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Abstract

Cohesin is a protein complex known for its essential role in chromosome segregation. However, cohesin and associated
factors have additional functions in transcription, DNA damage repair, and chromosome condensation. The human
cohesinopathy diseases are thought to stem not from defects in chromosome segregation but from gene expression. The
role of cohesin in gene expression is not well understood. We used budding yeast strains bearing mutations analogous to
the human cohesinopathy disease alleles under control of their native promoter to study gene expression. These mutations
do not significantly affect chromosome segregation. Transcriptional profiling reveals that many targets of the transcriptional
activator Gcn4 are induced in the eco1-W216G mutant background. The upregulation of Gcn4 was observed in many
cohesin mutants, and this observation suggested protein translation was reduced. We demonstrate that the cohesinopathy
mutations eco1-W216G and smc1-Q843D are associated with defects in ribosome biogenesis and a reduction in the actively
translating fraction of ribosomes, eiF2a-phosphorylation, and 35S-methionine incorporation, all of which indicate a deficit in
protein translation. Metabolic labeling shows that the eco1-W216G and smc1-Q843D mutants produce less ribosomal RNA,
which is expected to constrain ribosome biogenesis. Further analysis shows that the production of rRNA from an individual
repeat is reduced while copy number remains unchanged. Similar defects in rRNA production and protein translation are
observed in a human Roberts syndrome cell line. In addition, cohesion is defective specifically at the rDNA locus in the eco1-
W216G mutant, as has been previously reported for Roberts syndrome. Collectively, our data suggest that cohesin proteins
normally facilitate production of ribosomal RNA and protein translation, and this is one way they can influence gene
expression. Reduced translational capacity could contribute to the human cohesinopathies.
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Introduction

Cohesin is a protein complex that binds to chromosomes from

the time of their replication until their segregation. Cohesin creates

cohesion between two sister chromatids in order to ensure their

correct segregation upon division at the metaphase to anaphase

transition. In addition to its essential role in chromosome

segregation, the cohesin complex and its accessory factors have

been shown to play roles in chromosome condensation, DNA

damage repair and gene regulation. The cohesin complex is

composed of four subunits: Smc1, Smc3, Mcd1/Scc1/Rad21, and

Scc3/Irr1. The complex is loaded onto chromosomes by the Scc2-

Scc4 complex [1,2,3]. In order to establish cohesion between

sisters, Eco1 acetylates the Smc3 subunit of the complex [4,5,6].

Pds5 is required for maintenance of cohesion in G2/M [7,8].

Cohesion is dissolved at the metaphase to anaphase transition

when sisters are separated to opposite poles for inclusion in new

daughter cells.

Heterozygous mutations in Smc1, Smc3 and Scc2/Nipped-B/

NIPBL have been associated with the human disease Cornelia de

Lange syndrome (CdLS) [9,10,11,12]. Homozygous mutation of

ESCO2 (yeast ECO1) is associated with the human disease Roberts

syndrome [13]. The human diseases, referred to as the

cohesinopathies, are perplexing since the developmental defects

suggest that the primary dysfunction is transcription, rather than

chromosome segregation [14]. Metaphase chromosomes from

Roberts syndrome patients show ‘‘heterochromatic repulsion,’’

which refers to regions of ‘‘puffing’’ at heterochromatic regions

around the centromeres and nucleolar organizers (rDNA) [15].

In order to better understand the molecular underpinning of the

human diseases, and to further explore the cohesin network, we

constructed yeast strains bearing mutations analogous to those

associated with human disease [16]. Our yeast strains are haploid,

so they do not genocopy the disease state. However, character-

ization of the cellular defects associated with the mutations may

still be informative. Previous characterization of these strains

revealed very few defects in chromosome segregation or the

location of cohesin binding, but interestingly, two mutants (eco1-

W216G and scc2-D730V) had defects in nucleolar morphology,

induction of the GAL2 gene, and chromosome condensation.
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Three mutant strains exhibited cohesion defects at 37uC (eco1-

W216G, smc1-Q843D, and scc2-D730V). The eco1-W216G mutation

disrupts the acetyltransferase activity of the protein toward Smc3

and is lethal at 37uC [17,18]. Scc2 has recently been shown to

participate not only in cohesin loading, but also in condensin

loading [19]. Despite cohesion defects at 37uC, the growth of the

scc2-D730V and smc1-Q843D mutants appears nearly normal.

To further characterize the mutants, we carried out gene

expression profiling in rich medium and at various times following

amino acid starvation. The gene expression pattern of the eco1-

W216G mutant showed changes in over 1600 genes while the scc2-

D730V mutant had essentially a wild-type gene expression profile.

Under rich medium conditions, the gene expression profile of the

eco1-W216G mutant suggested that protein translation was

inhibited. By directly testing protein synthesis and ribosome

biogenesis, we confirmed that translation was reduced. Strikingly,

ribosomal RNA (rRNA) transcripts were significantly reduced in

eco1-W216G and smc1-Q843D mutants. Since ribosome assembly is

regulated at the level of rRNA [20], this could affect ribosome

biogenesis. Cohesion was specifically reduced at the rDNA in the

eco1-W216G mutant, reminiscent of the heterochromatic repulsion

observed in Roberts syndrome. Importantly, protein synthesis and

ribosomal RNA production were reduced in a human Roberts

syndrome cell line, very similar to our yeast mutants. Taken

together, our results suggest that cohesin proteins may normally

promote production of ribosomal RNAs.

Results

Hundreds of genes are differentially expressed in the
eco1-W216G mutant

Given the hypothesis that mutations in cohesin can affect gene

expression, we undertook gene expression profiling of three strains:

1) wild-type (WT), 2) scc2-D730V, and 3) eco1-W216G. We selected

conditions under which we expected many transcriptional changes

to maximize the likelihood of finding transcriptional differences in

the mutants. Cultures growing in log phase in rich YPD medium

(time 0) were transferred to medium lacking amino acids and

samples were collected for analysis at 15, 35, and 55 minutes.

Three independent cultures were analyzed for each strain

background. mRNA was extracted, purified, labeled, and used

for hybridization to Affymetrix microarrays (Yeast Genome 2.0) to

examine gene expression.

To compare each mutant directly to WT, ratios were formed

between each mutant and WT for each time point. Contrasts were

created using limma to average replicates and determine p-values

for each difference. After adjusting the p-values for multiple

hypothesis testing, a set of genes was selected on the basis of

adjusted p-values of less than 0.001 from any time point in either

mutant/WT comparison. The result was that 1659 genes differed

in expression, 1657 for eco1-W216G and 2 for scc2-D730V.

Hierarchical clustering of the 1657 genes revealed the expression

pattern in the eco1-W216G mutant was highly disrupted relative to

the other two strains (Figure 1A). The number of genes up or

down regulated in mutant/WT by at least 1.4 fold, with p-values

of less than 0.05, for each timepoint is shown in Figure 1B. The

lack of disruption in the scc2-D730V mutant background is notable

since scc2-D730V and eco1-W216G mutant strains both have

similar levels of chromosome decondensation and disrupted

nucleolar morphology [16]. These results suggest that the scc2-

D730V defects are not sufficient to cause major changes in gene

expression.

We have previously reported that the clustering of tDNA

adjacent to the nucleolus is disrupted in both the scc2-D730V and

eco1-W216G mutant strains [16]. This clustering has been

associated with the silencing of genes adjacent to tDNAs, a

phenomenon referred to as tDNA gene mediated silencing [21].

We analyzed whether expression of the genes adjacent to tDNAs

were misregulated in the mutants relative to WT. We found no

evidence that genes adjacent to tDNAs were differentially

regulated in the mutants (Figure S1), suggesting that control of

gene expression via tDNA clustering is not a wide-spread

phenomenon, although there still may be individual cases of gene

regulation via this mechanism. Our results are consistent with

previous findings showing that mutations in RNA pol III, which

disrupt tDNA clustering, do not disrupt the expression of

neighboring genes [22].

