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The base excision repair (BER) pathway, containing OGGI, MTHI and MUTYH, is a major protector from oxidative DNA
damage in humans, while 8-oxoguanine (8-OHdG), an index of DNA oxidation, is increased in maintenance hemodialysis (HD)
patients. Four polymorphisms of BER genes, OGG1 ¢.977C > G (rs1052133), MTHI ¢.247G > A (rs4866), MUTYH ¢.972G>C
(rs3219489), and AluYbSMUTYH (rs10527342), were examined in 337 HD patients and 404 healthy controls. And the 8-OHdG
levels in leukocyte DNA were examined in 116 HD patients. The distribution of MUTYH ¢.972 GG or AluYb8MUTYH differed
between the two groups and was associated with a moderately increased risk for end-stage renal disease (ESRD) (P = 0.013 and
0.034, resp.). The average 8-OHdAG/10° dG value was significantly higher in patients with the OGGI ¢.977G, MUTYH ¢.972G
or AluYb8MUTYH alleles (P < 0.001 via ANOVA). Further analysis showed that combination of MUTYH ¢.972GG with OGGI
¢.977GG or AluYb8MUTYH increased both the risk for ESRD and leukocyte DNA 8-OHdG levels in HD patients. Our study
showed that MUTYH ¢.972GG, AluYb8MUTYH, and combination of OGGI ¢.977GG increased the risk for ESRD development in

China and suggested that DNA oxidative damage might be involved in such process.

1. Introduction

Oxidative stress is characterized by an excess of reactive oxy-
gen species (ROS) and leads to cellular injury via reactions
with proteins, nucleic acids, and lipids [1, 2]. The DNA bases,
especially guanine (G), are particularly susceptible to oxida-
tion, for which ROS frequently lead to a plethora of oxidized
guanine products [3]. 8-hydroxy-2’'deoxyguanosine (also
known as 8-oxoguanine; 8-OHdG) is one of the most
common mutagenic products and pairs with adenine in
double-stranded DNA during DNA replication [3, 4]. If the
mispairing is not repaired, it will lead to a G:C to T: A
transversion mutation in cells [5].

Several repair pathways are involved with the DNA
insults that result from either endogenous sources or exoge-
nous sources, including the direct reversal pathway, the
mismatch repair (MMR) pathway, the nucleotide excision
repair (NER) pathway, and the base excision repair (BER)

pathway [6]. Base excision repair (BER) is the primary
DNA repair pathway that corrects base lesions that arise
due to oxidative, alkylation, deamination, and depurinatia-
tion/depyrimidination damage, such as 8-OHdG [7]. Actu-
ally, the BER pathway specifically prevents those G:C-to-
T:A mutations by the repair of 8-OHdG. It includes the
MTHI, OGGI, and MUTYH genes that prevent, recognize
and remove the misincorporated oxidized nucleotide, 8-
OHJG, and the adenine paired with 8-OHdG, respectively,
when initiated by the BER pathway.

Increasing evidence has shown that genetic polymor-
phisms in DNA repair genes may modulate DNA repair
capacity, result in DNA damage accumulation, and then con-
tribute to some complex diseases [8, 9]. Kasahara et al. have
reported that MUTYH GIn324His (c.972G > C) is associated
with increased risk of colorectal cancers [10]. Marchand et al.
have described the effect of OGGI Ser326Cys (¢.977C > G)
on the risk of lung cancer [11]. We have also shown that
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TaBLE 1: Sequences of PCR Primers used for genotyping.
Polymorphisms Primer sequence (5'-3") Annealing temperature (°C) Product length (bp)
rs1052133: F: 5"-actgtcactagtctcaccag-3’ 55 200
OGGI ¢.977C > G (Ser326Cys) R: 5'-ggaaggtgcttggggaat-3’
1rs4866: F: 5'-gagcggtctgacagtgga-3’ 58 168
MTHI ¢.247G > A (Val83Met) R: 5'-tggcactcagagatggtttg-3’
5\235;1459: oo F: 5’-cccattccagttcttectct-3 58 208
c. > , /
(Gln324His) R: 5"-cctttctggggaagttgacc-3
rs10527342: F: 5"-tcttgacctggagaccttcc-3 60 500 or 826
AluYb8MUTYH R: 5"-agctgcttectccaaacage-3’

the AluYb8 insertion in MUTYH (AluYb8MUTYH) might
be a risk factor for age-related diseases and type 2 diabetes
mellitus [12, 13].

