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The neural mechanisms underlying variability in human sensory perception remain incompletely understood. In particular, few studies
have attempted to investigate the relationship between in vivo measurements of neurochemistry and individuals’ behavioral perfor-
mance. Our previous work found a relationship between GABA concentration in the visual cortex and orientation discrimination thresh-
olds (Edden et al., 2009). In the present study, we used magnetic resonance spectroscopy of GABA and psychophysical testing of
vibrotactile frequency thresholds to investigate whether individual differences in tactile frequency discrimination performance are
correlated with GABA concentration in sensorimotor cortex. Behaviorally, individuals showed a wide range of discrimination thresholds
ranging from 3 to 7.6 Hz around the 25 Hz standard. These frequency discrimination thresholds were significantly correlated with GABA
concentration (r � �0.58; p � 0.05) in individuals’ sensorimotor cortex, but not with GABA concentration in an occipital control region
(r � �0.04). These results demonstrate a link between GABA concentration and frequency discrimination in vivo, and support the
hypothesis that GABAergic mechanisms have an important role to play in sensory discrimination.

Introduction
GABAergic inhibition plays an important role in defining the
selectivity of cortical responses to behaviorally relevant stimuli.
The application of GABAergic antagonists, such as bicuculline,
has been shown to broaden the responses of individual neurons
to visual (Sillito, 1975; Tsumoto et al., 1979; Sillito et al., 1980;
Wolf et al., 1986), auditory (Müller and Scheich, 1988; Fuzessery
and Hall, 1996) and somatosensory (Dykes et al., 1984; Alloway
and Burton, 1986; Juliano et al., 1989) stimuli.

We have recently shown that an alternative strategy to phar-
macological manipulation for investigating the relationship
between GABAergic inhibition and behavior is to compare in-
dividual differences in GABA concentration in vivo to psycho-
physical measurements (Edden et al., 2009; Boy et al., 2010;
Sumner et al., 2010). For example, in the visual system, we have
shown that orientation discrimination thresholds correlate with
GABA concentration in visual cortex (Edden et al., 2009), in the
sense that those participants who perform well at the orientation
discrimination task have more GABA in their occipital regions.

In the somatosensory system, vibrotactile frequency dis-
crimination in the flutter range (5– 40 Hz) is regularly used as
a behavioral paradigm to investigate the neuronal correlates of
sensory encoding and decision making (Mountcastle et al.,
1967, 1969, 1997; LaMotte and Mountcastle, 1975; Hernández
et al., 2000b; Salinas et al., 2000; Romo et al., 2002). While
much is currently known about how representations of vibra-
tion frequency are gradually transformed into motor outputs
by successive cortical regions (Romo and Salinas, 2003; Luna
et al., 2005; Hernández et al., 2010), the nature of interindi-
vidual differences on this task is less clear. Although the exces-
sive amounts of training required and small cohort sizes make
it difficult to investigate individual differences in nonhuman
primates, learning studies have shown that increases in indi-
vidual tactile performance through training can be linked
directly to changes in neuronal responses in primary somato-
sensory cortex (S1; Recanzone et al., 1992). As GABAergic
mechanisms have been previously suggested as a basis for
these functional alterations, here we directly test the hypoth-
esis that differences in GABA between individuals can account
for differences in perceptual performance. We used magnetic
resonance spectroscopy (MRS), which is currently the only
noninvasive methodology that can measure the endogenous
concentration of neurotransmitters and metabolites, to mea-
sure GABA concentrations in cortical regions. We further
tested the hypothesis that the relationship between brain
GABA concentration and behavioral performance is region-
ally specific by comparing GABA measurements in the senso-
rimotor region with similar measurements in an occipital
(control) region.
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Materials and Methods
Participants. Sixteen right-handed participants (mean age 27.3; SD
4.3; range 22–34; 10 male) were recruited for this study. None had a
history of neurological disease. All participants gave informed con-
sent and all procedures were approved by the local ethics committee

at Cardiff University’s School of Psychology. One participant was
excluded from further analysis due to poor execution of the behav-
ioral task, which prevented the determination of threshold in this
individual.

Behavioral psychophysics. Vibrotactile stimulation was delivered using
a piezoelectric vibrotactile stimulator (McGlone et al., 2002). Contact
with the skin was made via a plastic probe (7 mm diameter). A static
surround limited the stimulation to the skin region directly under the
probe. All stimulation was delivered to the glabrous skin of left digit 2
(index finger). Stimuli were delivered via the audio output of a laptop
computer (Sony Vaio VGN-NS20M, Realtek high-definition audio) us-
ing Matlab 2008b (The MathWorks, 2008). A 25 Hz 1 s sinusoid was used

as the “target” for detection and as the “stan-
dard” for discrimination. The PEST algorithm
(Taylor and Creelman, 1967) was used to de-
termine all threshold measurements.