We performed a GO analysis on the genes differentially

expressed (both up and down) with an adjusted p value less than

0.005 at time 0 (639 genes) and 15 minutes (627 genes) in the

eco1-W216G mutant as compared to WT [23]. At time 0 we

found that many of the differentially expressed genes are involved

in glutamate metabolic processes, TCA cycle, cell wall organi-

zation, and acetyl-CoA metabolism (Table S1). Glutamate and

glutamine are donors of amino groups for the biosynthesis of

nucleotides, amino acids, and other nitrogen containing com-

pounds. When the gene expression profile in rich medium for the

eco1-W216G strain was compared to a variety of stress response

profiles [24], it most closely matched nitrogen starvation. At the

15 minute timepoint, the enriched GO terms are almost all

related to ribosome biogenesis, including biogenesis of ribosomal

proteins and processing of RNAs needed for ribosome assembly

(Table S1).

The transcriptional activator Gcn4 is upregulated in
cohesin mutants

The gene expression data was further analyzed to determine

whether the genes that were misregulated in the eco1-W216G

mutant had any enrichment for particular transcription factor

binding sites in their promoter regions. In the promoters of genes

that were upregulated at the time 0 timepoint, we found a

significant enrichment for Gcn4 and Tbp1/Spt15 binding sites

(Figure 2A). Gcn4 is a transcriptional activator that activates the

expression of many classes of genes, including stress and amino

acid biosynthesis genes. Tbp1/Spt15, or TATA binding protein, is

an evolutionarily conserved general transcription factor that

interacts with other factors to form transcription preinitiation

Author Summary

Cohesin is a protein complex known for its essential role in
chromosome segregation. However, cohesin and associat-
ed factors have additional functions in transcription, DNA
damage repair, and chromosome condensation. Two
human diseases, Cornelia de Lange syndrome and Roberts
syndrome, are caused by mutations in cohesin. These
‘‘cohesinopathies’’ are thought to be caused by gene
misregulation, although the role of cohesin in transcription
has been enigmatic. Here we show that mutations in
cohesin are associated with reduced production of the
structural RNAs that are components of the ribosome in
the budding yeast Saccharomyces cerevisiae. This causes
defects in protein translation, which can explain a large
fraction of the gene misregulation observed. We further
show similar physiology in a human Roberts syndrome cell
line. We postulate that reduced translational capacity
contributes to the cohesinopathies.
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complexes at promoters. SNO1 and SNZ1 have been reported to be

upregulated in pol III mutants [22] in a Gcn4-dependent manner

[25]. These genes were found to be upregulated in the microarray

data. The misregulation of SNO1 and SNZ1 was confirmed by RT-

qPCR (SNO1, 3-fold, SNZ1, 9-fold, eco1-W216G at time 0, Figure

S2). In the promoters of genes that were downregulated at time 0

there were fewer than average Gcn4 and Tbp1/Spt15 binding

sites.

Figure 1. Gene expression is disrupted by the eco1-W216G mutation. Haploid yeast strains (WT, scc2-D730V, eco1-W216G) were grown in
triplicate to mid log phase in YPD+CSM (t 0 min) and then switched to synthetic medium lacking any amino acids and timepoints were collected at
15, 35, and 55 minutes. RNA from these cultures was labeled and hybridized to affymetrix microarrays. A. Hierarchical clustering of the 1657 genes
with p,0.001 for eco1-W216G/WT comparison. The color bar is used to indicate the log2 of the array intensity for each gene which corresponds to
transcript level. B. Table showing the number of genes up and down regulated with an adjusted p,0.05 for each timepoint for each mutant. See
Table S1 for GO analysis of differentially expressed genes. See Figure S1 for evaluation of tRNA gene mediated silencing.
doi:10.1371/journal.pgen.1002749.g001
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Figure 2. Gcn4 targets and Gcn4 are elevated in cohesin mutants. A. Histogram for transcription factor binding sites from the eco1-W216G
strain showing the number of genes upregulated or downregulated from Figure 1B that have a Gcn4 site (time 0), a Tbp1 site (time 0), or a Rap1 site
(time 15 min). The p value is calculated by a hypergeometric test using the number of up or down regulated genes with the binding site versus the
number of genes in the genome with the site. B. Strains with W303 background having the indicated mutations were transformed with the p180
reporter plasmid that contains a Gcn4-lacZ transgene. b-galactosidase levels (y axis) were measured for each strain in triplicate following growth to
mid log phase in YPD+CSM. The error bars represent the standard deviation of at least three independent measurements. One asterisk indicates p less
than or equal to 0.002, two asterisks indicates p,0.0001 from a Student’s two tailed t test. C. b-galactosidase levels were measured using the p226
reporter. This construct has only the 4th uORF from the Gcn4 leader sequence, which confers minimal translational control. D. Strains with the BY4742

Cohesin Mutations Impair rRNA Production
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In the promoters of genes that were differentially expressed at

the 15 minute timepoint, there was a significant enrichment for

Rap1 binding sites. One group of these genes spans two clusters

(Figure 1A, green bar); most of these genes are involved in

ribosome biogenesis (adj p,0.001). Rap1 (Repressor Activator

Protein) regulates the transcription of many ribosomal protein

genes [26]. When cells are starved for amino acids, they normally

repress genes involved in ribosome biogenesis [24]. While these

genes were repressed once amino acid starvation was initiated in

all three strain backgrounds, the genes were more weakly

repressed in the eco1-W216G background. The reason for this is

currently unclear, but may be related to the baseline ribosome

defect in this strain (see below).

Gcn4 is a transcriptional activator that is normally translated

only when cells encounter stress or nutritional starvation [27].

Surprisingly, the enrichment for Gcn4 binding sites in the

promoters of genes upregulated in the eco1-W216G mutant at

time 0 suggested that Gcn4 was activating the transcription of its

normal target genes in the eco1-W216G mutant when cultures were

growing in rich medium, prior to amino acid starvation. Although

many Gcn4 target genes were induced in the eco1-W216G mutant

background under rich growth conditions, the mRNA corre-

sponding to Gcn4 was unchanged in the mutants relative to WT

(see microarray data GEO GSE27235). Gcn4 contains an unusual

leader sequence with four short ORFs (uORFs). One level at

which Gcn4 is regulated is translation; translation of the Gcn4

mRNA occurs when ribosomes become processive due to limiting

pools of GTP. For this reason, Gcn4 has been used extensively as a

reporter for ribosome function [27,28].

We used a Gcn4-lacZ reporter (p180) to determine whether b-

galactosidase levels were elevated in the cohesinopathy mutants in

the W303a strain background. We found a 4-fold elevation in b-

galactosidase activity in the eco1-W216G strain as compared to a

WT strain (Figure 2B). The cohesinopathy mutant smc1-Q843D
also showed elevated b-galactosidase activity in this assay, while

the scc2-D730V showed a very mild elevation. We also analyzed

the b-galactosidase levels in two additional eco1 alleles. We

previously reported that eco1-H53Y, eco1-W216G, and eco1-ack

represent an allelic series (strongest to weakest) with respect to both

cohesion as measured by a 1 spot-2 spot assay, and DNA damage

sensitivity [17]. Stronger cohesion defects and DNA damage

sensitivity were correlated with higher levels of b-galactosidase

activity. Defects in cohesion have been previously noted at 37uC
for the eco1-W216G, smc1-Q843D, and scc2-D730V strains [16] and

the degree of defect correlates with the b-galactosidase activity

observed.

We previously showed that deletion of RAD61/WPL1 rescued

the growth of the eco1-W216G mutant at 37uC but did not rescue

the X-ray sensitivity [17]. While b-galactosidase levels in the eco1-

W216G rad61 double mutant were lower than the eco1-W216G

single mutant, they remained higher than WT, suggesting that

some defect persists. Deletion of RAD61 has been shown to

partially rescue the cohesion defect of an eco1-1 mutant [4].

We further tested whether the increase in b-galactosidase

activity was dependent on the presence of uORF4 in the Gcn4

promoter using an additional reporter construct. p226 has only

uORF4. The deletion of the first 3 uORFs results in very minimal

translational control [29]. The elevation in b-galactosidase activity

remained with uORF4 for eco1-W216G (Figure 2C), but the level

was reduced compared to the p180 reporter, as expected if

translational control is contributing to the elevation.

We also analyzed the b-galactosidase levels in the cohesinopathy

mutants in the BY4742/S288C strain background, as well as scc2-

4 and pds5-2 mutants (Figure 2D). All mutants except scc2-D730V

showed elevated levels of b-galactosidase compared to a WT

control. We conclude that mutations in many different cohesin

associated genes and in two different strain backgrounds can give

rise to elevated levels of b-galactosidase activity expressed from the

Gcn4 promoter.