The kidney is highly vulnerable to any of the results
caused by ROS, and leukocyte 8-OHdG content is a surrogate
biomarker for oxidation-induced DNA damage in patients
with end-stage renal disease (ESRD), especially those on
maintenance hemodialysis (HD). Oxidative injury is thought
to alter the structure and function of glomeruli and is sug-
gested to be related to renal diseases risk and eventual ESRD
as well as atherosclerosis, dialysis-related amyloidosis and
anemia in incident dialysis patients [14, 15]. The primary
role of DNA repair in ESRD may be complex. Fukushima
et al. [16] demonstrated that the polymorphism of the
hOGGI (Ser326Cys) was associated with progression of IgA
nephropathy. Most recently, Trabulus et al. [17] showed
that XRCC1 Arg399Gin polymorphism may confer increased
risk for the development of ESRD in Turkey, which is the
first report showing an association between DNA repair
gene polymorphisms and ESRD development. However, the
genetic variations involved in antioxidant defense still need
to be clarified in this disease, especially in China.

Based on the association of BER polymorphisms, oxida-
tive DNA damages, and ESRD, we hypothesized that genetic
variation in the BER genes might lead to repair impairment
or disability, oxidative DNA damage accumulation, and
pathogenesis of ESRD. Given the potential roles of OGGI
c.977C > G, MTH1 c.247G > A, MUTYH ¢.972G > C, and
AluYbSMUTYH in the oxidative DNA repair pathway; we
examined the association between these four polymorphisms
in the BER pathway and ESRD in a Chinese cohort. We also
assessed the leukocyte DNA 8-OHdG levels in HD patients
to reveal the correlation between oxidative damage and end-
stage renal disease arises.

2. Materials and Methods

2.1. Subjects. The allelic frequency of OGGI (NG_012106.1)
¢.977C > G, MTHI1 (NC_000007.13) ¢.247G > A, MUTYH
(NG_008189.1) ¢.972G > C, and AluYbSMUTYH (AluYb8
insertion at intron 15 of MUTYH [12]) was investigated in
337 HD patients, regardless of cause, in Nanjing, Jiangsu
province, China, between October 2009 and February 2010.
All patients had been maintained on hemodialysis protocols

for >3 months and were reviewed for age, sex, and pre-
sentation of clinical and laboratory data. Hypertension was
defined as systolic blood pressure (SBP) >140 mmHg and/or
diastolic blood pressure (DBP) >90 mmHg and/or use of
antihypertensive medication [18]; anemia was defined as an
Hgb <11 g/dL or use of recombinant human erythropoietin
[19].

Healthy individuals with normal renal function were
recruited from volunteers receiving health checkups in the
same region. Detailed interview and various laboratory anal-
yses were made upon every individual, including albumin
excretion rate (AER) and serum creatinine. The subjects were
excluded if their albumin excretion rate (AER) =30 mg/24 h,
serum creatinine >1.2 mg/dL and ultrasound of the kidney
and ureter was abnormal in size and appearance. They were
ruled out if they suffering from certain diseases, such as acute
inflammation, and diabetes, hypertension, autoimmune dis-
eases or cancer according to past history and the clinical or
laboratory characteristics. A total of 404 sex and age matched
subjects were selected for inclusion in the control cohort. The
Institutional Ethics Committee of Nanjing University School
of Medicine approved this study, and written informed
consents were obtained from all participants.

2.2. High-Resolution Melting Analysis. In this study, OGGI
c.977C > G, MTHI c.247G > A, and MUTYH c.972G > C
were genotyped using the dsDNA dye LCGreen in combina-
tion with HRM analysis. DNA was extracted from peripheral
blood samples, and PCR was performed to amplify the target
sequences. The PCR primers were designed by LightScanner
primer design software (Idaho Technology) (Table 1). Each
PCR reaction was initially performed in a final reaction
volume of 10 4L, using 25 ng of genomic DNA, 0.2 pmol of
each primer, 0.8 L 2.5 mM dNTPs, 1 yL 25 mM MgCl,, 1 uL
10 x Taq buffer with (NH4),SO4, 0.4 U Tag DNA Polymerase
(Fermentas), and 0.4 yL dimethyl sulfoxide (DMSO). The
reaction mixture was incubated at 95°C for 5min and then
subjected to 40 cycles of 95°C for 30 sec, 55-58°C (Table 1)
for 30sec, and 72°C for 30 sec, followed by 72°C for 7 min
using a PTC-200 thermal cycler (Bio-Rad).

