zhao K, Chen X, Xu N, Liu S, Lu Y. A proteomic investigation into a human gastric cancer cell line BGC823 treated with diallyl trisulfide. Carcinogenesis. 2006;27:1222–31.

- 101. Zhang YK, Zhang XH, Li JM, Sun de S, Yang Q, Diao DM. A proteomic study on a human osteosarcoma cell line Saos-2 treated with diallyl trisulfide. Anticancer Drugs. 2009;20:702–12.
- 102. Lu QY, Yang Y, Jin YS, Zhang ZF, Heber D, Li FP, Dubinett SM, Sondej MA, Loo JA, Rao JY. Effects of green tea extract on lung cancer A549 cells: proteomic identification of proteins associated with cell migration. Proteomics. 2009;9:757–67.
- 103. Weinreb O, Amit T, Youdim MB. A novel approach of proteomics and transcriptomics to study the mechanism of action of the antioxidantiron chelator green tea polyphenol (-)-epigallocatechin-3-gallate. Free Radic Biol Med. 2007;43:546–56.
- 104. Ramljak D, Romanczyk LJ, Metheny-Barlow LJ, Thompson N, Knezevic V, Galperin M, Ramesh A, Dickson RB. Pentameric procyanidin from Theobroma cacao selectively inhibits growth of human breast cancer cells. Mol Cancer Ther. 2005;4:537–46.
- 105. Mahn AV, Toledo HM, Ruz M. Dietary supplementation with selenomethylselenocysteine produces a differential proteomic response. J Nutr Biochem. 2009;20:791–9.
- Wang Y, He QY, Chen H, Chiu JF. Synergistic effects of retinoic acid and tamoxifen on human breast cancer cells: proteomic characterization. Exp Cell Res. 2007;313:357–68.
- 107. Laserna EJ, Valero ML, Sanz L, del Pino MM, Calvete JJ, Barettino D. Proteomic analysis of phosphorylated nuclear proteins underscores novel roles for rapid actions of retinoic acid in the regulation of mRNA splicing and translation. Mol Endocrinol. 2009;23:1799–814.
- Park S, Lee J, Yeom CH. A proteomic approach to the identification of early molecular targets changed by L-ascorbic acid in NB4 human leukemia cells. J Cell Biochem. 2006;99:1628–41.
- 109. Duthie SJ, Horgan G, de Roos B, Rucklidge G, Reid M, Duncan G, Pirie L, Basten GP, Powers HJ. Blood folate status and expression of proteins involved in immune function, inflammation, and coagulation: biochemical and proteomic changes in the plasma of humans in response to long-term synthetic folic acid supplementation. J Proteome Res. 2010;9:1941–50.
- Duthie SJ, Mavrommatis Y, Rucklidge G, Reid M, Duncan G, Moyer MP, Pirie LP, Bestwick CS. The response of human colonocytes to folate deficiency in vitro: functional and proteomic analyses. J Proteome Res. 2008;7:3254–66.