We measured Gcn4 protein levels directly by Western blotting.

The eco1-W216G mutant strain has a higher level of Gcn4 than a

wild-type strain when grown in rich medium (Figure 2E),

consistent with the results from the reporter assay and the gene

expression data.

Protein translation is impaired in the cohesinopathy
strains

Given that high levels of Gcn4 can indicate a defect in protein

translation, we tested whether protein translation was impaired in

the cohesinopathy mutants. An evolutionarily conserved indicator

of translational inhibition is the phosphorylation of elongation

initiation factor 2a (eiF2a) [27,30]. Phosphorylation of eiF2a
inhibits the exchange of GDP for GTP in the ternary complex,

blocking translation. We used Western blotting to measure the

levels of total eif2a and the phosphorylated fraction. We found a 3-

fold, 2.4-fold, and 1.9 fold increase in phosphorylated Eif2a in the

eco1-W216G, smc1-Q843D, and scc2-D730V lysates, respectively

(Figure 3A).

Since defects in translation could slow growth, we monitored

growth in our cohesinopathy strains in rich medium (YPD+CSM)

at 30uC. The eco1-W216G mutation confers a strong growth defect

in the W303a background (p,0.0001). However, the growth of

the scc2-D730V and smc1-Q843D mutant strains was not signifi-

cantly different from WT (Figure 3B). Since mutations in cohesin

or its regulators could cause chromosomal instability, we verified

that our strains (Table S2) are not aneuploid (Figure S3).

Since growth can be affected by many different factors, we

decided to analyze protein translation using more direct measures.

To analyze ribosomes directly, we used sucrose gradients in

combination with fractionation (Figure 3C). The ratio of

polyribosomes to 80S indicates the active translating fraction.

The 80S peak will consist of ribosomes without an associated

mRNA or ‘‘vacant’’ ribosomes as well as some with an mRNA

(monosomes). In theory, the polysome to 80S ratio becomes

smaller with initiation defects, while it becomes larger with

elongation defects [31]. The ratio of polysomes to 80S in WT,

smc1-Q843D, and eco1-W216G, respectively, was 1.78, 1.23, and

0.89, consistent with a translation initiation defect in the mutants.

The decrease in actively translating ribosomes could indicate a

defect in protein synthesis.

In order to further measure protein translation, we used 35S-

methionine incorporation to quantify protein synthesis. We found

,50% reduction in incorporation in the eco1-W216G mutant and

a ,20% reduction in the smc1-Q843D mutant relative to the WT

strain (Figure 3D). Collectively these results are consistent with the

background with the indicated mutations were treated as in B. E. Gcn4 was tagged with the TAP epitope. Protein extracts from equal numbers of cells
were used for Western blotting. Gcn4-TAP was detected with the a-PAP antibody. Pgk1 serves as a loading control. All samples were loaded on the
same blot and subjected to the same exposure, but intervening lanes were removed. See Figure S2 for RT-qPCR confirmation of the misregulation of
the Gcn4 targets SNO1 and SNZ1 in the mutants.
doi:10.1371/journal.pgen.1002749.g002
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Figure 3. Cohesinopathy mutants display phenotypes consistent with translation defects. A. Whole cell extracts were made from a WT,
scc2-D730V, smc1-Q843D, and eco1-W216G mutant strains grown in YPD+CSM at 30uC. Extracts were used for Western blotting to measure levels of
eiF2a protein, and phospho-eiF2a, which is an indicator of translational inhibition. Biological replicates yielded similar results (the first number
corresponds to the blot shown). B. Growth profiles are shown for WT, scc2-D730V, smc1-Q843D, and eco1-W216G mutant strains. Profiles were
collected at 15 minute intervals in triplicate for each strain in YPD+CSM at 30uC; a single curve is shown. We derived the maximum slope of the curves
in log phase and tested whether the slopes were significantly different for replicates of the same genotype or for WT versus mutant (for more
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idea that the smc1-Q843D and eco1-W216G mutants support lower

levels of protein synthesis.

The ribosome profiles suggested that initiation was limiting in

the mutants. To test whether initiation was defective in the eco1-

W216G strain, we transformed it with a plasmid carrying the

ternary complex (eif2a, b, and c, and tRNA-fMet) [32].

Overexpression of the ternary complex could reduce b-galactosi-

dase levels expressed from the Gcn4 promoter if the high levels

were due to poor translation initiation. We found that the plasmid

reduced b-galactosidase levels in the eco1-W216G strain back-

ground (Figure 3E), consistent with a defect in the initiation of

translation.

Ribosome biogenesis is impaired in the cohesinopathy
strains

In order to further analyze the production of ribosomes in the

scc2-D730V, smc1-Q843D and eco1-W216G mutants, we trans-

formed them with plasmids that contain GFP reporters for the

assembly of the 40S (Rps2-GFP) and 60S (Rpl25-GFP) compo-

nents of the ribosome. In WT cells these proteins are mainly found

evenly distributed in the cytoplasm. However, if there is an

assembly and/or export defect, this is visualized as an accumu-

lation of the GFP protein in the nucleus or nucleolus [33,34]. We

collected images of our mutants transformed with these reporters

and we observed the accumulation of both reporter proteins in the

smc1-Q843D and eco1-W216G mutants (Figure 4A and 4B). To

further quantify this effect we developed a cytometric approach

that allowed us to monitor at least 10,000 cells per sample. When

the peak GFP fluorescence was measured, the smc1-Q843D and

eco1-W216G mutants had higher mean fluorescence for both the

40S and 60S reporters, while the scc2-D730V mutant showed a

mild phenotype for the 40S reporter but no increase in

fluorescence for the 60S reporter (Figure 4C and 4D). To further

analyze the data we generated the cumulative distribution function

for each sample (not shown), and then we calculated the distance

between biological replicates and between mutant and WT using a

KS test (see Materials and methods). These distances are depicted

as a box plot with an associated p value to indicate whether the

distance from WT is statistically significant (Figure 4E and 4F). In

summary, both the 40S and 60S subunits of the ribosome exhibit

assembly/export defects in both the smc1-Q843D and eco1-W216G

mutants, with a more severe defect observed in the eco1-W216G

mutant.

Ribosomal RNA production is reduced in cohesin
mutants

We noticed from the microarray data that RNA polymerase I

dependent ribosomal RNA (35S transcript) was downregulated

approximately 4-fold in the eco1-W216G mutant (median p value

0.01, median adjusted p = 0.07) and 2-fold in the scc2-D730V

mutant (median p value 0.12, median adjusted p = 0.40) in rich

medium (Figure 5A). We note that transcripts corresponding to

RNA polymerase I subunits appear to be unaffected in the

transcription profile of the eco1-W216G mutant, suggesting

downregulation of RNA Polymerase I is not causing the reduction

in the 35S transcript. Notably, ribosomal RNA has been shown to

be a limiting factor for ribosome assembly [20]. Since ribosomal

protein genes showed no significant differences in transcription

between the eco1-W216G mutant and WT in rich medium

(Figure 1), we speculated that the ribosome defect was not due

to a lack of proteins needed to make ribosomes, but possibly due to

the low levels of rRNA.

Because rRNA constitutes ,60% of the RNA being made by

actively growing cells, 3H-uridine incorporation is commonly used

to measure total rRNA synthesis. To further test the new

production of rRNA, we pulsed with 3H-uridine and measured

incorporation into RNA. In the eco1-W216G and smc1-Q843D
mutants, there is less incorporation in 5 minutes in an equal

number of cells (Figure 5B), indicating that these mutants produce

less rRNA in this time frame. These experiments were carried out

in the BY4742 background and the growth in SD-ura at 30uC was

measured (Figure 5C). In log phase, which is when the labeling is

performed, only the eco1-W216G mutant showed slower growth.

We carried out a similar labeling experiment with the eco1-W216G

mutant in the W303a background and obtained similar levels of

incorporation (Figure S4A). In this background, growth is much

more severely affected (Figure S4B). Thus, while the eco1-W216G

mutation confers different growth defects in different strain

backgrounds, the effect on total rRNA production appears to be

similar, suggesting growth may not perfectly correlate with rRNA

production.