The 9uL reaction was supplemented with 1uL 1 X
LCGreen PLUS (Idaho Technology), and the 96-well plate
(Bio-Rad) was transferred to the Light Scanner (Idaho
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FiGure 1: Demonstration of genotyping and sequence. (a) HRM directly discriminated the heterozygotes (OGGI ¢.977 CG) and
homozygotes (OGGI ¢.977 CC or GG). (b) homozygous PCR products (CC or GG) were measured by LightScanner after being mixed
with an equal amount of a known product (CC), which distinguished the wild homozygous samples (CC) from the variant ones (GG),
as the mutational homozygotes (GG) were converted into heterozygotes (CG). (¢) random samples from OGGI ¢.977C > G testing were
sequenced for confirmation. (d) The PCR products were separated using 1% agarose gels to assess the pattern of AluYb8 insertion into the
MUTYH gene. Lanes 2, 4, 5, and 10: absence/absence (A/A); 3, 6, and 9: absence/presence (A/P); 1, 7, and 8: presence/presence (P/P); M:

DNA Marker 2000.

Technology). Fluorescence data was collected over a tem-
perature range of 70°C-97°C, as the samples were melted.
Melting curve analysis was performed according to the man-
ufacturer’s software. HRM could directly discriminate the
heterozygote (CG) and homozygote (CC or GG) genotypes
of OGGI ¢.977C > G through melt scanning (Figure 1(a)).
After mixing homozygous DNA with an equal amount of
known PCR products (e.g., CC), it further distinguished
between the CC and GG genotypes (Figure 1(b)). For further
confirmation, 10% of samples from each group detected
by HRM were randomly selected and subjected to DNA
sequencing (Figure 1(c)). Similarly, the MTHI ¢.247G > A
and MUTYH ¢.972G > C polymorphisms were genotyped by
HRM.

2.3. Agarose Gel Assay for AluYb8MUTYH Polymorphism.
The PCR primers were listed in Table 1, and the PCR
condition was carried out with an initial denaturation at
94°C for 5 min, 35 cycles of denaturation at 94°C for 30 sec,
annealing at 60°C for 30 sec, extension at 72°C for 50 sec, and
then a final extension at 72°C for 10 min. The PCR products
were run out on 1% agarose gels (Invitrogen, Carlsbad,
CA, USA). The AluYb8MUTYH genotypes were classified as
homozygous absence of this variation (only 500 bp products,

absence/absence, A/A), homozygous presence of this vari-
ation (only 826bp products, presence/presence, P/P), and
heterozygote (500 bp and 826 bp products, absence/presence,
A/P), according to the variant fragment absence or presence
(Figure 1(d)).

2.4. Measurement of 8-OHdAG Levels in Genomic DNA of Blood
Cells. For measuring the level of 8-OHdG, 116 patients were
randomly rerecruited from the HD cohort and investigated
by the method reported previously [12]. Briefly, DNA extrac-
tion from fasting venous whole blood (10 mL, with EDTA
added to prevent coagulation) was performed within 1h of
collection, using the salting out method [20]. The purity of
the DNA sample was checked by OD260 nm/OD280 nm and
OD260 nm/OD230 nm using an Eppendorf BioPhotometer
Plus (Eppendorf, North America). Acceptable DNA stored
frozen at —80°C until all samples could be assayed at the
same time.

The DNA (200 pg) of each sample was dissolved in 135 uL
of water. Sodium acetate (15uL, 200mM) and Nuclease
P1 (15uL, 6 units, Sigma, USA) were added to the DNA
solution and incubated at 37°C for 30 min. Tris-HCI buffer
(15uL, 1M, pH 7.4) and alkaline phosphatase (7 L, 2 units,
TAKARA, Shiga, Japan) were added and incubated at 37°C



for another 30 min. The hydrolysate was filtered through
Millipore Microcon columns at 14000 rpm for 10 min, and
50uL of digested DNA was applied to one well of an
ELISA kit (Highly Sensitive 8-OHdG Check, JaICA, Fukuroi,
Shizuoka, Japan). Results were measured in nanograms
per milliliter, and then 1ng/mL was converted to 4.8 8-
OHdAG/10° dG based on Halliwell [21].

2.5. Statistical Analysis. All statistical analyses were car-
ried out using the statistical program SPSS, version 15.0.
Descriptive statistical values included mean = SD values for
continuous data and percentages for categorical data. Chi-
squared tests were used to compare the genotype and allelic
frequencies for patients and healthy controls. Odds ratios
(OR) are shown with 95% confidence intervals (CIs). Sep-
arate comparisons of variables among subjects with different
genotypes were conducted with ANOVA and followed by
post hoc analysis. Since 8-OHdG levels in leukocyte DNA
were positively skewed, a natural logarithmic transformation
was used to normalize the distributions for analyses. In all
cases, a P value of less than 0.05 was considered statistically
significant.