Participants were seated comfortably in a
dedicated behavioral testing room at Cardiff
University Brain Research Imaging Centre
(CUBRIC) and their finger was placed on the
stimulator. Before the frequency discrimina-
tion task, individual detection threshold values
were determined using a 60-trial two-interval
forced-choice [interval duration 1 s; 1 � 100
ms inter-stimulus interval (ISI)] paradigm in
which the amplitude of the target was altered in
a stepwise fashion to find participants’ 75%
correct threshold. The resulting amplitude
was increased by 8 dB for the discrimination
task (after LaMotte and Mountcastle, 1975).
Vibrotactile discrimination thresholds around
the standard were measured using a 100-trial
two-track interleaved two-alternative forced-
choice design (2AFC; 1 � 100 ms ISI) with
stimulus frequency as the adaptive variable
(Fig. 1). The order of the tracks was pseudoran-
domized, so that a maximum of five trials of
the same track occurred sequentially. The or-
der of standard and comparison stimuli was
randomized between trials.

Frequency discrimination thresholds were
calculated by taking the modulus average of
the last 15 trials across the two tracks. For the
task, intertrial intervals consisted of a 2 s
pause with �100 ms jitter to focus attention
and reduce expectation of stimulus occur-
rence. Previous frequency discrimination studies
have shown that perceived intensity varies as
a function of frequency as well as intensity
(LaMotte and Mountcastle, 1975; Verrillo
and Capraro, 1975), so the amplitude of the
comparison stimulus was determined by a
normalized subjective frequency-intensity
matching curve.

MR experiment. After vibrotactile thresholds
were determined, subjects proceeded to the
MR scanning suite at CUBRIC. All scanning
was performed on a GE SignaHDx 3 tesla MRI
scanner (General Electric Healthcare), using an
eight-element head coil for receive and the
body coil for transmit. Before MRS acquisition,
a 1 mm 3 isotropic-resolution T1-weighted an-
atomical scan (FSPGR) was acquired to determine

voxel placement. GABA-edited MR spectra were acquired using the MEGA-
PRESS method (Mescher et al., 1998; Edden and Barker, 2007) in two (3
cm) 3 volumes in the right sensorimotor and midline occipital regions
(Fig. 2), while subjects were at rest in the MR scanner. Due to the exper-
imental limitations of MRS, GABA measurements must be made from a

Figure 1. Frequency discrimination paradigm. Frequency discrimination thresholds to a 25
Hz stimulus were determined for frequencies higher and lower than 25 Hz in a 2AFC paradigm.
The order of presentation of the standard (25 Hz) and comparison stimuli were randomized.

Figure 2. Voxel locations and spectra. a, A single-participant example voxel over the right sensorimotor cortex. The center of
the voxel is placed on the “hand knob,” an anatomical landmark indicating the hand area of the primary motor cortex, with the
hand area of primary somatosensory cortex, directly posterior across the central sulcus, also included (Yousry et al., 1997). b, An
example voxel over occipital cortex. c, d, High-quality spectra from all participants for the sensorimotor (SM) and occipital cortex
(OCC) voxels respectively, with a clearly distinguishable GABA peak at 3 ppm for all participants.
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volume including both primary somatosensory and motor cortex, which
we designate “sensorimotor” cortex.

Sensorimotor and visual voxel localization was determined as de-
scribed previously (Evans et al., 2010), except the sensorimotor voxel was
rotated in both the sagittal and coronal planes so that one face of the voxel
was parallel to the cortical surface. The following acquisition parameters
were used: TR/TE 1800/68 ms; 332 scans of 2048 data points per 10 min
acquisition; 16 ms Gaussian editing pulse applied at 1.9 ppm (ON) and
7.46 ppm (OFF) in interleaved scans.

GABA concentration was quantified in institutional units from the
ratio of the edited GABA signal at 3 ppm (as determined by fitting with a
simple Gaussian model) to the unsuppressed water signal from the same
volume. All processing of MRS data was performed using in-house soft-
ware written in MATLAB. GABA concentrations were corrected for the
voxel tissue fraction (white matter � gray matter) obtained using FAST
(Zhang et al., 2001). FreeSurfer was used to obtain cortical thickness
measurements of the precentral and postcentral gyri, with each gyrus
defined by an automated parcellation technique (Dale et al., 1999; Fischl
and Dale, 2000; Fischl et al., 2004). Estimates of cortical thickness and
gray matter volume were also computed for the part of each gyrus that
was contained within our sensorimotor MRS voxel for each subject.