RNA polymerase I produces the 35S transcript that is then

processed into the 25S, 18S, and 5.8S transcripts and further

modified by methylation and pseudouridylation. To measure the

production of methylated rRNA, we used incorporation of 3H-

methyl-methionine. Total RNA was isolated from equal numbers

of cells following a 5 minute pulse labeling and a chase with cold

methionine. Equal amounts of RNA were electrophoresed on a

formaldehyde agarose gel and visualized with ethidium bromide

(Figure 5D). Following exposure to film, the bands were excised

and radioactivity was measured. We found that the eco1-W216G

mutant produced 8–10% of WT levels of the methylated 25S and

18S transcripts and the smc1-Q843D mutant produced 18–28% of

WT levels (Figure 5D). The growth curves for the mutants in SD-

met at 30uC are shown (Figure 5E). Thus, while new production

of total rRNA appears to be reduced approximately 2-fold in

both mutants, the methylated form of the 25S and 18S transcripts

is produced at a 10-fold lower level in the eco1-W216G mutant as

compared to a 4-fold lower level in the smc1-Q843D mutant. The

difference in production of total rRNA versus the processed and

modified forms suggests that both initial production and

subsequent processing are defective in the mutants, with a more

severe defect in the eco1-W216G mutant. The fact that both 25S

(60S rRNA component) and 18S (40S rRNA component)

transcripts are affected in both mutants is consistent with the

result that both 40S and 60S biogenesis are affected in both

mutants.

information see Materials and Methods). None of the curves derived from a single genotype showed statistical significance between replicates. The p
value for the comparison to WT is indicated where significant. C. Polysome profiles of WT, smc1-Q843D, and eco1-W216G mutant strains were
collected from cells grown in YPD+CSM at 30uC. The ratio of polysomes to 80S (P/80S) is shown. Profiling was conducted at least twice with similar
results. Quantification was carried out using Mathematica and Image J software with similar results. Results from Image J analysis are shown. D.
Strains growing in log phase in SD-met+35S-methionine at 30uC (see Figure 5E for growth profile) were used to measure protein synthesis. We verified
that the cohesin mutants are not methionine auxotrophs. E. WT and eco1-W216G mutant strains with the Gcn4-lacZ transgene integrated at the TRP1
locus were transformed with either empty vector (EV) or a plasmid constitutively overexpressing the ternary complex (TC) by virtue of its high copy.
Strains were grown and assayed as described in Figure 2. The difference between eco1-W216G+EV and eco1-W216G+TC was significant at p,0.0001.
See Figure S3 for verification that the smc1-Q843D and eco1-W216G strains used throughout the manuscript are not aneuploid.
doi:10.1371/journal.pgen.1002749.g003

Cohesin Mutations Impair rRNA Production

PLoS Genetics | www.plosgenetics.org 7 June 2012 | Volume 8 | Issue 6 | e1002749



Figure 4. Cohesinopathy mutants show defects in ribosome biogenesis. The indicated strains in the W303a background were transformed
with a plasmid carrying either a reporter for the 60S subunit, Rpl25-GFP (A) or a reporter for the 40S subunit, Rps2-GFP (B). Images of live cells were
collected using confocal microscopy (LSM 510 Axiovert; Carl Zeiss, Inc) with a 1006Plan Apochromat 1.46 NA oil objective, using AIM software. In
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A W303a strain bearing the eco1-W216G mutation does not

grow at 33uC and cohesion is compromised at 37uC. Cohesion

defects have been correlated with growth defects, and so it might

be assumed that errors in chromosome segregation cause the

lethality associated with mutations in cohesin. However, the scc2-

D730V and smc1-Q843D strains have cohesion defects at 37uC, but

can grow [16] (Figure S4C), suggesting precocious sister separation

does not necessarily cause lethality. We tested whether transcrip-

tion by RNA polymerase II of the 35S transcript from a galactose-

inducible promoter would rescue growth of the eco1-W216G strain

at 33uC. This plasmid allowed a partial rescue of the growth

defect, suggesting some portion of the defect may be due to

limiting levels of rRNA (Figure 5F). We further tested how much

the rRNA levels increase in galactose medium and we found that

the increase was a modest 40–50% (Figure 5G). However, this

increase is similar in degree to the decrease in labeling observed

with 3H-uridine, suggesting this increase should be sufficient to

make up the difference. To explain the partial rescue we point out

that 1) the morphology of the nucleolus is disrupted in the mutant,

so even with more rRNA ribosome biogenesis may still be

impaired, 2) the endogenous rDNA locus may still have defects

associated with it, for instance, if there is difficulty with its

replication, this defect will not be corrected by providing more

rRNA and 3) at the elevated temperature there may be so little

Eco1 function that other chromosomal processes such as

chromosome segregation have become severely affected. A high

copy plasmid with the 35S transcript produced from the normal

promoter provides no rescue (data not shown). Overall our results

suggest that some mutations in cohesin are associated with defects

in 25S and 18S production.

The eco1-W216G and smc1-Q843D mutations are
associated with fewer transcripts from a single repeat

Many different cohesin mutations confer elevation in b-

galactosidase levels from the Gcn4 leader sequence, suggesting

the elevation is related to defects in chromosome cohesion.

However, mutations in the cohesin network have been shown to

affect both chromosome condensation [35] and DNA damage

repair [36]. Both the eco1-W216G and scc2-D730V mutations

confer defects in chromosome condensation and nucleolar

morphology, but importantly, the smc1-Q843D strain does not

share these defects [16]. This suggests that aberrant chromosome

condensation and nucleolar morphology are not the primary cause

of the reduction in rDNA transcription.

However, since condensation can affect segregation of the

rDNA we decided to further examine whether the cohesinopathy

mutations disrupted rDNA segregation. At the metaphase to

anaphase transition, chromosomes segregate, followed by segre-

gation of the rDNA. The segregation of the rDNA is dependent on

condensin and decatenation [37]. Since the rDNA is silenced

during anaphase [38], a longer anaphase could potentially account

for a reduction in transcription. To measure rDNA segregation,

we used yeast strains tagged with Net1-GFP (rDNA marker) and

Spc42-mCherry (spindle pole body marker). The duration of

rDNA separation can be calculated by the timing of the start of

spindle elongation (sudden increase in the distance between the

two SPBs) to fully separated Net1-GFP. In wild-type cells, rDNA

separation takes an average of 6.5 minutes. We found no

significant difference in the kinetics of rDNA segregation in any

of the mutants (Figure 6A). Thus, delayed rDNA segregation

during anaphase cannot account for the slow growth or the

transcriptional defects at the rDNA.

The number of rDNA repeats can expand and contract,

controlled by recombination. We considered the possibility that

contraction of the rDNA was limiting transcription. We monitored

the copy number of the rDNA using qPCR. To demonstrate that

our assay can detect differences in copy number, we used strains

containing 20, 40, 80, and 110 copies of rDNA, as estimated by

pulsed field gel electrophoresis [39]. We found that the number of

rDNA repeats was not significantly different from WT in the scc2-

D730V and eco1-W216G mutants in either the BY4742 or W303

backgrounds. Copy number was also examined in a smc1-Q843D
strain and found to be normal (data not shown). This result

suggests reduced copy number cannot account for reduced

transcription (Figure 6B).

The rDNA is especially susceptible to genotoxic stress. It is

estimated that the rDNA incurs several DSBs per S phase which

result in an average of 3.6 Holliday junctions [40]. Cohesin is

known to bind to the rDNA [41,42] and the eco1-W216G mutation

decreases cohesin binding at the rDNA as measured by ChIP

approximately 2-fold [16]. Since cohesion is important for the

resolution of DNA damage, we hypothesized that the decrease in

transcription at the rDNA in some cohesin mutants might be

related to an inability to efficiently resolve recombination

intermediates due to defective damage induced cohesion. We

used Southern blot analysis to measure whether DSBs accumulate

at the rDNA. The level of DSBs in cohesin mutants and a WT

strain was similar, indicating unresolved DSBs do not accumulate

at the rDNA in the cohesin mutant strains (Figure 6C). Thus,

failure to repair the locus cannot account for the transcriptional

defect.