3. Results

Of the 337 HD patients, 212 (62.9%) were men, and 125
(37.1%) were women. The average age was 53.1 + 15.8 yrs
(ranging from 22 to 85yrs), and duration of hemodialysis
was 4.0 + 3.5yr. Primary glomerulonephritis (GN) was the
most prevalent kidney disease in the HD group: 207 (61.4%)
developed ESRD as a result of GN, 51 (15.1%) as a result
of hypertensive nephropathy (HN), 36 (10.7%) as a result
of diabetic nephropathy (DN), 16 (4.7%) as a result of
congenital or inherited causes, 6 (1.8%) as a result of systemic
lupus erythematosus (SLE) and 21 (6.2%) as a result of
other causes. Additionally, 267 (79.2%) of the patients had
anemia, and 250 (74.2%) had hypertension. The 404 healthy
individuals were age and sex matched, with a mean age of
53.1 + 16.2 yrs, and 254 (62.9%) were males.

3.1. Genotyping of BER Polymorphisms in HD Patients. The
frequencies of the OGGI ¢.977C > G, MTHI c.247G > A,
MUTYH ¢.972G > C, and AluYb8MUTYH genotypes associ-
ated with HD were shown in Table 2. The distribution in the
healthy controls of these polymorphisms was consistent with
Hardy-Weinberg equilibrium (P > 0.05 for all).

Compared to healthy controls, the distribution of the
genotypes in OGGI ¢.977 C > G (namely, CC, CG, and GG)
and the allele frequencies were not significantly different in
the patients (P > 0.05, Xz test). For the ¢.247 G > Ain MTHI1,
the frequency of heterozygous MTHI c.247 G > A was only
6.2% and 7.7% in the patients and controls (P = 0.444),
while the homozygote was not detected. Thus, the MTH]I
polymorphism (c.247 G > A) was not included in further
analysis.

Interestingly, both of the polymorphisms in the MUTYH
gene showed an individual risk effect for ESRD (Table 2). For
MUTYH c.972 G > C, the distribution of the three genotypes,
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namely CC, CG, and GG, and the allele frequencies were
significantly different in HD patients (P = 0.046 and 0.026)
compared with healthy controls. Furthermore, the frequency
of the MUTYH ¢.972GG genotype was statistically higher in
the HD cases (40.9%) than in the controls (32.2%), and the
OR of GG adjusted by age and gender was 1.46 (95% CI:
1.08-1.98; P = 0.013). For AluYb8MUTYH, the distribution
of the three genotypes and alleles in the HD patients was
almost identical to that in the controls. Compared to the A/A
genotype, the AluYb8MUTYH insertion carriers (A/P or P/P)
were significantly higher in HD patients, and the OR was 1.40
(95% CI, 1.03—-1.90; P = 0.034).

Regarding the effect of the MUTYH ¢.972GG genotype
and the AluYb8MUTYH P allele on ESRD, a combined risk
analysis was performed and shown in Table 3. Individuals
carrying the MUTYH ¢.972GG genotype might have a higher
risk for ESRD, and the OR of MUTYH ¢.972GG adjusted
by age and gender was 2.23 (95% CI: 1.37-3.64; P =
0.001) among those with the OGGI ¢.977GG genotype.
Meanwhile, the presence of MUTYH ¢.972GG also added to
the risk of AluYb8MUTYH A/P or P/P genotypes for ESRD
development (OR, 1.46; 95% CI, 1.07-1.99; P = 0.017).

3.2. BER Polymorphisms in the Patients with Different Clinical
Characteristics. The HD patients were stratified into six
subgroups on the basis of the primary diagnoses (i.e., GN,
HN, DN, congenital or inherited causes, SLE, or other
causes). Similar to ESRD, the effects of BER polymorphisms
on HD risk were confirmed in the 207 patients with primary
diagnosis of glomerulonephritis when compared to the
whole cohort (Table 4). The frequency of the MUTYH ¢.972
G > C GG genotype was significantly higher in cases than
in controls, and the OR was 1.75 (95% CI: 1.24-2.47; P =
0.001). The frequency of the MUTYH AluYbSMUTYH A/P
or P/P genotype was significantly higher in cases than in
controls, and the OR was 1.73 (95% CI: 1.20-2.52; P =
0.003).

In addition, the association of BER polymorphisms
with risk of HD complication status was further analyzed
(Table 4). Among 267 patients with anemia, the frequency
of MUTYH ¢.972G > C GG was markedly higher in patients
than controls (42.7% versus 32.2%; OR (95% CI) = 1.57
(1.14-2.16); P = 0.006), whereas the AluYb8MUTYH inser-
tion (A/P or P/P) significantly increased the risk for patients
with anemia (73.4% versus 62.6%; OR (95% CI) = 1.78
(1.22-2.60); P = 0.003). A similar relationship was detected
among 250 patients with hypertension. The frequency of
MUTYH ¢.972GG carriers was higher in cases than controls
(41.2% versus 32.2%; OR (95% CI) = 1.48 (1.07-2.05); P =
0.019). The frequency of AluYbSMUTYH insertion carriers
(A/P or P/P) was higher in cases than controls (70.4% versus
62.6%; OR (95% CI) = 1.42 (1.01-1.99); P = 0.042).