Statistical analysis. All results are quoted as mean � SD. Correlations
between GABA concentration, frequency discrimination threshold, and
structural anatomical parameters were tested using the Pearson correla-
tion coefficients (r). Group differences between male and female partic-
ipants were tested using Student’s t test.

Results
Average frequency discrimination thresholds to the 25 Hz stan-
dard were 4.9 � 1.23 Hz. These values are consistent with previ-
ous studies measuring frequency discrimination thresholds in
healthy adults to stimuli in the flutter range (Goble and Hollins,
1994; Tommerdahl et al., 2005).

High-quality MRS spectra were obtained in all participants (as
shown in Fig. 2), showing a clear edited signal at 3 ppm. GABA
concentration in sensorimotor cortex was found to correlate sig-
nificantly (r � �0.58, p � 0.05) with frequency discrimination
threshold. Participants with a higher level of GABA performed
better at the task, as shown in Figure 3. To test the effects of
outliers on our correlations, we performed a jackknife analysis:
the data were resampled n times (n � number of subjects), ex-
cluding one subject each time, and the correlation was computed.
For the correlation between GABA concentration and discrimi-
nation threshold, this produced a range of r values between
�0.53 and �0.68, all of which were significant at p � 0.05. No
correlation was seen between GABA concentration in occipital
cortex and discrimination threshold (r � �0.04; p � 0.5; jack-
knifed r range �0.2175 to 0.1123, all of which were NS).

As studies have suggested links between macroanatomical
structural features of the sensorimotor cortical area and aspects
of motor and sensory abilities in individuals (e.g., Gaser and
Schlaug, 2003), we measured the cortical thickness and total gray
matter volume of both precentral and postcentral gyri in each
subject. In addition, we calculated the cortical thickness and gray
matter volume of those areas of either gyri that were contained
within our MRS voxel, allowing us to separate the anatomy of the
voxel into primarily motor (precentral) and tactile (postcentral)
regions. No significant correlations were found between any of
these measures of anatomy and either tactile discrimination
thresholds or GABA concentration in the sensorimotor voxel.

No significant correlation was seen between GABA concen-
tration and age within this relatively homogeneous cohort (r �
�0.08). There was no significant difference in concentration
between male and female participants for either region (p � 0.3
for both regions).

Discussion
Our findings show a significant correlation between GABA con-
centration and tactile frequency discrimination threshold only in
the sensorimotor cortex voxel. Higher GABA concentrations in
this region predict lower discrimination thresholds, consistent
with our previous study linking orientation discrimination and
GABA in the visual cortex (Edden et al., 2009).

GABAergic influences on tactile discrimination
How might differences in GABA concentration, measured at the
coarse spatial scale of our MRS data, determine individual differ-
ences in tactile function? The mechanisms linking GABAergic
inhibition to tactile processing are incompletely appreciated at
the cellular level, and while this study has focused on the mecha-
nism by which individual differences in tactile sensitivity are re-
flected by individual GABA levels, our results do not provide
further insights into how frequency discrimination is encoded in
human participants with no previous experience on the task.
However, they do suggest that the GABAergic system plays a
crucial role in determining individual differences in frequency
discrimination in healthy adults.

Studies have shown that GABAergic inhibition acts via the
lateral inhibition of neighboring neurons or columns in somato-
sensory cortex to influence spatial receptive fields in SI (Lee and
Whitsel, 1992). This adaptive spatial ability may also be paralleled
by a similar mechanism in the temporal domain. Fast-spiking