A normal yeast cell contains 100–150 copies of the 9.1 kb

rDNA repeat, about half of which are actively transcribed and half

are inactive. The cell can regulate the number of active repeats

and the rate of transcription since in a 20 or 40 copy strain, all the

repeats are active and the rRNA is present at normal levels [39].

rDNA repeats can be differentiated by their different chromatin

structures and accessibility to cross-linking by psoralen followed by

Southern blot [43]. Inactive or closed gene copies contain

nucleosomes and are therefore less accessible to psoralen, and

migrate faster on a gel following crosslinking whereas active or

open gene copies are devoid of nucleosomes and are more

accessible to psoralen, and migrate slower following crosslinking

[43]. To verify the method, we used a strain with 40 copies and

found few closed repeats, as previously reported (data not shown)

[39]. We examined whether the mutations in cohesin were

affecting the fraction of open repeats. We found no reproducible

change in open repeats in the cohesin mutants relative to a WT

control strain, at least in asynchronous culture (Figure 6D). Thus,

a steady state increase in closed repeats does not appear to account

for the decrease in transcription.

Given that the copy number and fraction of open rDNA repeats

do not seem to be affected in the cohesin mutants, we sought to

further understand the reduction in rRNA we observed by

microarray and metabolic labeling. We used a FISH assay in

which a unique sequence is inserted into the 59 end of one 35S

order to quantify the fluorescence intensity, approximately 10,000 cells of each genotype were subjected to FACScan analysis and the peak GFP
fluorescence was measured. For each genotype at least two independent samples were measured. Cultures were grown at 30uC in SD-leu
supplemented with adenine and collected in log phase. The distribution of fluorescence is shown (C, D). A KS test was applied to the distributions
(see Materials and Methods) and a t test was used to determine if the distance from WT (shown as a box plot) was statistically significant (E, F).
doi:10.1371/journal.pgen.1002749.g004
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Figure 5. Cohesin mutations compromise production of ribosomal RNA. A. The ratios for microarray probes corresponding to the 25S, 5.8S
and 18S transcripts of the rDNA locus are shown for eco1-W216G/WT and scc2-D730V/WT at time 0 from Figure 1. The x axis corresponds to SGD
coordinates, ordered by the beginning of the probe with the midpoint of the probe given. The arrow indicates the direction of transcription. The
error bars show the standard error. B. Strains were in log phase in SD-ura at 30uC when an aliquot was removed and 3H-uridine was added for 5 min
to equal numbers of cells for each strain background. Incorporation was measured by scintillation counting after extensive washing of the cells. Three
independent cultures were labeled to derive the standard deviation. Significance was calculated using an unpaired t test. C. A growth curve is shown
for the strains in SD-ura medium at 30uC. A similar experiment was performed in the W303a background and is included in Figure S4. D. Strains were
grown in SD-met at 30uC and RNA was extracted from equal numbers of cells following a 5 minute pulse with 3H-methylmethionine and a chase with
cold methionine. Equal amounts of RNA were run on a formaldehyde gel and photographed following staining with ethidium bromide (EtBr). Then
the RNA was transferred to a membrane for exposure. Following exposure, the bands were excised and radioactivity was determined by scintillation
counting. Percent incorporation is given as a fraction of WT. Independent biological replicates are shown. E. A growth curve is shown for the strains in
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gene (Figure 6E) [44]. The transcription of this sequence can be

monitored with a fluorescent probe in individual cells to indicate

the dynamics of transcription in the population. We integrated

three different cohesinopathy mutations into this strain and

monitored transcription. We found that transcripts made from

this single repeat were present at significantly lower levels in the

smc1-Q843D and eco1-W216G strains, but not in the scc2-D730V

strain. Thus, when a single repeat is monitored, less rRNA is made

from this repeat.

Lower production of rRNAs could potentially be explained by

1) reduced copy number, 2) fewer transcriptionally active repeats,

or 3) reduced RNA production from active repeats. Collectively

our data suggests that mutations in ECO1 and SMC1 can be

associated with production of fewer transcripts from the open

fraction of rDNA repeats. Interestingly, the smc1-Q843D and eco1-

W216G mutations were associated with a ,2-fold reduction in

rRNA using either the 3H-uridine labeling method to detect total

rRNA or FISH to detect a single repeat. However, the eco1-

W216G mutant showed a 10-fold reduction in the production of

the methylated rRNA while the smc1-Q843D mutant showed a 4-

fold reduction. This difference correlates well with the degree of

defect in protein synthesis and ribosome biogenesis. We speculate

that due to the disruption in nucleolar morphology in the eco1-

W216G mutant [16] that processing and modification of the 35S

transcript as well as ribosome assembly and export might be more

severely affected than in the smc1-Q843D mutant, with the

outcome that translation and growth are more affected.

We have previously measured cohesion at three loci in the eco1-

W216G mutant. We observed a 15% reduction at an arm locus, a

9% reduction at a telomere locus, and an 8% reduction at a

pericentric locus relative to a WT strain, and no defect in

chromosome transmission [16,17]. However, when we measured

cohesion using strains with lacO repeats integrated adjacent the

rDNA [39], cohesion is reduced ,25% in the eco1-W216G

background in the 50 copy strain (Figure 6F). Thus, Eco1

acetyltransferase activity is differentially required for genomic and

ribosomal DNA cohesion. The mechanism for this is currently

unclear and will require more investigation. However, we

speculate that the decrease in cohesion at the rDNA is related to

the reduced transcription at this locus.

Furthermore, the specific defect in cohesion at a heterochro-

matic region is reminiscent of the heterochromatic repulsion

observed in cells from Roberts syndrome patients [45].

Human Roberts syndrome fibroblasts display similar
physiology to yeast

Given that the eco1-W216G mutation is associated with reduced

protein translation and rRNA production in budding yeast, we

decided to investigate whether a human cell line bearing the same

mutation displays similar physiology. We used 35S-methionine

labeling to measure protein synthesis in 1) a Roberts syndrome

fibroblast cell line, 2) a version of the cell line that has been

corrected with a wild-type copy of ESCO2 [45] and 3) a normal

fibroblast line. We found that the Roberts syndrome cells

incorporated methionine at about 50% the level as the corrected

line or a normal fibroblast line (Figure 7A), very similar to the

observations in yeast (Figure 3D). Furthermore, we measured the

incorporation of 3H-uridine as an indicator of ribosomal RNA

synthesis. We found that the rate of incorporation in the Roberts

syndrome cells is about 50% the level as the corrected line or a

normal fibroblast line (Figure 7B), very similar to the observation

in yeast (Figure 5B). Finally, we examined the polysome profile in

the Roberts cells. We find that the polysome to 80S ratio is lower

in the Roberts cells relative to the corrected line (Figure 7C),

similar to the observation in yeast (Figure 3C). Thus, it appears

that protein synthesis and ribosomal RNA production are reduced

in human Roberts syndrome fibroblasts, and suggests that the

findings in yeast are relevant to the human disease.

Discussion

Several groups working in fish, flies, mouse, and humans have

shown that cohesin associated mutations or reductions in cohesin

associated genes result in hundreds of small alterations in gene

expression, and a few cases of big changes in gene expression

[46,47,48,49]. These changes in gene expression are thought to

cause the human cohesinopathies. However, the mechanism by

which mutations in cohesin-associated genes alter gene expression

has been elusive. Cohesin together with CTCF [50] or mediator

[51] may facilitate gene looping and communication between

promoters and enhancers [52] to influence transcription by RNA

polymerase II. Cohesin may also act directly at certain loci in an

activating manner [47,49] or a repressive manner [53] to regulate

transcription by RNA polymerase II . In this report, we suggest a

key locus at which cohesin proteins may influence transcription is

the ribosomal DNA. Misregulation at this locus can affect the

transcription of hundreds of genes as translation is affected.