3.3. Predictor Effect of BER Polymorphisms to 8-OHdG. The
8-OHdG levels in leukocyte DNA were evaluated in 116
HD patients divided into different subgroups according to
the polymorphism genotypes and compared (Figure 2(a)).
The genotypic frequencies of the three polymorphisms were
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TasLE 2: Genotypes of OGG1, MTH]1, and MUTYH and the risk for HD.
Patients (n = 337) Controls (n = 404) P value? OR (95%CI)

OGGI1¢c977C>G 0.394

CC 56 (16.6%) 77 (19.1%)

CG 160 (47.5%) 200 (49.5%)

GG 121 (35.9%) 127 (31.4%) 0.199 1.22 (0.90-1.66)

CCor CGP 216 (64.1%) 277 (68.6%) 1.00

C allele 0.404 0.438 1.00

G allele 0.596 0.562 0.180 1.15 (0.94-1.42)
MTHI c.247 G > A 0.444

GG 316 (93.8%) 373 (92.3%) 1.00

GA 21 (6.2%) 31 (7.7%)

AA 0 0

GA or AAP 21 (6.2%) 31 (7.7%) 0.444 0.80 (0.45-1.42)

G allele 0.969 0.962 1.00

A allele 0.031 0.038 0.453 0.81 (0.46-1.42)
MUTYH ¢.972 G >C 0.046

cC 44 (13.1%) 63 (15.6%)

CG 155 (46.0%) 211 (52.2%)

GG 138 (40.9%) 130 (32.2%) 0.013 1.46 (1.08-1.98)

CCor CGb 199 (59.1%) 274 (67.8%) 1.00

C allele 0.361 0.417 1.00

G allele 0.639 0.583 0.026 1.27 (1.03-1.57)
AluYbSMUTYH 0.099

A/A 101 (30.0%) 151 (37.4%) 1.00

A/P 164 (48.7%) 172 (42.6%)

P/P 72 (21.3%) 81 (20.0%)

A/Por P/P® 236 (70.0%) 253 (62.6%) 0.034 1.40 (1.03-1.90)

A allele 0.543 0.587 1.00

P allele 0.457 0.413 0.092 1.19 (0.97-1.47)

Note: CI: confidence interval; OR: odds ratio. *P value for comparison using y?> test to assess correlation between HD risk and predicted high-risk OGGI,
MTHI, and MUTYH genotypes and alleles; Pgenotypes were combined properly to assess their association with HD and the genotype 1.00 as the reference

category.

similar between the 116 patients tested for leukocyte DNA 8-
OHAJG levels and all 337 patients investigated in the present
study. In a parallel investigation of healthy controls in our
laboratory, the HD patients exhibited increased 8-OHdG
levels compared to the healthy individuals [12].

For the OGG1 ¢.977 C > G polymorphism, the genotypic
frequencies (CC/CG/GG ratios of 15.5%/43.1%/41.4%) for
the 116 patients whose leukocyte DNA 8-OHdG levels had
been analyzed did not vary significantly from the whole
study population of 337 patients (16.6%/47.5%/35.9%). The
leukocyte 8-OHdAG levels for patients carrying GG (26.7 +
4.7/10°dG) or CG (26.6 + 5.5/10°dG) were significantly
higher than the patients carrying CC (18.4 + 8.9/10° dG)
(P < 0.001 via ANOVA). For the MUTYH ¢.972G > C pol-
ymorphism, the genotypic frequencies (CC/CG/GG ratios
of 13.8%/49.1%/37.1%) for the 116 patients did not vary
significantly from the whole study population. The leukocyte
8-OHdG levels for patients carrying GG (27.6 + 5.5/10° dG)
or CG (25.3 + 6.1/10° dG) were significantly higher than the

patients carrying CC (19.5 + 7.1/10°dG) (P < 0.001 via
ANOVA). For the AluYb8MUTYH polymorphism, out of the
116 patients, 37, 52, and 27 showed the A/A, A/P and P/P
genotypes, which did not differ from the whole population.
The patients carrying P/P (29.2 + 3.9/10° dG) or A/P (25.4 +
5.6/10° dG) had significantly higher 8-OHdG levels than the
patients carrying A/A (22.6 + 7.9/10°dG) (P < 0.001 via
ANOVA).