Figure 3. a, Individual GABA concentration in sensorimotor cortex correlates significantly
with frequency discrimination threshold (r � �0.58, p � 0.05). b, GABA concentration in
occipital cortex does not correlate with tactile frequency discrimination threshold (r ��0.04,
NS). GABA concentrations are corrected for tissue volume (gray matter � white matter).
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(FS) GABAergic interneurons exert powerful effects on the pre-
cision of spike timing in pyramidal cells (Bacci and Huguenard,
2006), and recent work (Cardin et al., 2009) has demonstrated a
causal link between oscillations in the gamma frequency range
(20 – 80 Hz), FS interneuron activity, and the efficacy of sensory
processing. Neurons in area 3b explicitly encode information
about flutter frequency, firing in phase with each stimulus cycle
of the mechanical vibrations (Mountcastle et al., 1969; Hernán-
dez et al., 2000a). Perceptual learning studies (Recanzone et al.,
1992; Wang et al., 1995), have suggested that improvements in
tactile discrimination may be driven by a “sharpening” in the
tuning of neuronal responses to the indentation cycles of vibrot-
actile stimuli. This would enhance the signal-to-noise ratio
(SNR) of the sensory response, and in doing so improve the fi-
delity of the stimulus representation (as suggested in Harris et al.,
2001). Similarly, reductions in the efficacy of GABAergic trans-
mission are known to reduce the SNR of tactile frequency encoding
in SI (McLaughlin and Juliano, 2005), and age-related changes in
the SNR of visual cortical neurons are affected by GABA levels
(Leventhal et al., 2003). If there exists a temporal “window of
opportunity” (Knoblich et al., 2010) to ensure the encoding suc-
cess or failure of a given sensory stimulus by a given cortical
region (first suggested by Mountcastle et al., 1990), then it is likely
that inhibitory GABAergic mechanisms play an important role in
its generation and maintenance.

MRS measurements of baseline GABA concentration
We do not think that our results merely reflect a nonspecific
increase in neuronal density or surface cortical thickness that
could underlie the differences in perceptual ability between sub-
jects. However, as previous work has suggested links between
gross anatomical structure and behavior in the cortical regions
within our sensorimotor voxel, we performed a number of con-
trol analyses, exploring whether the variability in either GABA
concentration or tactile discrimination thresholds could be ex-
plained by cortical thickness or gray matter volume in the precentral
and postcentral gyri. None of these analyses were significant, sug-
gesting that the correlation between GABA and behavior in our data
is unlikely to be driven by gross anatomical differences be-
tween subjects.

Rather, as suggested by histological measurements in non-
human primates (Hendry et al., 1987), our measurements may
instead reflect the proportion of GABAergic inhibitory interneu-
rons in a given cortical area. Due to the ubiquity of GABA’s
involvement in signal transmission in cortex and its complex,
reciprocal relationship with excitatory transmission, we propose
here that our measurements of baseline GABA concentration
provide a way to sample the efficacy of normal cortical function
in a given brain region.

In addition, our study shows that GABA concentration in
occipital cortex, a sensory region that is not thought to play a role
in tactile frequency encoding, does not correlate with the fre-
quency discrimination thresholds. This further supports previ-
ous work (Boy et al., 2010; Sumner et al., 2010) that GABA
concentration, as measured by MRS, varies in a behaviorally rel-
evant manner across the brain.

GABAergic function and sensory processing in
neuropsychiatric disorders
Our findings have significance for several neuropsychiatric dis-
orders in which a link between alterations in sensory processing
and GABAergic mechanisms is hypothesized, most notably autis-
tic spectrum disorder (Tannan et al., 2008; Tommerdahl et al.,

2008) and schizophrenia (Chang and Lenzenweger, 2005). Both
these disorders are heterogeneous in presentation and are likely
to be caused by a range of factors, rather than a deficit to a single
neurotransmitter system. While pharmacologic intervention has
been used to address comorbid features of autism, such as anxi-
ety, hyperactivity, and aggressive behavior, there are no currently
available medications that effectively target the core social/com-
municative and behavioral features of autism, including sensory
processing. It is possible that GABAergic interventions may rep-
resent a future goal for drug development in these disorders.

Limits of MEGA-PRESS measurements of GABA
The MEGA-PRESS technique used to measure GABA still has
several limitations. The size of the voxel used is relatively large
(3 � 3 � 3 cm 3) and it is therefore not possible to place a voxel
specifically on the primary somatosensory cortex. Although
other studies of GABA have used smaller volumes (for review, see
Puts and Edden, 2011), correlative studies of individual differ-
ences require optimal signal-to-noise, and the reliance on PRESS
localization gives a cuboidal excitation volume that is fundamen-
tally different from the curved geometry of S1. However, we
believe that the link between somatosensory function and con-
centrations of GABA that we describe here is most parsimoni-
ously explained by considering that the individual differences on
the discrimination task are primarily driven by individual differ-
ences in the GABA signal from S1. At 3T, the MEGA-PRESS
methodology results in significant excitation of coedited macro-
molecule signal, which contributes �40% of the edited signal at 3
ppm. We believe that that the behavioral effects observed are more
easily explained by GABA than by the macromolecular signal.

Conclusions
In conclusion, the present study is the first to link somatosensory
discrimination performance to GABAergic inhibition by using
the observable range among healthy individuals. Combined with
previous studies in visual cortex, this suggests a general role for
GABAergic inhibition in behavioral discrimination in healthy
participants.
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