The elevation in Gcn4 targets suggested that this transcriptional

activator was induced in the eco1-W216G strain, and further

suggested that translation would be repressed. Analysis using a

Gcn4-lacZ transgene revealed that mutations in Pds5, Scc2, Eco1,

and Smc1 all showed an increase in expression, consistent with the

idea that cohesion defects correlate with reduced protein

translation. Also consistent with our findings, inactivation of

Mcd1/Rad21 in budding yeast in G1 was shown to affect the

expression of 29 genes, including genes involved in rRNA

maturation and ribosome biogenesis [54]. The differential effect

of the eco1-W216G mutation on cohesion at the rDNA is notable

since the rDNA in budding yeast has many properties of

heterochromatin and lack of cohesion specifically in heterochro-

matic regions, including the rDNA, is a hallmark of Roberts

syndrome. Thus, a cohesion deficit at the rDNA is common to

both our yeast model and Roberts syndrome cells. The local

cohesion defect at the rDNA in the eco1-W216G mutant is

associated with the production of fewer 35S RNA products and

reduced translation. A human Roberts fibroblast line displays

similar physiology to our yeast mutant in that both protein

synthesis and ribosomal RNA production are impaired, suggesting

yeast may provide a good model for these particular defects.

We have characterized three different cohesinopathy mutants in

yeast which have overlapping sets of defects. The mutation with

the strongest phenotype is eco1-W216G, which confers defects in

nucleolar morphology, DNA damage response, growth, conden-

sation, gene expression, ribosome biogenesis and rRNA produc-

tion (this work, [16,17]). The smc1-Q843D mutant shares the

defects in ribosome biogenesis and rRNA production, albeit less

severe, and without much effect on growth. If one extrapolates to

multicellular organisms, one can imagine that the developmental

SD-met medium at 30uC. F. Growth of the eco1-W216G mutant at 33uC is partially rescued by expression of the rDNA from a Pol II (gal) promoter. G.
Total RNA was isolated from the strains shown following growth in raffinose followed by a 5.5. hour incubation with either glucose or galactose. The
total amount of 28S+18S was quantified in glucose and galactose.
doi:10.1371/journal.pgen.1002749.g005
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Figure 6. Cohesin mutations do not affect rDNA segregation, copy number, recombination, or the transcriptionally active fraction.
A. The length of time for segregation of the rDNA was measured in 10 cells using live cell imaging of Net1-GFP, a nucleolar marker. The average for
each strain is shown in minutes and the error bars represent the standard deviation. B. Copy number at the rDNA was measured using quantitative
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outcomes for the RBS allele could be more severe compared to the

SMC1 CdLS allele. This proposal is consistent with observations

made in zebrafish in which ESCO2 and RAD21 depletion were

compared and ESCO2 depletion was uniquely associated with poor

cell proliferation and cell death [55]. The scc2-D730V allele does

not have the same effect on protein synthesis as the SMC1 and

ECO1 mutations, instead exhibiting defects in nucleolar morphol-

ogy and chromosome condensation. These defects could poten-

tially be explained by the requirement for Scc2 for condensin

loading [19]. The scc2-D730V mutation in the W303a background

PCR and genomic DNA from strains having the indicated genotypes. Two different primer pairs were used (RD17 and RD9) [69]. The mean is shown
and error bars indicate the standard deviation of triplicate reactions. C. Double strand breaks at the rDNA locus were monitored by Southern blot.
Quantification is shown below each lane. This experiment was repeated twice with similar results. D. Psoralen crosslinking was performed followed by
Southern blotting to determine the fraction of open (O) and closed (C) rDNA repeats. Quantification is shown. There were no significant difference
between the mutants and WT strain. E. We used a strain in which a unique sequence has been inserted into one rDNA repeat in order to monitor its
transcription by FISH [44]. A standard curve allowed us to infer the number of RNA transcripts per cell (Figure S5). A representative image from the
wild-type strain is shown; the scale bar is 5 microns. For more details please see Materials and Methods. For each strain, at least three independent
cultures were monitored using the protocol previously described [44] and at least 300 cells per culture were quantified. In the plot shown the dot is
the average, the two lines around it are the standard error, and the lowest line is the median. The p value was derived from a two tailed Student’s t
test. See Figure S5 for the standard curve and expanded presentation of the FISH data. F. Cohesion was measured using strains with lacO repeats
integrated adjacent to the rDNA cluster. Cultures were arrested with nocodazole. At least three biological replicates were performed, with at least 100
cells counted from each culture, and the standard deviation is shown. P values are derived from Fisher’s test.
doi:10.1371/journal.pgen.1002749.g006

Figure 7. Metabolic labeling of Roberts syndrome fibroblasts suggests protein translation and ribosomal RNA production are
reduced. A. Cultured WT, ESCO2-mutation and V5- ESCO2-corrected human RBS fibroblasts were grown in F10 Ham Mixture plus 10% FBS. Cells
were washed in PBS twice, switched to 3 mL Met/Cys-free Dulbecco’s modied Eagle’s medium containing 10 mM MG-132, a proteasome inhibitor, and
pulsed with 30 mCi of 35S-methionine for different times (0, 15, 30, 60, 120, 240 min). Cells were lysed in RIPA buffer and proteins were precipitated by
the addition of hot 10% TCA. After centrifugation, the precipitate was washed twice in acetone. The precipitate was dissolved in 100 mL of 1% SDS
and heated at 95uC for 10 min. An aliquot of the SDS extract was counted in Esoscint for 35S radioactivity in a liquid scintillation spectrometer to
determine the amount of 35S-methionine incorporated into proteins. B. Cultured WT, ESCO2-mutation and V5- ESCO2-corrected human RBS
fibroblasts were grown in F10 Ham Mixture plus 10% FBS. 3H-uridine (5 mCi) was incubated with 106 cells from each group for two hours. Total RNA
was isolated with TriZol reagent (Invitrogen, U.S.A) and the concentration of each RNA sample was measured by OD260/280. 1 mg of each sample was
counted in a Beckman LS 6500 multipurpose scintillation counter to determine the amount of 3H-uridine incorporated. Four independent cultures
were labeled to derive the standard deviation. Significance relative to WT was calculated using an unpaired t test. C. Ribosome profiling and
quantification were carried out as described in Figure 3C.
doi:10.1371/journal.pgen.1002749.g007
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does show weak elevation in b-galactosidase activity from the

Gcn4 leader sequence and eif2a-phosphorylation, and a weak 40S

biogenesis defect. The scc2-D730V mutation may affect some

aspect of chromosome biology that we do not currently

understand or cannot be fully evaluated in budding yeast. We

note that the scc2-4 mutation causes more severe defects in yeast

(Figure 2 and data not shown). A future challenge will be to

achieve a molecular understanding of how different mutations in

different proteins can lead to similar disease outcomes.

In RBS both copies of ESCO2 have lost function, but CdLS is

most often caused by a single mutant copy of SCC2/NIPBL.

However, SMC1 is on the X chromosome in humans and the cases

of CdLS associated with the smc1-Q843D allele have been in males

with a sole mutant copy [10]. Thus, both our haploid yeast and

human patients express only mutant copies of ECO1/ESCO2 or

SMC1. In contrast, the evaluation of the scc2-D730V allele in

haploid yeast does not genocopy the human disease since there

would be an additional WT copy of SCC2/NIPBL present. It may

be important to model haploinsufficiency to understand how the

SCC2/NIPBL mutations cause disease.

Since defects in protein translation affect cell growth and

division, protein translation can affect size. The reports of small

size in a mouse model [48] and human CdLS patients [14] are

consistent with our hypothesis that mutations in cohesin can

generate a deficit in ribosome function. In a report on gene

expression in Drosophila cells depleted for Nipped-B or Rad21

(CdLS model), nearly all ribosomal protein and aminoacyl-tRNA

synthetase transcripts are reduced [46]. In addition, expression of

Myc, p53 and Mdm2 are altered by depletion of Rad21 and

Nipped-B in humans [47], mouse [48], flies and zebrafish [49].

These targets are known to be regulated by ribosome biogenesis

[56]. When these data are taken in context of our current report,

they collectively suggest that reduced translational capacity may

contribute to the developmental defects associated with the

cohesinopathies.

How do cohesin proteins facilitate rRNA production? Our data

suggests that transcription from a given repeat is reduced in the

eco1-W216G strain, rather than there being fewer open repeats or

reduced copy number. One mechanism by which we can imagine

cohesin contributing to transcription is through gene looping,

which might facilitate reloading of RNA Polymerase I from the 39

to 59 end of the 35S transcript. Loops at the rDNA have been

reported [57] and cohesin binds flanking each repeat in a pattern

that would enable looping [41]. Other possibilities include cohesin

promoting some other aspect of rDNA metabolism such as

replication fork speed [58] or nucleolar organization that in turn

facilitates the production of the rRNA transcripts. In any case, the

lower levels of ribosomal RNA as measured in both yeast and

human are associated with decreased protein synthesis. In future

work it will be important to further examine the mechanism by

which cohesin proteins promote production of rRNA. Coupling

protein synthesis capacity to chromosome metabolism might

provide the cell with a useful feedback loop for regulating

proliferation.