The combined impacts of these polymorphisms on 8-
OHAG levels were further investigated (Figures 2(b) and
2(c)). Based on the risk for HD, 43 patients carrying the
MUTYH ¢.972GG genotype were analyzed; 6, 21, and 16
showed the CC, CG, and GG genotypes of OGG! ¢.977C >
G, respectively (Figure 2(b)). The OGGI ¢.977C > G GG
or CG genotypes significantly increased the 8-OHdG level
when compared with patients with the OGGI ¢.977C > G
CC genotype among patients with the MUTYH ¢.972GG
genotype (29.2 +3.2/10° dG, 28.1 + 4.8/10° dG versus 21.8 +
9.0/10°dG; P = 0.01 via ANOVA). This indicates that
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FIGURE 2: Individual (a) and combined [(b) accompanied with MUTYH¢.972GG genotype; (c) accompanied with AluYb8MUTYH A/P or P/P
genotype] analysis of the effect of BER polymorphism on mean levels of leukocyte DNA 8-OHdG in 116 HD patients. Every group includes
three different bars stratified according to the polymorphism genotypes. Statistical significance was calculated using one-way ANOVA testing
followed by post hoc analysis. *P < 0.05 and **P < 0.01 versus subjects with the genotype in the blank bar.

TaBLE 3: Combined analysis of genetic polymorphisms in OGGI and MUTYH with HD risk.

Genotypes Patients (n = 337) Controls (n = 404) P value® OR (95% CI)
MUTYH c.972GG*
OGGI
¢.977CC 23 (6.8%) 27 (6.7%) 0.939 1.02 (0.58-1.82)
c.977CG 67 (19.9%) 75 (18.6%) 0.650 1.09 (0.75-1.57)
c.977GG 48 (14.2%) 28 (6.9%) 0.001 2.23 (1.37-3.64)
AluYbSMUTYH
A/A 18 (5.3%) 19 (4.7%) 0.691 1.14 (0.59-2.22)
A/P 58 (17.2%) 54 (13.4%) 0.146 1.35 (0.90-2.02)
p/P 62 (18.4%) 57 (14.1%) 0.113 1.37 (0.93-2.03)
AluYb8MUTYHA/P or P/Pb
OGGI
¢.977CC 38 (11.3%) 42 (10.4%) 0.701 1.10 (0.69-1.74)
c.977CG 120 (35.6%) 136 (33.7%) 0.579 1.09 (0.80-1.48)
c.977GG 78 (23.1%) 75 (18.6%) 0.125 1.32 (0.93-1.89)
MUTYH
¢.972CC 11 (3.3%) 12 (3.0%) 0.818 1.10 (0.48-2.53)
c.972CG 105 (31.2%) 130 (32.2%) 0.766 0.95 (0.70-1.30)
€.972GG 120 (35.6%) 111 (27.5%) 0.017 1.46 (1.07-1.99)

Note: CI: confidence interval; OR: odds ratio. *Trend test assessing correlation between HD risk and predicted high-risk OGGI and MUTYH genotypes
combined with the MUTYH ¢.972GG genotype. PTrend test assessing correlation between HD risk and predicted high-risk OGGI and MUTYH genotypes
combined with the AluYb8MUTYH A/P or P/P genotype. c: P value for comparison using y-test between patients and controls.

MUTYH and OGGI may have synergistic roles in the
prevention of DNA oxidative damage. Similarly, out of 79
patients carrying the AluYb8MUTYH insertion (A/P or P/P),
6, 41, and 32 showed the MUTYH ¢.972G > C CC, CG, and
GG genotypes, respectively (Figure 2(c)). The 8-OHdG levels
of individuals carrying the GG or CG genotypes were higher
than in individuals carrying the CC genotype among patients

with the AluYb8MUTYH insertion (29.5 = 3.4/10° dG, 25.6 +
5.3/10° dG versus 19.4 + 5.3/10° dG; P < 0.001 via ANOVA).

4. Discussion

End-stage renal disease (ESRD) is a troublesome health
problem worldwide, and the mortality rate for ESRD patients



'sjonuod Ayireay Ay Yim paredwod

‘;uotsuapiad4Ay pue ¢ erwsue < snrydauomiswols Arewtid jo dnos3qns Suowe Ys11 (TH Y3m UOHE[2110D SUISSIsSe 1593 pua1) pue 3s3)- X Suisn uosiedwiod 103 anfea 4 “05el SPPo YO [EAISIUI SUIPYUOD :[D) DION

(66'T-10°'T) TF'T  TFO'0 (%¥°0L) 9LT (1€°T81'1) S9'1 $00°0 (%¥'€L) 96T (TST-0T'T) €L'1 €00°0 (%¥¥L) #ST (%9°79) €5T d/d 10 d/vV
00T (%9°67) ¥L 00T (%9'97) £ 00T (%9°S7) €S (%¥'L€) 161 \ 744
HALOWNS9ANY
(S0'T-£0'T) 8%’ T 6100 (%T1¥) €01 (9T T—¥I'D) LS'T 900°0 (%LTy) V1T (L¥T—FTT) SLT 100°0 (%¥'S¥) 76 (%TTE) 0€T 99
00'T (%8°8S) L¥1 00'T (%€°LS) €ST 00'1 (%9°%S) €11 (%8°29) ¥.T DD 100D
D <D TL6D HALAN
(8£'1-160) LTT  8ST°0 (%89¢) t6 (TST-8L°0) 60°T £09°0 (%€7€€) 68 (9L71-£8°0) ¥T'T €€T0 (%T9€) SL (%¥'1¢€) LTT 99
00'T (%T€9) 8S1 00'T (%L£°99) 8L1 00'T (%8°€9) €1 (%9°89) £LT DD 100D
5 <D LL6D [DD0
%G Son[eA %G INJeA %G poN[RA
(1% mwoMMun u) coﬁmmc%tvﬁim (159056) MOA 197 HH_:VWEMWE\ QUA nmommnv MVOEC:&EM?MEO% Arewig (PO = u) sponuo) ad4yousn

“erurdue pue ‘uotsua)radAy snrydouoniowors jo sasouderp Arewtid yim syuanied Jo YsLI (JH UO $199JJd I12) pue HA LN pue 1990 ul swsiydiowdjod snouad jo sadLjouany : a1avy,

Oxidative Medicine and Cellular Longevity



is 10 to 20 times higher than similarly aged individuals
from the general population [22]. Maintenance hemodialysis
(HD) is an efficient way to treat ESRD, and its use is increas-
ing due to the epidemic of ESRD. New epidemiological stud-
ies show that China is also anticipating an increasing burden
from ESRD and HD in the near future, although it used to
be severely underestimated. It was reported that the number
of patients with chronic kidney disease was 119.5 million in
China [23], and the annual incidence of HD was estimated
to be as high as 36.1 per million population (pmp) [24].

In this study, we investigated polymorphisms of base
excision repair (BER) genes in a case-control Chinese popu-
lation and demonstrated that individual and combined BER
variations, mainly MUTYH polymorphisms, might increase
the risk for ESRD. The underlying mechanical linkage might
be an increase in 8-OHdAG levels in leukocyte DNA, which
was confirmed to be genetically determined. Oxidative DNA
damage is unavoidable and is continuously generated by
oxidative byproducts of normal cellular metabolism. The
BER pathway is a critical process for genomic maintenance,
as highlighted by the severe phenotypes seen in cells and
animals deficient in BER function. MUTYH and OGGI
double knockout cells are more sensitive to oxidants, and
the double knockout resulted in a reduction of S phase and
an increase in G2/M phase than wildtype cells, suggesting
multiple roles of MUTYH and OGGI in the maintenance of
genome stability [25].

The effectiveness of DNA repair is subject to modu-
lation by gene polymorphism. In the hemodialysis pop-
ulation, OGGI ¢.977C > G, MUTYH ¢c.972G > C, and
AluYb8MUTYH showed significant effects on 8-OHdG levels
in peripheral leukocytes, both individually and in com-
bination. Our previous study illustrated that leukocyte 8-
OHAJG levels are variable among the Chinese population,
regardless of AluYbSMUTYH variations [12, 13]. In this
study, we confirmed a relationship among ESRD patients.
Patients carrying the OGGI ¢.977 GG or CG genotypes
had significantly higher 8-OHdG levels than those with the
OGGI ¢.977CC genotype. Similarly, Kohno et al. previously
reported that 326Ser-containing (c.977CC) OGG1 has a
seven-fold higher activity for repairing 8-oxoguanine than
326Cys-containing (c.977GG) OGG1 [26]. In a background
of the MUTYH ¢.972GG genotype, OGGI c.977C > G
still showed a significant increase in 8-OHAG levels in
peripheral leukocytes. The same results were detected for the
MUTYH c. 972C > G combined with the AluYb8MUTYH
P allele. However, the patients carrying MUTYH ¢.972GG
had significantly higher 8-OHdG levels than the patients
carrying MUTYH ¢.972CC. In contrast, Ali et al. reported
that the glycosylase and DNA-binding activity was partially
impaired in the MUTYH ¢.972CC genotype [27], whereas
Shinmura and Yokota showed the same activity levels despite
variation in the MUTYH ¢.972 G > C polymorphism [28].
Therefore, the genetic variations in the BER pathway may
be enough to maintain 8-OHdG levels in nuclear DNA,
although the underlying mechanisms are not extensively
studied or understood.