Materials and Methods

b-galactosidase assays
Wild type and cohesin mutant strains transformed with the

plasmids p180 (pGCN4 URA3 lacZ CEN) having all four mORFs or

p226 (with only the fourth mORF) [29] were grown at 30uC to an

A600 of ,0.8 under repressive conditions (overnight growth in SD-

ura then shifted to YPD+CSM till desired absorbance is reached).

The cells were pelleted and protein extracts were made. b-

galactosidase activity was measured following standardized proto-

cols using ONPG (o-nitrophenyl-b-D-galactopyranoside) as the

substrate. We note that the level of b-galactosidase activity is very

sensitive to the growth protocol used [27].

Microarray methods
Concentration and quality of RNA were determined by

spectrophotometer and Agilent bioanalyzer analysis (Agilent

Technologies, Inc., Palo Alto, CA). For array analysis, labeled

mRNA was prepared from 300 ng of total RNA using the

MessageAmp III RNA Amplification kit (Applied Biosystems/

Ambion, Austin, TX) according to the manufacturer’s specifica-

tions. Array analysis was performed using Affymetrix GeneChip

Yeast Genome 2.0 Arrays processed with the GeneChip Fluidics

Station 450 and scanned with a GeneChip Scanner 3000 7G using

standard protocols. Resulting CEL files were analyzed using RMA

[59] and limma [60] in the R statistical environment. Affymetrix

GeneChip data are available at GEO under accession number

GSE27235.

Motif identification and analysis for Gcn4, Tbp1, and Rap1

were based on presence or absence calls for each binding site

within the region of the annotated gene start site and 400 bp

upstream. Presence of the Gcn4 motif was determined by a match

to the sequence TGA(C/G)TC(T/A). The Tbp1 and Rap1

matches were determined using the TRANSFAC [61] matrices

F$TBP_Q6 and F$Rap1_C and the MATCH program [62]. The

score cut-off profiles for Tbp1 and Rap1 were minFP and minFN,

respectively, using TRANSFAC version 2009.3. Sequences,

microarray probe mapping, and gene annotations were from

Ensembl 56. P-values for the gene set indicated were determined

using the hypergeometric test of all protein-coding genes.

Polysome analysis
100 ml of yeast culture was grown to an OD600 of 0.8 and

treated with 100 mg/ml of cycloheximide for 10 mins on ice before

centrifugation. After centrifugation the cell pellets were washed

twice and resuspended in lysis buffer (10 mM Tris-HCl pH 7.5,

100 mM NaCl, 30 mM MgCl2, 100 ug/ml cycloheximide,

0.2 mg/ml heparin in DEPC). The cells were lysed in the cold

by bead beating and the lysate (10 OD units) was loaded on top of

an 11 ml 7–47% sucrose gradient in 15 mM Tris-Cl pH 7.4,

140 mM NH4Cl and 7.8 mM MgOAc-4H2O centrifuged at

36,000 rpm for 3 h. The gradients were fractionated and OD254

was monitored using an ISCO UV-6 monitor [63].

Polysome quantitation
Polysome quantitation was done by both Image J and

Mathematica, version 7.0. A common baseline was chosen and

the area under the peaks was calculated with the Image J software.

For Mathematica, TIFF images from the instrument were read

using the Import function. The signal intensity was isolated from

the image using the ImageSubtract function of the non-signal

colors. The signal plot was scaled and shifted along the y-axis to

position the baseline (x = 0) at the lowest signal level of the plot.

Boundary regions were selected manually by zooming onto the

image and recording the x-axis coordinate of extremal point. The

total area between the selected boundaries and above the baseline

was calculated using the Take and Total functions.

Growth curves
Growth curves were collected in triplicate for each genotype at

time intervals of 15 min. We used a Tecan Infinite M200 Pro

machine. Due to the non-linearity between optical density (OD)
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and cell number at higher cell densities, the measured Tecan ODs

were converted to ‘real’ ODs using the calibration function ‘real

OD’ = 21.0543+12.27166measured OD [64]. The maximum

slope was determined for each curve from 12 consecutive points

and the statistical significance between slopes was calculated using

a t test.

GFP measurements using cytometry
We used flow cytometry to quantify the peak GFP fluorescence

in WT and mutant cells. By measuring the digitized pulse height

from the B1 detector (525/50 emission), the maximum GFP

intensity of each cell could be ascertained. For each sample

approximately 10,000 cells were measured. WT and mutant

strains that did not bear the GFP-plasmid showed no significant

difference in their maximum fluorescence intensities, indicating

they have similar levels of intrinsic fluorescence (autofluorescence);

however, some mutant strains expressing a GFP tagged ribosomal

subunit had on average a higher maximum GFP intensity than

WT cells expressing the same fluorescent tag. Since the

distribution of fluorescence intensity among GFP positive cells

was non-Gaussian, we used the Kolmogorov-Smirnov (KS)

statistic to characterize the distribution differences, which quan-

tifies the distance between empirical cumulative distribution

functions of two samples. Using this statistic, we can calculate

distances between biological replicates (same genotype) and

distances between samples with different genotypes. In this way

we can determine whether the average KS-distance between the

WT and mutant samples is significantly greater than between

replicates (same genotype) using a t test.

Western blotting
Overnight cultures of yeast cells were diluted in YPD+CSM to

an OD of 0.1 and grown to an OD of approximately 0.8. Cells

were then pelleted by centrifugation and washed in PBS. Cells

were lysed with glass beads in buffer containing 10 mM Tris,

pH 7.4, 100 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1 mM

NaF, 20 mM Na4P2O7, 2 mM Na3VO4, 0.1% SDS, 0.5% sodium

deoxycholate, 1% Triton-X 100, 10% glycerol, and 1 mM PMSF

protease inhibitor cocktail (Sigma). Equal amounts of protein were

loaded for each sample after quantification by Bradford assay.

Protein samples were electrophoresed on a 12% SDS-polyacryl-

amide and transferred to nitrocellulose filters. The immunoblots

were probed for phospho-specific eIF2a (Ser-51) (Cell Signalling

#9721). Total eIF2a was measured with rabbit polyclonal

antibody (a gift from T. Dever). eIF2a was visualized by HRP-

conjugated anti-rabbit IgG.

Metabolic labeling—RNA
Methods for RNA labeling were derived from a previous report

[65]. For the experiment in Figure 5B, triplicate cultures of

BY4742, eco1-W216G and smc1-Q843D carrying pRS316 were

grown in SD-Ura medium to exponential phase (OD600,0.3). 3H-

uridine (5 mCi) was mixed with 500 mL of each culture and

incubated at 30uC for 5 min with aeration. Then samples were

treated with 2.5 mL of 10% trichloroacetic acid (TCA) with

2.5 mg/ml of uridine. After filtration through a 25 mm glass filter,

each membrane was washed with 5% TCA, dried, and counted in

a Beckman LS 6500 multipurpose scintillation counter. For

labeling with 3H-methylmethionine (Figure 5D), we grew cells in

SD-met medium and pulse-labeled for 5 min with 20 mCi/mL 3H-

methylmethionine followed by a 5 min chase with cold methio-

nine. RNA was prepared from 1610‘7 cells. 8 ml of each sample

was run on a 1.2% formaldehyde agarose gel, transferred to a

Gene Screen membrane, and detected by autoradiography.

Individual RNA species (25S and 18S) were excised from the blot

(together with nearby regions of the blot for assessment of

background) and quantified with a scintillation counter.

Metabolic labeling—protein
Yeast strains were grown to mid-log phase (OD600,0.5) at 30uC

in medium containing dextrose (YPD+CSM). Cells were harvested

and washed in PBS and resuspended in a similar volume of

prewarmed methionine-minus medium containing dextrose (SD-

met). Aliquots were taken from this culture (0.75 ml) for the zero

time point. The medium was supplemented with 27.5 mCi of 35S-

methionine and unlabeled methionine 1 mg/ml. At 15–20 mins

intervals (0.75 ml) samples were withdrawn from an actively

growing culture. The amount of 35S-methionine incorporated into

proteins was then measured by an adaptation of the method of

Kang and Hershey [66]. The cells were lysed in 1.8 N NaOH

containing 0.2 M b-mercaptoethanol. Proteins were precipitated

by the addition of hot 10% trichloroacetic acid. After centrifuga-

tion, the precipitate was washed twice in acetone. The precipitate

was dissolved in 100 ml of 1% sodium dodecyl sulfate and heated

at 95uC for 10 min. An aliquot of the SDS extract was counted in

Ecoscint for 35S radioactivity in a liquid scintillation spectrometer

to determine the amount of 35S-methionine incorporated into

proteins.

Psoralen cross-linking
Psoralen cross-linking experiments were carried out as previ-

ously described [67] with the following modifications: 1.3% Tris-

Taurine-EDTA (TTE) gels were run at 80 volts for 20 hours in

0.56TTE, processed and transferred to Gene Screen membrane

in 66 SSC. Hybridization with a 35S specific probe was carried

out at 60uC and the membrane was exposed for 2 hours to a

phosphorimager screen (GE/Amersham).

qPCR for aneuploidy
Genomic DNA was isolated from strains and used as a template

for qPCR. For each chromosome arm, one locus, usually near the

centromere, was monitored according to the method previously

described [68].

FISH
Yeast cells were grown in CSM-URA at 30uC to an OD600 of

0.4. The cells were then fixed by adding formaldehyde to a final

concentration of 4% (v/v) for 45 min at room temperature with

shaking. After three washes with wash buffer (1.2 M sorbitol,

0.1 M potassium phosphate, pH 7.5), the cell wall was digested

with 0.3 mg/ml zymolase in spheroplast buffer (1.2 M sorbitol,

0.1 M potassium phosphate, 10 mM vanadyl ribonucleoside

complex, 0.06 mg/ml PMSF, 28 mM b-mercaptoethanol) at

37uC for 45 min. After digestion, the cells were washed three

times with FISH wash buffer (30% formamide, 26SCC). The cells

were then hybridized in 30 ml hybridization solution containing

5 ng/ml DNA probe in 25% (v/v) formamide, 26SCC, 1 mg/ml

BSA (nuclease free), 10 mM vanadyl ribonucleoside complex,

0.5 mg/ml salmon sperm DNA and 0.1 g/ml dextran sulfate

overnight at room temperature. Before imaging, cells were washed

twice with FISH wash buffer for 30 min and then added to slides

pre-coated with poly-L lysine.

The probe used for the FISH experiment is a synthesized DNA

oligonucleotide modified from the previous publication [44]. The

sequence of the oligonucleotide is 59-CGGCRGGTAAGGG-

RTTCCATARAAACTCCTRAGGCCACGA-39; the ‘R’s indi-

cates an amino-dT replacing a regular dT where a fluorescein
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molecule was coupled. The probe was further purified by

polyacrylamide gel purification to ensure that each amino-dT

was coupled with a fluorescein molecule.

For counting RNA levels, it was first necessary to derive a

calibration plot that relates intensity observed to RNA levels. This

is required due to a wide range of RNA levels observed between

different cells. In cells with more than ,20 RNA, RNA spots

overlap, making it impossible to distinguish individual RNAs.

Extreme examples of this occur when cells have undergone recent

‘bursts’ in transcription (see Figure 6).

The general method previously developed was followed [44].

To generate a calibration plot, we acquired long-exposure z-stacks

of RNA using the widefield module of a Zeiss-200 m that was also

equipped with a Yokagawa CSU-10 spinning disc. For cells with

few (generally less than 15) RNAs, it was possible to use the long-

exposure images to count single RNAs. After counting RNAs in

these cells, we switched to the confocal set-up and acquired a

confocal z-stack as described below. This iteration allowed for the

generation of a calibration plot that related overall intensity of the

sum projection of the confocal z-stack to the number of counted

RNA per cell. We obtained a linear plot, with an intercept at ,0,

demonstrating that RNA per cell is linearly proportional to total

RNA, and thus total intensity per cell from the confocal data can

be used to measure total RNA per cell even in cells where density

is too high to distinguish single RNAs.

To acquire RNA per cell for groups of where the range is

between 0 and ,300, it was necessary to develop a system where it

was possible to obtain fluorescence from cells with few (1 to 10)

RNA, but yet not saturate the camera with cells possessing up to

hundreds of RNA. We acquired 30 z-slices with spacing 0.3

microns. A background was subtracted for each slice, and then a

sum projection was applied. Total intensity per cell was compared

to the linear, extrapolated calibration plot to generate RNA per

cell. A sum-projection of a non-background subtracted z-series was

able to detect the location of cells where RNA levels were very low,

eliminating the risk of missing low RNA-possessing cells with the

background-subtracted analysis. We note that this method

generated a distribution of RNA per cell that matched very

closely the published result for the same strain [44].

Emission from the confocal z-slices was collected through a

500–550 nm bp filter onto a Hamamatsu C9100-13 EMCCD. A

488 nm laser line was used to excite the flourescein tagged FISH

probe.

Supporting Information

Figure S1 Genes adjacent to tDNAs are not misregulated in

cohesin mutants. We examined the expression of genes adjacent to

tRNAs in the microarray data set. The coordinates for all yeast

tRNA genes were retrieved from Ensembl (299 genes). A script

was written to use the Ensembl API and select the nearest gene to

the left and to the right of each tRNA. The result was that 35

segments to the left or right of a tRNA gene did not have another

gene adjacent within 2 kb, and 67 of the genes returned were

another tRNA gene. The remaining gene IDs were mapped

against the Affy probe IDs resulting in 418 matches. The mutant/

WT expression values for this gene set for each timepoint are

mapped in the box plot. In addition, a background set of mutant/

WT expression values from 418 randomly chosen genes is also

shown. The distribution of expression values from each mutant

relative to WT for genes adjacent to a tRNA is shown (tA – tRNA

Adjacent). Next to each of these distributions is a set of values from

a randomly chosen gene set (RS) from the same dataset. If

disruption of the tRNA suppression effect occurs in the mutants,

then we would expect to observe an upward shift in the tA

distribution relative to the RS set (indicating higher expression of

tRNA adjacent genes in the mutant).

(PDF)

Figure S2 SNO1 and SNZ1 misregulation in cohesin mutants is

confirmed by quantitative PCR. RT-qPCR was performed on the

RNAs from each timepoint for WT and the two mutants. Gene

specific primers for SNZ1 (A) and SNO1 (B) were used and the

increase over time was calculated relative to ACT1 and PGK1.

Both SNZ1 and SNO1 are more strongly induced in the mutants.

The fold change relative to the WT value is shown for the eco1-

W216G mutant at time 0 since the scale makes the change difficult

to appreciate. Reactions were performed in triplicate and the

mean and the standard deviation is shown.

(PDF)

Figure S3 qPCR assay for a sequence on the left and right arm

of each chromosome confirms that no aneuploidy is present in

either the W303a strain or the smc1-Q843D (SG136) and eco1-

W216G (SG156) mutants derived from this strain.

(PDF)

Figure S4 Growth and rRNA labeling. A. RNA was pulse

labeled and the incorporation of 3H-uridine was quantified in

W303a and eco1-W216G strains as performed in Figure 5. B. The

growth of the strains used for (A) in SD-ura at 30uC is shown. C.

The growth of the strains indicated is shown in YPD+CSM at

37uC. The growth curve and statistics for B and C were performed

as in Figure 3.

(PDF)

Figure S5 An expanded presentation of the FISH data. A. The

standard curve shown was used to determine how fluorescence

intensity relates to number of RNAs. The fluorescence for each

cell is measured and then binned to show the fraction of the

population with each RNA number. The fluorescence for 300 cells

from 3 independent cultures for each strain was measured (900

cells total per strain). The error bars indicate the standard

deviation. B. WT C. scc2-D730V D. eco1-W216G E. smc1-Q843D.

(PDF)

Table S1 GO analysis of misregulated genes.

(XLSX)

Table S2 Strains.

(XLSX)
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