Intriguingly, the genotype frequencies of MUTYH
¢.972GG or AluYb8MUTYH carriers (A/P or P/P) in the HD
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patients were markedly higher than those in the controls.
The combined analysis showed that the risk of HD was
further increased among the individuals carrying both the
MUTYH ¢.972GG and OGGI ¢.977GG genotypes as well
as those with both the AluYbS8MUTYH (A/P or P/P) and
MUTYH c.972GG genotypes. The findings from Trabulus
et al. [17] confirmed the association between DNA repair
gene polymorphisms and ESRD development in Turkish
population. And the combined effect of DNA repair variants
added to such association, which was similarly illustrated in
the present study.

It has been noted that the disease profile of ESRD is dif-
ferent in China from Western countries. Zuo and Wang
showed that the glomerulonephritis remained the leading
cause and accounted for nearly 50% of cases [24]. In this
study, 61.4% of HD cases were the result of primary glomer-
ulonephritis (GN). Additionally, the MUTYH GG genotype
also significantly increased the risk for ESRD from GN
(OR = 1.75). This association remained in persons with the
AluYb8MUTYH P allele, which increased the risk for ESRD
from GN by a factor of 1.73. Thus, MUTYH ¢.972GG or
AluYb8MUTYH could be the novel genetic risk factor for
ESRD, and screening for these genetic variants or combined
analysis may have predictive value in assessing potential risk
in China.

Based on the correlation between BER polymorphisms
and 8-OHAG levels, patients with different BER genetic
polymorphisms were found to be at increased risk of cu-
mulative oxidative DNA damage. Thus, we proposed that
the relationship between genetic factors and ESRD and
the effect of increased 8-OHdG levels underly this process.
Increasing evidence has shown that the accumulation of 8-
OHJAG in DNA could increase the risk of DNA mutations
and cancer development [29, 30]. We have also demonstrated
that increased DNA oxidation might contribute to age-
related diseases [12]. 8-OHdG levels in leukocyte DNA of HD
patients are significantly higher than healthy controls, which
has been confirmed by other groups [31, 32]. However, to
date, there has been no direct evidence demonstrating a
cause-and-effect relationship between oxidative DNA dam-
age and the development of GN and ESRD. Our study using
genetic analysis supports such a relationship, but further
studies are needed to elucidate the pathologic significance of
oxidative DNA damage among people with respect to ESRD
development.

Anemia and hypertension are the most frequent com-
plications of ESRD and related to the increased mortality
rates [33, 34]. Increased DNA damage is responsible for
depressed production of erythropoietin (EPO), hypertension
formation, and cardiovascular disease (CVD) [35, 36].
Observational studies have revealed a strong association
between the severity of anemia and the risk of morbidity
and mortality from cardiovascular disease and other causes
in HD patients [19, 37]; hypertension is also likely to be a
major contributing factor to these events [38]. In this study,
we illustrated that mutations in BER genes were tightly linked
with the complications of anemia or hypertension among
HD patients. As cardiovascular events are the primary cause
of death in HD patients, these data suggest that oxidative
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DNA damage might be involved in the risk for complications
and long-term outcomes.

However, not all relationships regarding BER polymor-
phisms in the present study can be explained thoroughly.
It was demonstrated that the BER polymorphisms were
related to the disability to repair oxidative DNA and then
accumulation of the levels of 8-OHdG in leukocyte DNA.
The high levels of 8-OHAG, therefore, contribute to the
development of ESRD. The connection between genetic
variations, oxidative DNA damage, and disease condition
were not consistent. Take OGGI ¢.977C > G for instance,
the GG and/or CG variations significantly increased the 8-
OHAJG levels, which predicts a high risk for oxidative DNA
damage. But the OGGI ¢.977C > G polymorphism did not
appear to be related to ESRD among the investigated Chinese
population. Tarng et al. also showed similar results among
patients undergoing HD, but did not provide a detailed
interpretation [31].

In summary, our study showed that the polymor-
phisms in BER system, including MUTYH ¢.972GG and
AluYb8MUTYH, increased the risk for ESRD development
in China, especially their combined effect with OGGI
c.977GQG. It suggests that oxidative DNA damage might be
one common risk factor for related renal diseases, and the
genes in BER pathway may be involved in the progress
of renal function deterioration and complications. Those
homozygous or heterozygous for BER polymorphisms might
be candidate genetic factors for ESRD development. Screen-
ing those polymorphisms would be helpful for preventing
progression of chronic kidney disease and improving the
patients’ long-term outcomes of hemodialysis.
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